
Winter 20251

CSC309 Kian Abbasi

React

Winter 20252

This session

• Begins (or resumes) our front-end journey

•Modern client-side JavaScript
• React, JSX

• React application
• Props
• Events
• State

Winter 20253

Classic web applications
• A backend server listens for HTTP requests

• Requests come from browser
• GET requests by entering a URL or clicking on a link
• POST requests by filling out forms
• Typically request a specific page

• Server returns a HTTP response with HTML body

• Browser renders the HTML page

Winter 20254

Modern web applications

• A backend server listens for HTTP requests

• Requests come from browser, mobile apps, postman, …
• Typically request a specific CRUD operation
• GET requests for queries, POST for data manipulation

• Server returns a HTTP response with JSON body

Winter 20255

Modern web applications

• Client processes the response accordingly

• In the rest of this course, we will focus on web clients
• Sending requests through a web browser (on desktop, tablet,

or phone)

•We use JavaScript to make changes to the webpage
• Also known as Single Page Applications

Winter 20256

Single-page applications

• Seamless user experience
• No reloads, no refreshes
• Everything does not get reset every time
• More control over the user experience

• Efficiency
• The whole page does not get updated

• Faster load time
• The initial load (when nothing is there) takes less time

Winter 20257

Source: https://www.netsolutions.com/insights/single-page-application/

Winter 20258

Technology

• Single page applications use a technology called
Asynchronous JavaScript and XML (Ajax)

• Browser sends the request in background
• Does not block the main thread
• Further changes are made to the document

Winter 20259

Ajax model

Source: https://en.wikipedia.org/wiki/Ajax_(programming)

Winter 202510

Creating a single-page application

•Nobody does that with pure Ajax

•Many frameworks are out there to help you

• Another advantage: backend/frontend separation
• Lecture 3 recap: Front-end deserves an independent project

• Examples: React, Angular, Vue

Winter 202511

Winter 202512

React

• Released by Facebook in 2013

• A JS library for building interactive user interfaces

• React takes charge of re-rendering when something
changes
• You no longer need to manipulate elements manually

Winter 202513

React
• Creates a virtual DOM in memory

• When something changes, React re-renders its own DOM
• More about the “something” later

• Compares the new and old DOMs and finds out what has
been updated

• Updates the specific elements of the browser’s DOM

Winter 202514

What’s the point

• Updating and re-rendering the actual DOM is expensive

•Not feasible to re-render the entire page on every change

• This way, React only changes what really needs to change

Winter 202515

JSX

• React uses a special variation of JavaScript that allows
for merging HTML and JS together

• Example:
const element = <h1>Hello, world!</h1>;

• Browsers do not understand this syntax
• Should be translated before execution

Winter 202516

Translation
Visit https://babeljs.io/

JSX JS

Winter 202517

Make it real

• Import React and Babel (JSX) scripts to your HTML
<script src="https://unpkg.com/react@18/umd/react.production.min.js"></script>
<script src="https://unpkg.com/react-dom@18/umd/react-dom.production.min.js"></script>
<script src="https://unpkg.com/@babel/standalone/babel.min.js"></script>

• Render your element in an actual JS element
<script type="text/babel">

const element = <h1>Hello World!</h1>;
ReactDOM.render(element, document.body)

</script>

Winter 202518

Components

• Key concept in React

• Allows you to make your elements reusable

• It’s a function or class that returns a React element

• Can be re-used like a known tag

Winter 202519

Function components

• Example:
function SayHello() {

return <h1>Hello world!</h1>;
}

•How to re-use it
ReactDOM.render(<SayHello />,

document.getElementById("root")
)

Winter 202520

• You can put any JS statement inside the {} in JSX

• Singular tags must always end with />

• Components’ names should always be capitalized
• Lowercase names are reserved for built-in elements: p, h1, div, etc.

• A JSX element must be wrapped in one enclosing tag
• If more than one, wrap them in a React fragment
<>

<p>
<div id={id}>

Hi, there is a {name} here!
</div>

</p>

</>

Winter 202521

Props

• React mimics JS attributes via props
• Read-only data coming from the parent element

• A dictionary containing attributes
function Text(props) {

return <h4>{props.value}</h4>
}

• To pass props:
<Text value="John" />

Winter 202522

• Styles and classes are handled a bit differently in JSX

• Example:
function Text(props) {
return(

<h4 className="text" style={{fontSize: props.size}}>
{props.value}

</h4>
)

}

• To pass props:
<Text value="Cars" size={30} />

• Can you think of a way to simplify the above component?
• Hint: Use destructuring

Winter 202523

A more sophisticated example
§Elements created in a loop

must have a unique key prop

§ Identifies which item has
changed, is added, or is
removed

§Otherwise, React will have
to re-render the whole list if
something changes

Winter 202524

Paired tag
• You can use your component as a paired tag

• What put inside tags will be passed as the children prop
function Wrapper({ children }) {

return <div className="col">
{ children }
</div>;

}

const wrapped = (
<Wrapper>

<List values={[1, 2, 3, "my cat"]} />
</Wrapper>

)

Winter 202525

Re-rendering and updates

Winter 202526

Class components
• Another way to define a component

• Extends React.Component
• Should implement the render method

• Props passed to constructor

• Example:
class Welcome extends React.Component {
render() {
return <h1>Hello, {this.props.name}</h1>;

}
}

Winter 202527

State

• Exhibits the real power of React!

• Components have a built-in state
• An object initialized in the constructor

•Once the state changes, component re-renders

Winter 202528

State
• Initialize the state object in the constructor

class Counter extends React.Component {
constructor(props){

super(props)
this.state = { counter: 0, }

}
}

• State values can be accessed via this.state
render(){

return <h3>{this.state.counter}</h3>
}

Winter 202529

Updating the state

• React states should never be mutated
• Breaks the underlying assumptions of React

• To update the state, call the setState method
• Other approaches will not trigger re-render

•Never assign state other than in the constructor

Winter 202530

Updating the state
• Wrong way #1:

this.state.counter += 1

• Wrong way #2:
this.state = {
counter: this.state.counter + 1

}

• Correct way:
this.setState({
counter: this.state.counter + 1

)}

Winter 202531

Events

• React has the same set of events as plain JS

• React events are written in camelCase
• onClick vs onclick

• The action must be a function, not any statement
• onClick={() => alert()} vs onclick="alert()"

Winter 202532

Events

• You can define the event handler as a method inside the
class

• Example:
increment(){

this.setState({counter: this.state.counter + 1})
}

• Usage
<button onClick={this.increment}> Click me </button>

Winter 202533

This won’t work!

• Remember the previous discussion about this

• Each JS function has its own this, which is the caller
object

• The object that calls the event handler is not your
component object

Winter 202534

Solution

Winter 202535

Another solution

• Recap: arrow functions do not introduce their own this

• Instead, they capture this from the outer scope

• Fortunately, the class body has the proper this

• Therefore, arrow functions work!

Winter 202536

Example: a two-way Celsius to
Fahrenheit converter
Using a custom component for input boxes

Winter 202537

Notes

§To store and use input’s
value:
§ Add it to state
§ Read it from state as well

§Read the new value from
event.target.value

Winter 202538

Lift the state up!
Visit: https://reactjs.org/docs/lifting-state-up.html

• To pass a shared state between components, move it to
their common ancestor

•Define the state in the common ancestor

• Pass it as props to the original components

• Pass a setter function as change handler

Winter 202539

Next session

•Monorepo: React in Next.js

• Enhanced function components
• Hooks

• API calls

