
Winter 20251

CSC309 Kian Abbasi

TypeScript & Advanced CSS

JAVASCRIPT TYPESCRIPT

Winter 20252

React so far

• Components, state, props

• Integration with Next.js
• Monolithic project

• Hooks and API calls

Winter 20253

This session

• Navigation with Next.js

• Global state and context

• Type safety with TypeScript

• Advanced CSS
• Tailwind classes

Winter 20254

Navigation

• You might need a URL change via code

• Example: If response is 401, redirect to the login page

• Like window.location.replace() in regular JS

• Via Next router:
let router = useRouter();
router.push("/login")

Winter 20255

Arguments

• Parameters can both be defined as URL arguments (part
of the path) or query params (key-value pairs added
after ? in URL)

• URL arguments defined in the file name
e.g., [storeId].jsx

• Can be accessed via useParams and useSearchParams
const { storeId } = useParams()
const { page, limit } = useSearchParams()

Winter 20256

Links

• Like the familiar <a> tag, but without a browser reload

• Usage
<Link href="/watch"> watch </Link>

• Important: Import Link and the related hooks from Next, not
React

import Link from 'next/link'
import { useRouter, useParams } from 'next/navigation'

Winter 20257

Prop drilling

• Passing state down to children can be quite
cumbersome

• Example: The component that fires the request is a deep
child button
• You need to pass both the state and its setter function all

the way down

Winter 20258
Source: dev.to/vaibsgharge/a-quick-look-at-react-s-usecontext-hook-3ha5

Prop drilling

Winter 20259

Global state

• A global state is can be a great alternative

• Accessible everywhere!
• No need to pass things all the way down

• Like global variables, don’t use them for everything!
• Makes your code dirty and harder to understand
• Makes component re-use harder

Winter 202510

Context

• React’s way to handle global state

• Create state variables and put them and/or setters in a
context

• Everything inside the context is accessible within its
provider

Winter 202511

Context

• Create the context (usually in a separate file)
export const TestContext = createContext({
 var1: null, var2: null,
});

• Put a default initial value for every variable that you will
include in your context

Winter 202512

Provider

• Create an object
const myObject = { var1: 1, var2: 2 };

• Put a provider around the parent component and pass the object
<TestContext.Provider value={myObject}>
 …
</TestContext.Provider>

• At any descendent, you can access the context object
const { var1, var2 } = useContext(TestContext)

• More information:
https://dmitripavlutin.com/react-context-and-usecontext/

Winter 202513

Why context is so great?

• Great way to store data that is used by many
components, or it set and read in very different
components
• e.g., account info, profile data, etc.

• Create a context for each set of relevant variables and
their setters

Winter 202514

Context example

Codes by Myles Thiessen.
https://thiessem.ca

Winter 202515

Type safety

Winter 202516

Type system

• Static vs dynamic typing
• Static Typing: Types are checked at compile-time (e.g., C, Java).
• Dynamic Typing: Types are checked at runtime – you can change

a variable’s type (e.g., Python).

• Strong vs weak typing
• Strong Typing: Enforces strict rules about how types are used

and combined (e.g., Java, Python)
• Weak Typing: Flexible about type conversions, often leading to

implicit type coercion.

Winter 202517

• JavaScript types (recap):
• number, string, boolean, object, function, undefined

• JavaScript is both dynamically and weakly typed
• Can re-assign variables to different types
• Automatically converts types in unexpected ways to avoid

crashing
1 + "2" results in "12"

5 == "5" results in true

"0" == false results in true

[] + [] results in ""

[] + {} results in[object Object]

Winter 202518

Implications

• Plain JavaScript code is very error prone

• Having no typing makes the code unreadable for other
developers
• And for yourself (within 3-4 weeks)

• It quickly becomes a mess and attracts bugs!

Winter 202519

TypeScript

▪ Invented by Microsoft in 2012

▪Superset of JavaScript:
▪ Adds typing to the language

▪Has no runtime effect!
▪ Compiles to JavaScript

Winter 202520

Add TypeScript to Next.js projects

• Simply create an empty file named tsconfig.json and restart the
server.

• Next.js will automatically fill it up. Copy existing configs from
jsconfig.json.

• Rename a file from js/jsx to ts/tsx and enjoy!

• Note: You can add TypeScript to all Node projects
• Not limited to Next.js projects.
• Visit https://dev.to/bhaeussermann/adding-typescript-support-to-your-

nodejs-project-3bfm

Winter 202521

TypeScript

Statically typed

Strongly typed

Winter 202522

TypeScript benefits

• Improved code quality

• Catch errors during development, not at runtime

• Better collaboration in large teams with clear types

• Better tooling and autocompletion in IDEs

Winter 202523

TypeScript syntax

• Type declaration
let message: string = "Hello, TypeScript!"

function greet(name: string): string {

 return `Hello, ${name}`

}

• Type inference also works
let count = 42; // infers type 'number'

Winter 202524

Type system

• Primitive Types:
• JavaScript primitive types (string, number, boolean, etc.)
• Additional types: any, unknown, void, never.
• Array and tuple: number[], [string, number]

• Enums
• Optional types: function greet(name?: string)…

• Type aliases:
type ID = string | number

Winter 202525

Type system

• Interfaces and generic types
interface ModalProps {

 text: string

 image?: string

 autoHide: boolean

}

const Modal: React.FC<ModalProps> = (props) => {

 const [loading, setLoading] = useState<boolean>(false)

}

Winter 202526

TypeScript notes

• TypeScript works alongside JavaScript
• All files do not have to be converted TypeScript

• Suppression
• The any type is a wildcard that suppresses type checking
• Use @ts-ignore to disable TypeScript for a line
• Discouraged. Use only if it’s absolutely necessary.

