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So far

•Next.js API handlers

•MVC and model design

• Prisma ORM

• CRUD



Fall 20243

Next session

• Authentication and authorization

• Tokens and sessions

•Detailed discussion about migrations
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Authentication vs Authorization

§Authentication: 
§ + Who’s calling?
§ - This is Daniel Liu
§ + Is it really Daniel Liu?

§Obtains user information 
from user/pass, session, 
API key, fingerprints, etc.
 

§Authorization:
§ Does Daniel Liu have 

enough access and 
permissions (aka 
authorized) to make this 
request?

§Checks user’s properties 
and permissions
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Authentication

• Client should tell us who they are

• Through request headers

• Several authentication methods
• Basic auth
• Session auth
• Token auth
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Basic auth
• Simply sends credentials at every request
• User/pass, fingerprints, face ID, etc.

• No concept of login and logout

• So insecure: transfers raw sensitive data many times
• If compromised, huge damage is incurred

• Not used in modern applications
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Session auth
• Client sends user/pass at login

• Or fingerprints, face ID, etc.

• If successful, server creates and stores a session id
• Mapped to user

• Session id returned in the response
• Browser saves it in cookies

• Browsers sends the same session id at next requests
• Incognito tab: browser does not send the same session id
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Token auth
Visit: https://www.javainuse.com/jwtgenerator

• Instead of a random session id, the token can contain 
information about the user

• It can be a JSON string 
{ "userId": "134234", "expiresAt": 1722720863 }

•Must be signed by the server to avoid attacks
• Turned into a seemingly random string

eyJhbGciOiJIUzI1NiJ9.eyJ1c2VySWQiOiIxMjM0IiwiZXhwaXJlc0F0IjoiMTcyMjcyMDg2MyJ9.UsTi2eDC5h
rI1uqv-JzUf384g0QznPZomPfzJbdnMtY
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Session auth Token auth

Source: https://sherryhsu.medium.com/session-vs-token-based-authentication-11a6c5ac45e4
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Session vs token auth
Session auth

§ Less scalable
§ server stores all sessions
§ An additional database  

query per request

§More control
§ server can revoke a session

Token auth

§Simpler
§ No database interaction

§More scalable
§ Client in charge of storing 

the token

§ Less control
§ Not revocable. True logout 

is not possible
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Best practices
• Token auth is preferred in modern web apps
• Because of simplicity and scalability

• Known as JSON Web Token (JWT)

• They are generally very safe
• Constructing a counterfeit token is almost impossible

• The main risk: compromised tokens
• Tokens are not revocable: They should not be sent over and over
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Best practices

• Short-lived tokens
• Access tokens should expire within 15 minutes to an hour

•Having user authenticate every hour is a very bad UX

• Refresh tokens
• Signed using a different secret
• Can only be used to generate a new access token
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Refresh tokens

Source: https://www.youtube.com/watch?v=yadjfgDBSiM&themeRefresh=1
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Refresh tokens

• Refresh tokens last much longer
• From hours to days or even weeks

• Upon receiving a 401 Unauthorized response:
• Try refreshing the token first
• Resend the request with the new access token

• Session continuity
• User only re-authenticates when refresh token expires
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Exercise: JWT auth in Next.js
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Authorization
• Often, you should check several conditions before executing 

the API handler logic
• Is the user authenticated?
• Does the user have enough access?

• e.g., being the owner of the store, or a follower of the author

• Return a 403 Unauthorized in those cases

• Should be re-usable logic, ideally separate from the handler 
logic
• Often in middlewares 
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Migrations



Fall 202418

The great assumption

• The state of database tables is the same as what defined 
in model schema

• But these two are totally independent things
• Prisma models vs database tables

•ORM’s job to apply application’s schema to database
• Via DDL queries
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• Changes to schema’s state:
• Creation or removal of a table/model
• Creation or removal of a column/field
• Modification of field option/attributes

•Whenever the state changes, database should migrate to 
the new state

• Prisma does not do it automatically. WHY?

• You simply get a database exception if ORM’s and 
database’s schema do not match 
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Migration workflow

• Think about it as a git commit
• Talks about what has changed since the last migration

•History of changes needs to be stored somewhere
• The migrations folder
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Migration workflow
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New migration
• Think about it as a new commit:
• Includes what has changed since the last commit (i.e., migration)

• Builds the old database state from previous migrations
• Does not contact the database

• Iterates over all models to find out differences

• Creates a new folder inside the migrations directory
• Containing the DDL queries
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New migration

•Migrations are created and applied via
 npx prisma migrate dev

• But a migration should not be applied twice!
• The same CREATE TABLE will not work again!
• How is Prisma to know?

•Migrations themselves are stored in database
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Migrations table
§Migrations are stored in 
_prisma_migrations table

§Stores the migrations’ 
metadata
§ Content is only stored in the 

migration file

§ checksum ensures 
migrations are not edited
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Migration workflow
Generate a new migration file Apply the migrations to the database
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Migration assumptions
• For this system to work, you must
• Never directly change the database tables

• e.g., manually running an ALTER TABLE …
• Never edit/delete a migration file

• Migration files must be the same everywhere
• Always push the migration files into git

• Migration errors can take hours to resolve!
• Be cautious!
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Migration commands
npx prisma generate

• Generates JavaScript code of the schema

npx prisma migrate dev
• Identifies schema changes since last migration
• Generates a new migration
• Applies unapplied migrations
• Should only be used in development (WHY?)

npx prisma migrate deploy
• Applies unapplied migrations (without creating new ones)
• Suitable for production
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Migration errors
• Common scenarios:
• You and your teammate added same or conflicting migrations 

independently
• Someone manually updated the database tables
• Someone created an failing migration

• e.g., marking a column with NULL values as NOT NULL
• Someone edited a migration file

• Very tricky:
• Potential for data loss is high. This should be avoided at all costs!
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Migration error solutions
Visit https://www.prisma.io/docs/orm/prisma-migrate/workflows/patching-and-hotfixing

• Resolve a migration
npx prisma migrate resolve --applied "migration_name"
npx prisma migrate resolve --rolled-back "migration_name"

•Will only update the migrations table, without executing 
the queries

•Manually sync database schema with migrations
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The last resort
§Reset the entire database

npx prisma db reset

§Deletes all table’s data
§ Applies the migrations on an 

empty database

§Definitely NOT an option in 
production
§ So be careful about migrations
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The very last resort
§ Delete the entire database

§ Just delete the dev.db file!

§ Delete the migrations directory 
afterwards

§ Restart with a fresh schema and 
generate new migrations!

§ Definitely NOT an option in 
production
§ So be careful about migrations
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Next session

• Begins (or resumes) our front-end journey

•Modern client-side JavaScript
• React, JSX

• React application
• Props
• Events
• State


