
Winter 20251

CSC309 Kian Abbasi

Migrations

Winter 20252

So far

•Next.js API handlers

•MVC and model design

• Prisma ORM and CRUD

• Auth

Winter 20253

This session

•Migrations

•Workflow and assumptions

• Conflict resolution

Winter 20254

The great assumption

• The state of database tables is the same as what defined
in model schema

• But these two are totally independent things
• Prisma models vs database tables

•ORM’s job to apply application’s schema to database
• Via DDL queries

Winter 20255

• Changes to schema’s state:
• Creation or removal of a table/model
• Creation or removal of a column/field
• Modification of field option/attributes

•Whenever the state changes, database should migrate to
the new state

• Prisma does not do it automatically. WHY?

• You simply get a database exception if ORM’s and
database’s schema do not match

Winter 20256

Migration workflow

• Think about it as a git commit
• Talks about what has changed since the last migration

•History of changes needs to be stored somewhere
• The migrations folder

Winter 20257

Migration workflow

Winter 20258

New migration
• Think about it as a new commit:
• Includes what has changed since the last commit (i.e., migration)

• Builds the old database state from previous migrations
• Does not contact the database

• Iterates over all models to find out differences

• Creates a new folder inside the migrations directory
• Containing the DDL queries

Winter 20259

New migration

•Migrations are created and applied via
 npx prisma migrate dev

• But a migration should not be applied twice!
• The same CREATE TABLE will not work again!
• How is Prisma to know?

•Migrations themselves are stored in database

Winter 202510

Migrations table
§Migrations are stored in
_prisma_migrations table

§Stores the migrations’
metadata
§ Content is only stored in the

migration file

§ checksum ensures
migrations are not edited

Winter 202511

Migration workflow
Generate a new migration file Apply the migrations to the database

Winter 202512

Migration assumptions
• For this system to work, you must
• Never directly change the database tables

• e.g., manually running an ALTER TABLE …
• Never edit/delete a migration file

• Migration files must be the same everywhere
• Always push the migration files into git

• Migration errors can take hours to resolve!
• Be cautious!

Winter 202513

Migration commands
npx prisma generate

• Generates JavaScript code of the schema

npx prisma migrate dev
• Identifies schema changes since last migration
• Generates a new migration
• Applies unapplied migrations
• Should only be used in development (WHY?)

npx prisma migrate deploy
• Applies unapplied migrations (without creating new ones)
• Suitable for production

Winter 202514

Migration errors
• Common scenarios:
• You and your teammate added the same or conflicting migrations

independently
• Someone manually updated the database tables
• Someone created a failing migration

• e.g., marking a column with NULL values as NOT NULL
• Someone edited a migration file

• Very tricky:
• Potential for data loss is high. This should be avoided at all costs!

Winter 202515

Migration error solutions
Visit https://www.prisma.io/docs/orm/prisma-migrate/workflows/patching-and-hotfixing

• Resolve a migration
npx prisma migrate resolve --applied "migration_name"
npx prisma migrate resolve --rolled-back "migration_name"

•Will only update the migrations table, without executing
the queries

•Manually sync database schema with migrations

Winter 202516

The last resort
§Reset the entire database

npx prisma db reset

§Deletes all table’s data
§ Applies the migrations on an

empty database

§Definitely NOT an option in
production
§ So be careful about migrations

Winter 202517

The very last resort
§ Delete the entire database

§ Just delete the dev.db file!

§ Delete the migrations directory
afterwards

§ Restart with a fresh schema and
generate new migrations!

§ Definitely NOT an option in
production
§ So be careful about migrations

Winter 202518

Next session

• Begin (or resume) our front-end journey

•Modern client-side JavaScript
• React, JSX

• React application
• Props
• Events
• State

