
Fall 20241

CSC309 Kianoosh Abbasi

TypeScript & Advanced CSS

JAVASCRIPT TYPESCRIPT

Fall 20242

React so far

• Components, state, props

• Integration with Next.js
• Monolithic project

•Hooks and API calls

Fall 20243

This session

•Navigation with Next.js

• Global state and context

• Type safety with TypeScript

• Advanced CSS
• Tailwind classes

Fall 20244

Navigation

• You might need a URL change via code

• Example: If response is 401, redirect to the login page

• Like window.location.replace() in regular JS

• Via Next router:
let router = useRouter();
router.push("/login")

Fall 20245

Arguments

• Parameters can both be defined as URL args (part of the
path) or query params (key-value pairs added after ? in
URL)

• URL args defined in the file name
• e.g., [storeId].jsx

• Can be accessed via router.query
const { storeId } = router.query;

Fall 20246

Links

• Like the familiar <a> tag, but without a browser reload

• Usage
<Link href="/watch"> watch </Link>

• Important: Import Link and Router from Next, not React
import Link from 'next/link'
import { useRouter } from 'next/router'

Fall 20247

Prop drilling

• Passing state down to children can be quite cumbersome

• Example: The component that fires the request is a deep
child button
• You need to pass both the state and its setter function all the

way down

Fall 20248

Global state

• A global state is can be a great alternative

• Accessible everywhere!
• No need to pass things all the way down

• Like global variables, don’t use them for everything!
• Makes your code dirty and harder to understand
• Makes component re-use harder

Fall 20249

Context

• React’s way to handle global state

• Create state variables and put them and/or setters in a
context

• Everything inside the context is accessible within its
provider

Fall 202410

Context

• Create the context (usually in a separate file)
export const TestContext = createContext({

var1: null, var2: null,
});

• Put a default initial value for every variable that you will
include in your context

Fall 202411

Provider
• Create an object

const myObject = { var1: 1, var2: 2 };

• Put a provider around the parent component and pass the object
<TestContext.Provider value={myObject}>

…
</TestContext.Provider>

• At any descendent, you can access the context object
const { var1, var2 } = useContext(TestContext)

• More information:
https://dmitripavlutin.com/react-context-and-usecontext/

Fall 202412

Why context is so great?

• Great way to store data that is used by many
components, or it set and read in very different
components
• e.g, account info, profile data, etc.

• Create a context for each set of relevant variables and
their setters

Fall 202413

Context example

Codes by Myles Thiessen. https://thiessem.ca

Fall 202414

Type safety

Fall 202415

Type system

• Static vs dynamic typing
• Static Typing: Types are checked at compile-time (e.g., C, Java).
• Dynamic Typing: Types are checked at runtime – you can change

a variable’s type (e.g., Python).

• Strong vs weak typing
• Strong Typing: Enforces strict rules about how types are used and

combined (e.g., Java, Python)
• Weak Typing: Flexible about type conversions, often leading to

implicit type coercion.

Fall 202416

• JavaScript types (recap):
• number, string, boolean, object, function, undefined

• JavaScript is both dynamically and weakly typed
• Can re-assign variables to different types
• Automatically converts types in unexpected ways to avoid

crashing
1 + "2" results in "12"
5 == "5" results in true
"0" == false results in true
[] + [] results in ""
[] + {} results in[object Object]

Fall 202417

Implications

• Plain JavaScript code is very error prone

•Having no typing makes the code unreadable for other
developers
• And also for yourself (within 3-4 weeks)

• It quickly becomes a mess and attracts bugs!

Fall 202418

TypeScript

§ Invented by Microsoft in 2012

§Superset of JavaScript:
§ Adds typing to the language

§Has no runtime effect!
§ Compiles to JavaScript

Fall 202419

Add TypeScript to Next.js projects
• Simply create an empty file named tsconfig.json and restart the

server.

• Next.js will automatically fill it up. Copy existing configs from
jsconfig.json.

• Rename a file from js/jsx to ts/tsx and enjoy!

