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So far

•Next.js API handlers

•MVC and model design

• Prisma ORM and CRUD

• Auth
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This session

•Migrations

•Workflow and assumptions

• Conflict resolution
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The great assumption

• The state of database tables is the same as what defined 
in model schema

• But these two are totally independent things
• Prisma models vs database tables

•ORM’s job to apply application’s schema to database
• Via DDL queries
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• Changes to schema’s state:
• Creation or removal of a table/model
• Creation or removal of a column/field
• Modification of field option/attributes

•Whenever the state changes, database should migrate to 
the new state

• Prisma does not do it automatically. WHY?

• You simply get a database exception if ORM’s and 
database’s schema do not match 
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Migration workflow

• Think about it as a git commit
• Talks about what has changed since the last migration

•History of changes needs to be stored somewhere
• The migrations folder
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Migration workflow
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New migration
• Think about it as a new commit:
• Includes what has changed since the last commit (i.e., migration)

• Builds the old database state from previous migrations
• Does not contact the database

• Iterates over all models to find out differences

• Creates a new folder inside the migrations directory
• Containing the DDL queries
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New migration

•Migrations are created and applied via
 npx prisma migrate dev

• But a migration should not be applied twice!
• The same CREATE TABLE will not work again!
• How is Prisma to know?

•Migrations themselves are stored in database
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Migrations table
§Migrations are stored in 
_prisma_migrations table

§Stores the migrations’ 
metadata
§ Content is only stored in the 

migration file

§ checksum ensures 
migrations are not edited
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Migration workflow
Generate a new migration file Apply the migrations to the database
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Migration assumptions
• For this system to work, you must
• Never directly change the database tables

• e.g., manually running an ALTER TABLE …
• Never edit/delete a migration file

• Migration files must be the same everywhere
• Always push the migration files into git

• Migration errors can take hours to resolve!
• Be cautious!
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Migration commands
npx prisma generate

• Generates JavaScript code of the schema

npx prisma migrate dev
• Identifies schema changes since last migration
• Generates a new migration
• Applies unapplied migrations
• Should only be used in development (WHY?)

npx prisma migrate deploy
• Applies unapplied migrations (without creating new ones)
• Suitable for production
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Migration errors
• Common scenarios:
• You and your teammate added the same or conflicting migrations 

independently
• Someone manually updated the database tables
• Someone created a failing migration

• e.g., marking a column with NULL values as NOT NULL
• Someone edited a migration file

• Very tricky:
• Potential for data loss is high. This should be avoided at all costs!
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Migration error solutions
Visit https://www.prisma.io/docs/orm/prisma-migrate/workflows/patching-and-hotfixing

• Resolve a migration
npx prisma migrate resolve --applied "migration_name"
npx prisma migrate resolve --rolled-back "migration_name"

•Will only update the migrations table, without executing 
the queries

•Manually sync database schema with migrations
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The last resort
§Reset the entire database

npx prisma db reset

§Deletes all table’s data
§ Applies the migrations on an 

empty database

§Definitely NOT an option in 
production
§ So be careful about migrations
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The very last resort
§ Delete the entire database

§ Just delete the dev.db file!

§ Delete the migrations directory 
afterwards

§ Restart with a fresh schema and 
generate new migrations!

§ Definitely NOT an option in 
production
§ So be careful about migrations
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Next session

• Begin (or resume) our front-end journey

•Modern client-side JavaScript
• React, JSX

• React application
• Props
• Events
• State


