
Winter 20251

CSC309 Kian Abbasi

Monorepo and Hooks

Winter 20252

This session

•Monorepo: React in Next.js

• Enhanced function components
• Hooks

• API calls

Winter 20253

React so far

• Enabled by importing some scripts to our HTML file

• JSX code must be translated to JS every time

• Very slow

Winter 20254

React in Node.js projects

• Serves front-end code from a Node server

•When browser requests a URL, a series of HTML, CSS,
and JavaScript files are returned
• Containing compiled JavaScript components

• A pre-compiled and bundled build for production

Winter 20255

React and Next.js

• Good news: Next.js already supports React!

• But wait! Isn’t Next.js a backend framework?

• Answer: It’s both frontend and backend!

•How is it possible? Is it a good thing?

Winter 20256

Monorepo
Visit https://monorepo.tools/

• The practice of having all your code in one repository
• Backend, web frontend, mobile frontend, libraries, etc.

• Giant codebases like Google, Facebook, and Microsoft
follow this practice

Winter 20257

Monorepo benefits

§Does not deal with repo
versions anymore

§Share types, utils, libraries

§Project is self-contained
and easy to navigate

Winter 20258

•Next.js is one step beyond monorepo, it’s a monolith!
• Monorepo: different Node projects (apps and shared

packages) in one parent Node project:
• Monolith: All the code in one Node project!

•Monolith is a good choice for small projects
• Might need to migrate to monorepo if project gets bigger
• Extract reused parts into separate Node projects

• In this course, we’re happy with monolith of course!

Winter 20259

React in Next.js
§Within the app directory, every

directory is a front-end path if:
§ It’s outside the /api directory
§ It contains a page.js file

§Define a React component in
each page.js file and make it the
default export
§ Will be rendered when the path is

accessed from browser

Winter 202510

React in Next.js

• Creates the HTML and compiles the JSX for you!

• Cherry on the cake: You can import all your styles and
assets (image, font, etc.) to your JS modules
• Handled and served properly by the server

• The only programming language needed for a web app is
JavaScript!

Winter 202511

React in Next.js

• Import css files:
import "./page.module.css"

• Images and other static files can gather under the public
directory

•Don’t make components too big:
• Have nested, child components

Winter 202512

Hooks

Winter 202513

Hooks

• Great syntax sugars introduced in React 16.8

•No need to write verbose classes, constructors, and
setState anymore

• You can move back to function components

Winter 202514

useState
• State does not have to be one object anymore

• Define separate state variables via the useState hook
import React, { useState } from 'react’;

• Returns the variable and update function
• Component gets re-rendered when the value changes

• Important: Add 'use client' to the beginning of your file
• Otherwise, it won’t work!

Winter 202515

Example

Winter 202516

Benefits
Visit https://blog.bitsrc.io/6-reasons-to-use-react-hooks-instead-of-classes-7e3ee745fe04

• Function components instead of verbose class components

• Enables multiple state variables

• No more this, no more method binding

• Easy to share state with child elements
• Each state variables comes with its own setter

Winter 202517

Lifecycle

• So far, we only know to run code when render is called
• In both class and function components

• You might not want to run code this way
• Example: Sending a request upon load, accessing state

values, etc.

• Adding lifecycle
• In class components: componentWillMount(),

componentDidMount(), componentWillUnmount(), etc.

Winter 202518

useEffect

• A powerful hook to replace lifecycle functions

• Called when component mounts

• Also, can be called when something changes

Winter 202519

• Import the hook
import React, { useState, useEffect } from 'react';

• Usage
useEffect(() => {
 console.log("This is called when component mounts")
}, [])

• Subscription
• When any element of the array changes, the effect is invoked
useEffect(() => {
 console.log("props size or status has changed")
}, [status, props.length])

• Recommended to have a separate useEffect for different
concerns

Winter 202520

Benefits of hooks

Winter 202521

Benefits of hooks

Winter 202522

Notes

•Do not leave out the second argument
• The effect would run at every re-render: inefficient

• The array should include all variables that are used in the
effect
• Otherwise, it might use stale values at re-renders

Winter 202523

API Calls

Winter 202524

Fetch API
• The interface for browsers to send HTTP requests
• Native support for REST framework

• Example:
let response = await fetch('/account/login/', {
 method: 'POST',
 data: {username: 'Kian', password: '123'}
})

const data = await response.json()
console.log(data);

Winter 202525

API calls and hooks

§Example: fetching data on page load and adding it to state

Winter 202526

Pagination

§Most times, GET APIs do
not return all responses at
once
§ Think of Google search

results, Instagram posts,
bank transactions

§ Instead, they send results
in pages

Winter 202527

API authentication

• First-party authentication
• Store access/refresh token in client’s persistent storage
• Should not be deleted when tab/browser/computer is closed

•Web browsers: use localStorage
localStorage.setItem('access_token', access_token);
localStorage.getItem('access_token’);

• Set Authorization header with appropriate value

Winter 202528

API authentication
• Third-party authentication
• Used when contacting external APIs

• Maps, weather, payment, etc.

• Authentication is different
• Our entire app is now a client to that third-party system
• End-user cannot login to that system

• Solution: API keys
• Either permanent (no expiration) or very long lived (months/year)

Winter 202529

CORS

•Having front-end contacting third-party APIs is very
dangerous
• Client will have access to the API key
• Significant security/financial issue

• Cross-Origin Resource Sharing (CORS)
• A client should only request to URLS with the same domain
• Browser block you from fetching a different domain
• API servers also block requests coming from a browser

Winter 202530

CORS
• Solution: Backend proxy

• Implement a backend API that requests the third-party
service and returns the response

• Advantages:
• API key is not exposed
• More control over what data is transferred
• More control over who accesses the data
• Better logging and monitoring

Winter 202531

CORS

Source: https://developers.exlibrisgroup.com/blog/using-a-simple-proxy-to-add-cors-support-to-ex-libris-apis/

Winter 202532

OAuth
§ Sign in using Googler, Facebook, etc.

§ Redirects client to Google sign in, if
successful, redirects back with auth code

§ Server contacts Google with auth code and
API key to receive user info (name, email,
files, …)

§ Server creates an account and generate
access token for client

Winter 202533

Next session

•Navigation with Next.js

• Global state and context

• Type safety with TypeScript

• Advanced CSS
• Tailwind classes