• Note: You can add TypeScript to all Node projects
• Not limited to Next.js projects.
• Visit https://dev.to/bhaeussermann/adding-typescript-support-to-your-

nodejs-project-3bfm

Fall 202420

TypeScript

Statically typed

Strongly typed

Fall 202421

TypeScript benefits

• Improved code quality

• Catch errors during development, not at runtime

• Better collaboration in large teams with clear types

• Better tooling and autocompletion in IDEs

Fall 202422

TypeScript syntax

• Type declaration
let message: string = "Hello, TypeScript!"
function greet(name: string): string {

return `Hello, ${name}`
}

• Type inference also works
let count = 42; // infers type 'number'

Fall 202423

Type system

• Primitive Types:
• JavaScript primitive types (string, number, boolean, etc.)
• Plus additional types: any, unknown, void, never.
• Array and tuple: number[], [string, number]
• Enums
• Optionals: function greet(name?: string)…

• Type aliases:
type ID = string | number

Fall 202424

Type system

• Interfaces and generic types
interface ModalProps {
 text: string
 image?: string
 autoHide: boolean
}

const Modal: React.FC<ModalProps> = (props) => {
 const [loading, setLoading] = useState<boolean>(false)
}

Fall 202425

TypeScript notes

• TypeScript works alongside JavaScript
• All files do not have to be converted TypeScript

• Suppression
• The any type is a wildcard that suppresses type checking
• Use @ts-ignore to disable TypeScript for a line
• Discouraged. Use only if it’s absolutely necessary.

Fall 202426

TypeScript notes

• Remember: all these checks are compile-time. None of
them have any impacts at runtime!

• Runtime code is again plain JavaScript

• To check types at runtime, use typeof and instanceof
• Only work for JavaScript types and classes, respectively

Fall 202427

Advanced CSS

Fall 202428

Traditional CSS
• CSS bloat
• CSS files grow very big with a lot of unused styles

• Specificity war
• Overly complex rules for CSS precedence

• CSS frameworks (e.g., bootstrap, material, etc.)
• Leads to websites that look similar

• Context switching between JS and CSS files

Fall 202429

Tailwind CSS
Visit https://tailwindcss.com/docs

• Replaces CSS styles with utility classes

• Example
<button className="bg-blue-500 text-white font-bold py-2
px-4 rounded">

Click Me
</button>

• Each class adds the corresponding CSS styles to the element

Fall 202430

Installation
Visit https://tailwindcss.com/docs/guides/nextjs

• Install via npm install tailwindcss postcss autoprefixer

• Run npx tailwindcss init -p to generate config files
• Generates tailwind.config.js and postcss.config.js

• Add all JS, JSX, TS, and TSX file globs to content in tailwind.config.js
• This will tell Tailwind to look for utility classes in those files

• Add the following lines to globals.css
@tailwind base;
@tailwind components;
@tailwind utilities;

Fall 202431

Power of tailwind

• Arbitrary values
"w-[50%] text-[#ff6347]"

•Dark and light modes
"bg-white dark:bg-gray-800"

• Responsive styles
"p-4 sm:p-6 md:p-8"

• CSS interoperability
h1 {

@apply text-2xl font-bold;
}

• Custom themes
Define theme colors, font, sizes in
tailwind.config.js
See https://tailwindcss.com/docs/theme

Fall 202432

Responsive design
• Should render well in different devices
• Wide screeners, laptops, tablets, smart phones

• Tailwind makes having responsive styles easy

• General tip: avoid absolute lengths
• The most responsive unit is rem
• Good news: tailwind units translate into rem!

• e.g., pt-4 becomes padding-top: 1rem;

• Flex and grid layouts can be helpful!

Fall 202433

Flex
• Horizontally or vertically places items inside the parent

element (aka container)

• add class="flex" (or "flex flex-col" for vertical) to
container

• To wrap items on overflow, add "flex-wrap"

• Handle spacing between items:
justify-center, justify-between , justify-around , justify-evenly , etc.

Fall 202434

Flex items
Visit https://tailwindcss.com/docs/flex

• Control how much space each item takes if there’s extra
space (or too little space)

• Use flex-1 to take whatever space left
• Use case: Navbar with some links on one end, some on the

other

•Divide it between multiple elements with the same class

Fall 202435

Grid layout

• Specify in the container
class="grid grid-cols-3 gap-4"

• Specify how much space each item needs
class="col-span-2"

•Often need responsive grids
You will need fewer columns in small devices
class="grid sm:grid-cols-2 md:grid-cols-3 gap-4"

Fall 202436

Grid example

Fall 202437

Tailwind notes

•While it’s a great tool, you will have to be cautious!

• className bloat!
• Long, often repetitive classes

• Re-used classes is often a signal for extracting new
components

• Use @apply to move the classes to CSS

Fall 202438

Next session
• Concept of isolation

• Intro to Docker
• DockerFile
• Containers, images, registry

• Docker compose

• Course conclusion