Winter 202527

TypeScript notes

• Remember: all these checks are compile-time. None of
them have any impacts at runtime!

• Runtime code is again plain JavaScript

• To check types at runtime, use typeof and instanceof
• Only work for JavaScript types and classes, respectively

Winter 202528

Advanced CSS

Winter 202529

Traditional CSS

• CSS bloat
• CSS files grow very big with a lot of unused styles

• Specificity war
• Overly complex rules for CSS precedence

• CSS frameworks (e.g., bootstrap, material, etc.)
• Leads to websites that look similar

• Context switching between JS and CSS files

Winter 202530

Tailwind CSS
Visit https://tailwindcss.com/docs

• Replaces CSS styles with utility classes

• Example
<button className="bg-blue-500 text-white font-bold py-2 px-4 rounded">

 Click Me

</button>

• Each class adds the corresponding CSS styles to the element

Winter 202531

Installation

• Automatic installation
• Answer Yes to the Tailwind prompt when creating the

Next.js project

• Manual installation
• Follow the steps at

https://tailwindcss.com/docs/installation/framework-guides/nextjs

Winter 202532

Power of tailwind

• Arbitrary values
"w-[50%] text-[#ff6347]"

• Dark and light modes
"bg-white dark:bg-gray-800"

• Responsive styles
"p-4 sm:p-6 md:p-8"

• CSS interoperability
h1 {

 @apply text-2xl font-bold;

}

• Custom themes
Define theme colors, font, sizes in
tailwind.config.js

See https://tailwindcss.com/docs/theme

Winter 202533

Responsive design

• Should render well in different devices
• Wide screeners, laptops, tablets, smart phones

• Tailwind makes having responsive styles easy

• General tip: avoid absolute lengths
• The most responsive unit is rem
• Good news: tailwind units translate into rem!

• e.g., pt-4 becomes padding-top: 1rem;

• Flex and grid layouts can be helpful!

Winter 202534

Flex

• Horizontally or vertically places items inside the parent
element (aka container)

• add class="flex" (or "flex flex-col" for vertical) to container

• To wrap items on overflow, add "flex-wrap"

• Handle spacing between items:
justify-center, justify-between , justify-around , justify-evenly , etc.

Winter 202535

Flex items
Visit https://tailwindcss.com/docs/flex

• Control how much space each item takes if there’s extra
space (or too little space)

• Use flex-1 to take whatever space left
• Use case: Navbar with some links on one end, some on the

other

• Divide it between multiple elements with the same class

Winter 202536

Grid layout

• Specify in the container
class="grid grid-cols-3 gap-4"

• Specify how much space each item needs
class="col-span-2"

• Often need responsive grids
You will need fewer columns in small devices
class="grid sm:grid-cols-2 md:grid-cols-3 gap-4"

Winter 202537

Grid example

Winter 202538

Tailwind notes

• While it’s a great tool, you will have to be cautious!

• className bloat!
• Long, often repetitive classes

• Re-used classes is often a signal for extracting new
components

• Use @apply to move the classes to CSS

Winter 202539

Next session

• Concept of isolation

• Intro to Docker
• DockerFile
• Containers, images, registry

• Docker compose

	Slide 1: TypeScript & Advanced CSS
	Slide 2: React so far
	Slide 3: This session
	Slide 4: Navigation
	Slide 5: Arguments
	Slide 6: Links
	Slide 7: Prop drilling
	Slide 8: Prop drilling
	Slide 9: Global state
	Slide 10: Context
	Slide 11: Context
	Slide 12: Provider
	Slide 13: Why context is so great?
	Slide 14: Context example
	Slide 15: Type safety
	Slide 16: Type system
	Slide 17
	Slide 18: Implications
	Slide 19: TypeScript
	Slide 20: Add TypeScript to Next.js projects
	Slide 21: TypeScript
	Slide 22: TypeScript benefits
	Slide 23: TypeScript syntax
	Slide 24: Type system
	Slide 25: Type system
	Slide 26: TypeScript notes
	Slide 27: TypeScript notes
	Slide 28: Advanced CSS
	Slide 29: Traditional CSS
	Slide 30: Tailwind CSS Visit https://tailwindcss.com/docs
	Slide 31: Installation
	Slide 32: Power of tailwind
	Slide 33: Responsive design
	Slide 34: Flex
	Slide 35: Flex items Visit https://tailwindcss.com/docs/flex
	Slide 36: Grid layout
	Slide 37: Grid example
	Slide 38: Tailwind notes
	Slide 39: Next session

