
Fall 20241

CSC309 Kianoosh Abbasi

Async, Models and ORM

Fall 20242

So far

•Modern architecture of web apps
• Frontend & backend
• APIs

• Server-side JavaScript
• JS projects with Node

•Next.js API handlers

Fall 20243

This session

• Async programming
• Event loop and promises

•Data management
• Model design
• The MVC design pattern

•ORMs

Fall 20244

API Handlers

• API handlers can do more sophisticated work
• Read from/write into the database
• Make requests to other servers/APIs
• File operations

• These are potentially very slow
• Compared to the rest of the handler’s job

• Which is mostly simple object manipulation logic

Fall 20245

How to optimize

•We need to exactly identify what causes the handler to
be slow
• Is it complex CPU processing? Or I/O waits?

• In computer science, there is two types of tasks:
• I/O bound
• CPU bound

Fall 20246

I/O bound vs CPU bound
Visit https://softwareg.com.au/blogs/computer-hardware/io-bound-vs-cpu-bound-examples

Source: http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/7_Scheduling.pdf

Fall 20247

Optimization

• CPU bound tasks could speed up with multi-threading
• More CPU power -> process finishes sooner

• What about I/O bound ones?
• More threads -> more idle threads -> more waste of resource

• Are API handlers I/O bound or CPU bound?

Fall 20248

Web server architecture
Visit https://levelup.gitconnected.com/event-driven-servers-a-intuitive-study-6d1677818d2a

Another caveat: threads may just be idle!

Fall 20249

Event loop

§A smart way to do more work with the same CPU power!

§Take control from the idling task and give to another task
that needs it now!

§All done in just one thread!

Fall 202410

Event loop logic (simplified)

Fall 202411

Event loop logic
Visit https://www.youtube.com/watch?v=zphcsoSJMvM

Fall 202412

Source: https://medium.com/@Rahulx1/understanding-event-loop-call-stack-event-job-queue-in-javascript-63dcd2c71ecd

Fall 202413

Async programming

•Not naturally available in many languages
• C, C++, Java, Python (until 3.4)

•Workarounds
• Callbacks
• Promises

Fall 202414

Callback hell!
Visit http://callbackhell.com

Fall 202415

Promises

• Example:
callExternalAPI(...)
.then(result => readFromDb(...))
.then(result => writeIntoDb(...))
.then(result => produceResponse(...))
.catch(failureCallback)

• Code does not get nested like callbacks
• But all subsequent logic (even sync) will be in then clauses

Fall 202416

Async programming

• Async functions
• Available in JavaScript, Python, Go, …

• The exact same flow of code as in sync programming
• At every I/O blocking task, put await
• The rest is handled by the interpreter, event loop, etc.

• Life could not be easier!

Fall 202417

Async programming in JavaScript
• Example

async function handler(req, res) {
 try{
 const apiResponse = await callExternalAPI(...)
 const readResponse = await readFromDb(...)
 const writeResponse = await writeIntoDb(...)

 // produce and return result
 } catch (error) {
 // failure callback
 }
}

Fall 202418

Midterm is up to the previous slide!

Fall 202419

MVC

Source: https://bap-software.net/en/knowledge/mvc-model/

Fall 202420

MVC in web apps
• View: the frontend components
• HTML, CSS, client-side JS logic

• In frontend is complex, it could have controller logic as well

• Controller: the API handler logic, Next.js framework, etc.
• Request handling, interaction with client, querying database, etc.

• Model: Data management logic
• How data should be defined, what fields are there, how it is stored

in database

Fall 202421

•We have not stored/read data so far!
• Every web application needs a persistent storage

•Many different databases are around
• Relational: Postgres, MySQL

• Non-relational: Cassandra, MongoDB

•Node.js supports various database backends

Data persistence

Fall 202422

Do we need Node.js support?

• Technically, we can make a TCP connection to any
database and run queries

• But this is a terrible idea!
• WHY?

•How can the framework/language help us out?

Fall 202423

Object Relational Mapper

• Provides an abstraction over the underlying database
queries

•Method/attribute accesses are translated to queries

• Results are wrapped by objects/attributes

Fall 202424

Object Relational Mapper

• Simplicity: No need to use
SQL syntax

• Consistency: Everything is
in the same language (JS)

• Can switch database
backend easily

• Enables Object Oriented
Programming

• Runs a secure and efficient
query
• SQL injection, atomicity, etc.

