
Winter 20251

CSC309 Kian Abbasi

Node.js, Next.js, and APIs

How come you
also knew about

the best platform
in the world!?

Winter 20252

So far
• How web works
• Client vs server
• HTTP

• Static web pages
• HTML and CSS

• JavaScript
• Syntax, objects, scope, arrow functions
• Dynamic web pages

Winter 20253

This session

•Modern architecture of web apps
• Frontend & backend
• APIs

• Server-side JavaScript
• JS projects with Node.js

• Intro to Next.js

Winter 20254

Web development

Source: blog.back4app.com Source: https://www.reddit.com/r/ProgrammerHumor/comments/m187c4/backend_vs_frontend/

Winter 20255

Web development

Source: https://mobilelive.medium.com/backend-for-frontend-basics-a-comprehensive-guide-37768062e55a

Winter 20256

Front-end development

•What user can see
• User interface (UI)
• User experience (UX)

•What is run on the client-side
• HTML/CSS rendering
• Javascript codes running on browser

Winter 20257

Back-end development
• What user can’t see
• What does it even mean?

• All logic and processes that happen behind the scene

• Including processing the requests, creating responses, data
management, …

• At the server-side!

Winter 20258

Web server
• Listens on specified port(s)

• Handles incoming connections
• Generates a response
• Fetches a file
• Forwards them to corresponding applications

• Load balancing, security, file serving, etc

• Examples: Apache, Nginx

Winter 20259

Backend frameworks

•Doing everything from scratch?
• Listen on a port, process http requests (path, method,

headers, body), retrieve data from storage, process data,
create the response

•Not really a good idea!

• A lot of frameworks are out there!
• A lot of things are pre-implemented

Winter 202510

Backend frameworks

• PHP: Laravel, CodeIgniter

• Python: Django, Flask, FastAPI

• JavaScript: Express, Next.js

• Ruby: Ruby on Rails

Winter 202511

Concept is more important than
framework!

Winter 202512

Unique power of JavaScript

• JavaScript is the only language that can be used in both
front-end and back-end codes!

•Helpful for code consistency, unity, type sharing, library
sharing, etc.

• Thanks to Node.js, we can have JavaScript projects
• Could be backend, frontend, or even both!

Winter 202513

Winter 202514

Node.js

• JS does not have to be run on the browser!

•Node.js: a runtime environment to for running JS server-
side

• Includes a package manager, console, build tools, etc.

Winter 202515

Node console
• Opens with the node command

• You can execute inline JS code

• No window or DOM object
• We are outside of the browser

• Files can be run as well
node <filename>

Winter 202516

Installing libraries

•Node Package Manager (npm)
• Similar to pip, maven, etc. in other languages

• Install packages via npm install <package_name>
• Packages are stored in the node_modules directory

• Automatically generates and maintains a file named
package.json

Winter 202517

Import and export

• Variables, classes, or functions can be exported from a JS
file (aka module)
const var1 = 3, var2 = (x) => x + 1
export { var1, var2 }

• Can be reduced to one statement:
export const var1 = 3, var2 = (x) => x + 1

•Other modules can import them
import { var1 } from './App'

Winter 202518

Default export

• Each module can have one default export
export default App

• Importing the default export:
import App from "./App"

• This time, the names do not have to match
• Can be imported under any arbitrary name

Winter 202519

Backend project with Node.js

• In this course, we use Next.js as the backend (and
frontend) framework
• More on frontend later in the course!

• Create a project via Node Package Execute (npx)
• Run npx create-next-app@latest
• Answer Yes to the prompt about using App router
• You can answer no to other prompts for simplicity!

Winter 202520

Next.js project
Visit https://nextjs.org/docs

§ Looking at package.json
§ next and react are installed
§ Ignore react for now

§Create a folder named api
inside the app directory
§ Ignore everything except

that folder
§ This is our main backend

directory!

Winter 202521

API directory
The concept of API is discussed later today!

