
Fall 20241

CSC309 Kianoosh Abbasi

Auth and Migrations

Fall 20242

So far

•Next.js API handlers

•MVC and model design

• Prisma ORM

• CRUD

Fall 20243

Next session

• Authentication and authorization

• Tokens and sessions

•Detailed discussion about migrations

Fall 20244

Authentication vs Authorization

§Authentication:
§ + Who’s calling?
§ - This is Daniel Liu
§ + Is it really Daniel Liu?

§Obtains user information
from user/pass, session,
API key, fingerprints, etc.

§Authorization:
§ Does Daniel Liu have

enough access and
permissions (aka
authorized) to make this
request?

§Checks user’s properties
and permissions

Fall 20245

Authentication

• Client should tell us who they are

• Through request headers

• Several authentication methods
• Basic auth
• Session auth
• Token auth

Fall 20246

Basic auth
• Simply sends credentials at every request
• User/pass, fingerprints, face ID, etc.

• No concept of login and logout

• So insecure: transfers raw sensitive data many times
• If compromised, huge damage is incurred

• Not used in modern applications

Fall 20247

Session auth
• Client sends user/pass at login

• Or fingerprints, face ID, etc.

• If successful, server creates and stores a session id
• Mapped to user

• Session id returned in the response
• Browser saves it in cookies

• Browsers sends the same session id at next requests
• Incognito tab: browser does not send the same session id

Fall 20248

Token auth
Visit: https://www.javainuse.com/jwtgenerator

• Instead of a random session id, the token can contain
information about the user

• It can be a JSON string
{ "userId": "134234", "expiresAt": 1722720863 }

•Must be signed by the server to avoid attacks
• Turned into a seemingly random string

eyJhbGciOiJIUzI1NiJ9.eyJ1c2VySWQiOiIxMjM0IiwiZXhwaXJlc0F0IjoiMTcyMjcyMDg2MyJ9.UsTi2eDC5h
rI1uqv-JzUf384g0QznPZomPfzJbdnMtY

Fall 20249

Session auth Token auth

Source: https://sherryhsu.medium.com/session-vs-token-based-authentication-11a6c5ac45e4

Fall 202410

Session vs token auth
Session auth

§ Less scalable
§ server stores all sessions
§ An additional database

query per request

§More control
§ server can revoke a session

Token auth

§Simpler
§ No database interaction

§More scalable
§ Client in charge of storing

the token

§ Less control
§ Not revocable. True logout

is not possible

Fall 202411

Best practices
• Token auth is preferred in modern web apps
• Because of simplicity and scalability

• Known as JSON Web Token (JWT)

• They are generally very safe
• Constructing a counterfeit token is almost impossible

• The main risk: compromised tokens
• Tokens are not revocable: They should not be sent over and over

Fall 202412

Best practices

• Short-lived tokens
• Access tokens should expire within 15 minutes to an hour

•Having user authenticate every hour is a very bad UX

• Refresh tokens
• Signed using a different secret
• Can only be used to generate a new access token

Fall 202413

Refresh tokens

Source: https://www.youtube.com/watch?v=yadjfgDBSiM&themeRefresh=1

Fall 202414

Refresh tokens

• Refresh tokens last much longer
• From hours to days or even weeks

• Upon receiving a 401 Unauthorized response:
• Try refreshing the token first
• Resend the request with the new access token

• Session continuity
• User only re-authenticates when refresh token expires

Fall 202415

Exercise: JWT auth in Next.js

Fall 202416

Authorization
• Often, you should check several conditions before executing

the API handler logic
• Is the user authenticated?
• Does the user have enough access?

• e.g., being the owner of the store, or a follower of the author

• Return a 403 Unauthorized in those cases

• Should be re-usable logic, ideally separate from the handler
logic
• Often in middlewares

Fall 202417

Migrations

Fall 202418

The great assumption

• The state of database tables is the same as what defined
in model schema

• But these two are totally independent things
• Prisma models vs database tables

•ORM’s job to apply application’s schema to database
• Via DDL queries

Fall 202419

• Changes to schema’s state:
• Creation or removal of a table/model
• Creation or removal of a column/field
• Modification of field option/attributes

•Whenever the state changes, database should migrate to
the new state

• Prisma does not do it automatically. WHY?

• You simply get a database exception if ORM’s and
database’s schema do not match

Fall 202420

Migration workflow

• Think about it as a git commit
• Talks about what has changed since the last migration

•History of changes needs to be stored somewhere
• The migrations folder

Fall 202421

Migration workflow

Fall 202422

New migration
• Think about it as a new commit:
• Includes what has changed since the last commit (i.e., migration)

• Builds the old database state from previous migrations
• Does not contact the database

• Iterates over all models to find out differences

• Creates a new folder inside the migrations directory
• Containing the DDL queries

Fall 202423

New migration

•Migrations are created and applied via
 npx prisma migrate dev

• But a migration should not be applied twice!
• The same CREATE TABLE will not work again!
• How is Prisma to know?

•Migrations themselves are stored in database

Fall 202424

Migrations table
§Migrations are stored in
_prisma_migrations table

§Stores the migrations’
metadata
§ Content is only stored in the

migration file

§ checksum ensures
migrations are not edited

Fall 202425

Migration workflow
Generate a new migration file Apply the migrations to the database

Fall 202426

Migration assumptions
• For this system to work, you must
• Never directly change the database tables

• e.g., manually running an ALTER TABLE …
• Never edit/delete a migration file

• Migration files must be the same everywhere
• Always push the migration files into git

• Migration errors can take hours to resolve!
• Be cautious!

Fall 202427

Migration commands
npx prisma generate

• Generates JavaScript code of the schema

npx prisma migrate dev
• Identifies schema changes since last migration
• Generates a new migration
• Applies unapplied migrations
• Should only be used in development (WHY?)

npx prisma migrate deploy
• Applies unapplied migrations (without creating new ones)
• Suitable for production

Fall 202428

Migration errors
• Common scenarios:
• You and your teammate added same or conflicting migrations

independently
• Someone manually updated the database tables
• Someone created an failing migration

• e.g., marking a column with NULL values as NOT NULL
• Someone edited a migration file

• Very tricky:
• Potential for data loss is high. This should be avoided at all costs!

Fall 202429

Migration error solutions
Visit https://www.prisma.io/docs/orm/prisma-migrate/workflows/patching-and-hotfixing

• Resolve a migration
npx prisma migrate resolve --applied "migration_name"
npx prisma migrate resolve --rolled-back "migration_name"

•Will only update the migrations table, without executing
the queries

•Manually sync database schema with migrations

Fall 202430

The last resort
§Reset the entire database

npx prisma db reset

§Deletes all table’s data
§ Applies the migrations on an

empty database

§Definitely NOT an option in
production
§ So be careful about migrations

Fall 202431

The very last resort
§ Delete the entire database

§ Just delete the dev.db file!

§ Delete the migrations directory
afterwards

§ Restart with a fresh schema and
generate new migrations!

§ Definitely NOT an option in
production
§ So be careful about migrations

Fall 202432

Next session

• Begins (or resumes) our front-end journey

•Modern client-side JavaScript
• React, JSX

• React application
• Props
• Events
• State