• But for super-efficient
queries, you might still need
to run raw queries

Fall 202425

SQLite
• Light-weight database that stores

everything in one single file

• Follows standard SQL syntax

• Great option for development: no
setup/installation required

• For production, switch to a more
sophisticated database

Fall 202426

Models

• Represents, and manages application’s data
• The M from MVC

• Typically defined as classes

• Thanks to ORM, automatically mapped to a table in the
database

Fall 202427

Node.js ORMs

• Several ORMs exist
• Prisma
• Sequelize
• TypeORM

• In this course, we use Prisma
• Simple and very popular

Fall 202428

Prisma
Visit https://www.prisma.io/docs/getting-started/quickstart

• Install via
 npm i prisma @prisma/client @prisma/studio

• Run npx prisma init
• Creates a file named schema.prisma

• Prisma generates JS classes from its schema file
• And syncs it with the database schema
• More on that later in the course

Fall 202429

The schema file

• The schema file is not a JS
file
• It’s Prisma’s custom

language

•Model definition is
something in between
classes and tables

Fall 202430

Sync with database

• The schema file does not automatically impact anything!

• To generate the relevant JS classes:
• Run npx prisma generate

• To sync the schema with the database:
• Run npx prisma migrate dev

•More on these commands later in the course!

Fall 202431

View the database

§Prisma studio
npx prisma studio

§Access from localhost:5555

§Great visual tool to browse
the tables and modify data

Fall 202432

Model design
• MUST be done before coding starts

• Independent of programming language and framework

• Changing the models is not always easy
• Especially in the production phase

• Models involve user data: the most sensitive part of your
application
• It’s important to design secure and efficient models

Fall 202433

Model design
Class diagram ER diagram

Source: https://docs.staruml.io/working-with-additional-diagrams/entity-relationship-diagramSource: https://sparxsystems.com/images/screenshots/uml2_tutorial/cl01.png

Fall 202434

Model design

• Example: an online shopping application
• Potential models: user, store, product, order, shipment, etc.

• Example: a learning management system (LMS)
• Potential models: user, course, student, assignment, etc.

• Example: a news application
• Potential models: user, news, reporter, comment, report, etc.

Fall 202435

Prisma schema

•Data source: type and address of the database
• provider could be sqlite, mysql, postgresql, etc.
• url could be file address or server address with credentials

•Define one model for each model in the ER (or class)
diagram
• Add fields from diagrams as well
• Mapped to database column by the ORM

Fall 202436

Fields
Visit https://www.prisma.io/docs/orm/reference/prisma-schema-reference#model-fields

§Field Attributes
@id
@default
@unique
@map
@index
…

§Model attributes
@@unique
@@map
…

Fall 202437

Example model

Fall 202438

Null values
• The ? symbol indicates a nullable field

• Having default values is encouraged over null values
• Null introduces typing complexity, potential for crashes, etc.

• Examples:
• Empty string, False, 0

• When to use null?
• When the default value is really distinct from null (e.g., 0 vs null)
• Depends on the use case

Fall 202439

ID (primary key)

• Encouraged to define a separate, automatic field for id
• Either auto-incrementing integer or a Universally Unique

Identifier (UUID)

•Over time, nearly every assumption initially made about
the model changes
• Changing the primary key is almost impossible

Fall 202440

Relations
• Use @relation for many-to-one and one-to-many relations
• Defined as a foreign key
• Also define a column that stores the id of the referenced model

• Example:
categoryId Int
category Category @relation("CategoryProduct", fields:
[categoryId], references: [id])

• Reverse traversal done by a field in the original model
product Product[] @relation("CategoryProduct")

Fall 202441

Other relations

•One-to-one relations
• Similar to one-to-many
• Mark the foreign key column with @unique

•Many-to-many relations
• Simply define an array at each end
• Turned into a separate table by the ORM
• See www.prisma.io/docs/orm/prisma-schema/data-

model/relations/many-to-many-relations

Fall 202442

Next session

•Querying the database in Next.js API handlers
• CRUD

•Midterm at 6pm!