§ In the app directory, every
directory will correspond
to a URL path, if it contains
a route.js file
/api/users/signup
/api/hello
/api

Winter 202522

API handler (aka URL handler)
• Define an export function for each accepted HTTP method
• Executed when a request with the corresponding URL path and

method arrives

• Inputs the request and returns a response

• Example
export async function GET(request) {
 // Backend logic
}

Winter 202523

Status & Responses
• Text response

 new Response("Hello world")

• HTML response
 new Response(`
 <html>
 <body>
 <h1>Login Successful!</h1>
 </body>
 </html>
 `,
 { headers: { "content-type": "text/html" } }
);

Winter 202524

Status & Responses

• Error response
 new Response("Bad request", { status: 400 });
 new Response("Server error", { status: 500 });

• Redirects
 redirect('/api/users/login’)

• JSON response
 NextResponse.json({ message: "Hello, world!" });

Winter 202525

Request object

•Headers
if (request.headers.get('content-type') === 'application/json')

•Query params (after ? in the URL)
const search = request.nextUrl.searchParams.get('search')

• Request body (if in JSON format)
const { username, password } = await request.json()

Winter 202526

URL parameters

•Dynamic segments in the URL
• e.g., /stores/1/products, /stores/2/ products

•Defined in directory names
• /app/api/stores/[storeId]/products/route.js

• Can be access via the params object
export async function GET(request, { params }) {
 const { storeId } = await params;

Winter 202527

How a web app works

• Browser requests a URL
• API handler returns a giant HTML with the appropriate

CSS, and client-side JS content
• Potentially reads it from a separate file
• Could be dynamically filled based on the request

• Users clicks on links and/or fills out forms
• API handlers process the GET/POST requests and

returns another HTML response or a redirect

Does it, really?

Winter 202528

Web apps worked this way before 2010s!
Some still do…

Can you think of some major drawbacks of this style of web apps?

Winter 202529

Drawbacks

• Too backend-oriented
• All frontend logic is served as part of backend handlers
• Code gets messy and hard to understand

• Limits all frontends to web browsers
• What about mobile, watch, assistant, etc. ?

• Frontend can’t be as sophisticated
• Example: Single-page application

Winter 202530

Separate backend and frontend

•Modularity
• Changes in frontend will not affect backend and vice versa

• Consolidation
• One backend and multiple frontends (web, android, iOS)

Winter 202531

Backend
server

Web
browser

Android
app

IOS app

API

AP
I API

Jupyter
notebook

API

Winter 202532

Modularity

•Different services/apps talk to each other with a protocol

• API: The way an application can be talked to
• Stands for Application Programming Interface

•Web applications: typically, a set of HTTP requests

Winter 202533

Separate Backend and Frontend

• Backend views are only about data retrieval and
manipulation

• Backend does not care about how data is shown, UI, or
UX

•No HTML, CSS, client-side JS

Winter 202534

Response format

• A popular standard is JavaScript Object Notation or
JSON
• Derived from JavaScript syntax for defining objects

• Easy, human-readable, and fast
• Many languages (python, javascript, …) have built-in parsers

and support

Winter 202535

JSON
§ Primitive types: number, string,

boolean, null

§ Array: ordered collection of
elements

§ Object: key-value pairs
§ Keys are strings

§ Array elements and object
values can be of any type
(string, null, array, object, etc.)

Source: wikipedia

Winter 202536

API architecture
• Representational State Transfer (REST)

• A set of URL endpoints that do a data management task
• Login, signup, list of comments, create a post, edit profile, …

• All data is in the JSON format
• Both request payload and response

• Example:
exchange-docs.crypto.com/exchange/v1/rest-ws/index.html

Winter 202537

Restful APIs in Next.js

•Next.js natively supports Restful APIs

• Request body is parsed from JSON into a JS object
• Accessible via await request.json()

•Native support for returning JSON response
• Via NextResponse.json(…)
• Appropriate headers are also set

Winter 202538

Next session

•Data management
• Model design
• The MVC design pattern

•ORMs

•Querying the database in Next.js API handlers
• CRUD

