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Node.js, Next.js, and APIs

How come you 
also knew about 

the best platform 
in the world!?
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So far
• How web works
• Client vs server
• HTTP

• Static web pages
• HTML and CSS

• JavaScript
• Syntax, objects, scope, arrow functions
• Dynamic web pages
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This session

•Modern architecture of web apps
• Frontend & backend
• APIs

• Server-side JavaScript
• JS projects with Node.js

• Intro to Next.js
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Web development

Source: blog.back4app.com Source: https://www.reddit.com/r/ProgrammerHumor/comments/m187c4/backend_vs_frontend/
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Web development

Source: https://mobilelive.medium.com/backend-for-frontend-basics-a-comprehensive-guide-37768062e55a
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Front-end development

•What user can see
• User interface (UI)
• User experience (UX)

•What is run on the client-side
• HTML/CSS rendering
• Javascript codes running on browser
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Back-end development
• What user can’t see
• What does it even mean?

• All logic and processes that happen behind the scene

• Including processing the requests, creating responses, data 
management, …

• At the server-side!
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Web server
• Listens on specified port(s)

• Handles incoming connections
• Generates a response
• Fetches a file
• Forwards them to corresponding applications

• Load balancing, security, file serving, etc

• Examples: Apache, Nginx
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Backend frameworks

•Doing everything from scratch?
• Listen on a port, process http requests (path, method, 

headers, body), retrieve data from storage, process data, 
create the response

•Not really a good idea!

• A lot of frameworks are out there!
• A lot of things are pre-implemented
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Backend frameworks

• PHP: Laravel, CodeIgniter

• Python: Django, Flask, FastAPI

• JavaScript: Express, Next.js

• Ruby: Ruby on Rails
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Concept is more important than 
framework!
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Unique power of JavaScript

• JavaScript is the only language that can be used in both 
front-end and back-end codes!

•Helpful for code consistency, unity, type sharing, library 
sharing, etc.

• Thanks to Node.js, we can have JavaScript projects
• Could be backend, frontend, or even both!
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Node.js

• JS does not have to be run on the browser!

•Node.js: a runtime environment to for running JS server-
side

• Includes a package manager, console, build tools, etc.
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Node console
• Opens with the node command

• You can execute inline JS code

• No window or DOM object
• We are outside of the browser

• Files can be run as well
node <filename>
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Installing libraries

•Node Package Manager (npm)
• Similar to pip, maven, etc. in other languages

• Install packages via npm install <package_name>
• Packages are stored in the node_modules directory

• Automatically generates and maintains a file named 
package.json
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Import and export

• Variables, classes, or functions can be exported from a JS 
file (aka module)
const var1 = 3, var2 = (x) => x + 1
export { var1, var2 }

• Can be reduced to one statement:
export const var1 = 3, var2 = (x) => x + 1

•Other modules can import them
import { var1 } from './App'



Winter 202518

Default export

• Each module can have one default export
export default App

• Importing the default export:
import App from "./App"

• This time, the names do not have to match
• Can be imported under any arbitrary name



Winter 202519

Backend project with Node.js

• In this course, we use Next.js as the backend (and 
frontend) framework
• More on frontend later in the course!

• Create a project via Node Package Execute (npx)
• Run npx create-next-app@latest
• Answer Yes to the prompt about using App router
• You can answer no to other prompts for simplicity!
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Next.js project
Visit https://nextjs.org/docs

§ Looking at package.json
§ next and react are installed
§ Ignore react for now

§Create a folder named api 
inside the app directory
§ Ignore everything except 

that folder
§ This is our main backend 

directory!
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API directory
The concept of API is discussed later today!

§ In the app directory, every 
directory will correspond 
to a URL path, if it contains 
a route.js file 
/api/users/signup
/api/hello
/api
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API handler (aka URL handler)
• Define an export function for each accepted HTTP method
• Executed when a request with the corresponding URL path and 

method arrives

• Inputs the request and returns a response

• Example
export async function GET(request) {
  // Backend logic
}
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Status & Responses
• Text response

 new Response("Hello world")

• HTML response
 new Response(`
    <html>
    <body>
        <h1>Login Successful!</h1>
      </body>
    </html>
  `, 
    { headers: { "content-type": "text/html" } }
);
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Status & Responses

• Error response
 new Response("Bad request", { status: 400 }); 
 new Response("Server error", { status: 500 });

• Redirects
 redirect('/api/users/login’)

• JSON response
 NextResponse.json({ message: "Hello, world!" });
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Request object

•Headers
if (request.headers.get('content-type') === 'application/json') 

•Query params (after ? in the URL)
const search = request.nextUrl.searchParams.get('search')

• Request body (if in JSON format)
const { username, password } = await request.json()
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URL parameters

•Dynamic segments in the URL
• e.g., /stores/1/products, /stores/2/ products

•Defined in directory names
• /app/api/stores/[storeId]/products/route.js 

• Can be access via the params object
export async function GET(request, { params }) {
    const { storeId } = await params;
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How a web app works

• Browser requests a URL
• API handler returns a giant HTML with the appropriate 

CSS, and client-side JS content
• Potentially reads it from a separate file
• Could be dynamically filled based on the request

• Users clicks on links and/or fills out forms
• API handlers process the GET/POST requests and 

returns another HTML response or a redirect

Does it, really?
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Web apps worked this way before 2010s!
Some still do…

Can you think of some major drawbacks of this style of web apps?
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Drawbacks

• Too backend-oriented
• All frontend logic is served as part of backend handlers
• Code gets messy and hard to understand

• Limits all frontends to web browsers
• What about mobile, watch, assistant, etc. ?

• Frontend can’t be as sophisticated
• Example: Single-page application
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Separate backend and frontend

•Modularity
• Changes in frontend will not affect backend and vice versa

• Consolidation
• One backend and multiple frontends (web, android, iOS)
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Backend 
server

Web 
browser

Android 
app

IOS app

API

AP
I API

Jupyter 
notebook

API
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Modularity

•Different services/apps talk to each other with a protocol

• API: The way an application can be talked to
• Stands for Application Programming Interface

•Web applications: typically, a set of HTTP requests
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Separate Backend and Frontend

• Backend views are only about data retrieval and 
manipulation

• Backend does not care about how data is shown, UI, or 
UX

•No HTML, CSS, client-side JS
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Response format

• A popular standard is JavaScript Object Notation or 
JSON
• Derived from JavaScript syntax for defining objects

• Easy, human-readable, and fast
• Many languages (python, javascript, …) have built-in parsers 

and support
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JSON
§ Primitive types: number, string, 

boolean, null

§ Array: ordered collection of 
elements

§ Object: key-value pairs
§ Keys are strings

§ Array elements and object 
values can be of any type 
(string, null, array, object, etc.)

Source: wikipedia
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API architecture
• Representational State Transfer (REST)

• A set of URL endpoints that do a data management task
• Login, signup, list of comments, create a post, edit profile, …

• All data is in the JSON format
• Both request payload and response

• Example:
exchange-docs.crypto.com/exchange/v1/rest-ws/index.html
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Restful APIs in Next.js

•Next.js natively supports Restful APIs

• Request body is parsed from JSON into a JS object
• Accessible via await request.json()

•Native support for returning JSON response
• Via  NextResponse.json(…)
• Appropriate headers are also set
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Next session

•Data management
• Model design
• The MVC design pattern

•ORMs

•Querying the database in Next.js API handlers
• CRUD


