
CSC209: Software Tools and Systems Programming

Week 8: Processes, Forking, and File Descriptors 1

Kianoosh Abbasi

1Slides are mostly taken from Andi Bergen’s in summer 2021.



Systems Programming

I Now we will shift to the systems-level aspect of the course,
which requires awareness of the hardware and operating system
being used
I Unlike Java or Python, which act as a “translation layer” that

make all platforms appear similar
I When working on tutorials/assignments, think about what

we’re learning about the underlying system.



System Calls vs. Library Calls

I System calls are the interface by which programs request
services from the operating system kernel

I Standard C library functions (e.g., string library functions) are
not system calls
I Some serve as “wrappers” around system calls (e.g., fopen()

calls open())



System Calls and Portability

I Usage of C standard library functions is portable
I But need to recompile on different platforms

I Usage of system calls is not portable, unless you
I Use (e.g., POSIX-compliant) system calls supported by multiple

operating systems (see CONFORMING TO heading in system call
man pages)

I Write separate implementations of OS-dependent code, compile
multiple platform-specific executables (using C preprocessor
macros)



Error-Checking

I All system calls and some library functions use errno to return
error values
I See man errno for complete list of error names defined in

errno.h



Q: How many systems programmers does it take to change a light
bulb?

A: Just one, but they will keep changing it until it returns 0.



Simplistic use of system calls is not suitable for proper error
handling. Example below demonstrates proper usage of read() to
read len bytes.

ssize_t ret;
while (len != 0 && (ret = read(fd, buf, len)) != 0) {

if (ret == -1) {
if (errno == EINTR)

continue;
perror("read");
break;

}
len -= ret;
buf += ret;

}



Processes

I A process is an instance of an executing program
I Executing multiple instances of the same program launches

multiple processes
I e.g., run multiple instances of Notepad

I A single instance of a program may launch multiple processes
I Firefox/Chrome run one-process-per-tab
I Assignment 2



Process Memory

Each process has its own memory space, including its own stack and
heap.

A process cannot access the variables/memory of another process.





Process Creation

I In UNIX-like systems, processes are created with the fork()
system call (next week)

I The process that calls fork() is the parent of the
newly-created child process

I Try pstree from a Bash shell to print the tree of
currently-running processes



Process Identifiers

I Each process has a PID (process identifier)
I The first process created when the system boots up is the init

process, with PID 1
I On Ubuntu, the init process is systemd
I On macOS, the init process is launchd



Program Exit Status vs. Process Exit Status

Every program reports an exit status upon completion/termination.
This is done via exit().

void exit (int status)

Here, status is the program’s exit status, which becomes part of
the process’ exit status.

Source: The GNU C Library

https://www.gnu.org/software/libc/manual/html_node/Normal-Termination.html#Normal-Termination


Obtaining the Exit Status

8 bits24 bits

Process exit status (Termination stat

Program exit status

A process exit status is saved to be reported back to the
parent process via wait or waitpid. If the program exited,
this status includes as its low-order 8 bits the program exit
status.

Source: The GNU C Library

https://www.gnu.org/software/libc/manual/html_node/Termination-Internals.html


Exit vs. Return

Inside main(), return and exit() are nearly equivalent (save
some edge cases):

1. The return value of main() is the program exit status passed
to exit().

2. exit() performs some cleanup (e.g., flush stdio streams) and
calls _exit().

3. _exit() sets the process exit status, or termination status,
and terminates the process.

Outside of main(), use exit() to terminate the process.



Try:

#include <stdio.h>
#include <stdlib.h>
int main() {

printf("Hi");
exit(0); // equivalent to "return 0;"

}

vs.

#include <stdio.h>
#include <unistd.h>
int main() {

printf("Hi");
_exit(0);

}

What’s the difference?



Exit Status Conventions

Return 0 on success, any other value on error.

But if you’re a real GNU/Linux geek. . .
A general convention reserves status values 128 and up for
special purposes. In particular, the value 128 is used to
indicate failure to execute another program in a subprocess.

https://www.gnu.org/software/libc/manual/html_node/Exit-Status.html


Question

How do we obtain the program exit status from the process exit
status?



Answer

Use macros defined in wait.h (see man 2 wait), e.g.,

I WIFEXITED(status) to see if process terminated normally or
abnormally

I WEXITSTATUS(status) to obtain program exit status



The exec Functions

The exec functions load a new program into the current process
image. The process retains its original PID.

The functions differ mainly in how they are called, e.g.,

char* args[] = {"ls", NULL};
execve("/bin/ls", args, NULL);

vs.

execle("/bin/ls", "ls", NULL, NULL);



Also: execve() is a system call; the others are C standard library
functions



Exec and the Shell

A shell can use fork and exec to execute other programs:

1. Shell process p waits for keyboard input.
2. You type ls.
3. Shell forks child process c.
4. Process c uses an exec function to run ls.
5. Process p calls wait to wait for c to terminate, and then prints

new prompt.



Exec and File Descriptors

When a program calls exec, the new program still retains the file
descriptors of the original process.

But the FILE * variables are gone, upon replacing the process
image with the new program.

So the new program must either:

1. Perform low-level I/O using the read() or write() system
calls (you will do this with pipes on Assignment 2); or

2. Use fdopen() to associate a new buffered file stream with an
existing open file descriptor.



Low-Level I/O

When we want to do low-level I/O, to bypass the buffering and
abstractions provided by the C standard library, we must use system
calls, namely:

I open()
I close()
I read()
I write()

Many different flags, errors, corner cases, etc. to consider: See man
2 XXX, where XXX is the name of the system call.



Repeated for emphasis: Proper usage of low-level I/O often requires
looping and handling error conditions.

ssize_t ret;
while (len != 0 && (ret = read(fd, buf, len)) != 0) {

if (ret == -1) {
if (errno == EINTR)

continue;
perror("read");
break;

}
len -= ret;
buf += ret;

}



Low-Level I/O and File Descriptors

I Low-level I/O is done using file descriptors, which are integer
values that serve as indices for open files

I Each process has its own file descriptor table
I File descriptor N in process A can refer to a different file than

file descriptor N in process B



File Descriptors vs. File Descriptions



Exec and File Descriptors

When a program calls exec, the new program still retains the file
descriptors of the original process.

But the FILE * variables are gone, upon replacing the process
image with the new program.

So the new program must either:

1. Perform low-level I/O using the read() or write() system
calls; or

2. Use fdopen() to associate a new buffered file stream with an
existing open file descriptor.



dup and dup2

int dup(int oldfd)

int dup2(int oldfd, int newfd)

I dup returns a new FD that refers to the same file as oldfd
I dup2 does the same, but lets you specify the value of new FD

I dup2 first closes newfd if already in use



Output Redirection with dup2

int main (void)
{

int fd = open("lsout", O_WRONLY | O_CREAT, 0600);
if (fd == -1) {

perror("open");
exit(1);

}

dup2(fd, STDOUT_FILENO) ;
execl("/bin/ls", "ls", "-l", (char *)NULL);
perror("execl");
return 1;

}



Figures Credit

Figure 5-2 and Table 27-1 are from The Linux Programming
Interface by Michael Kerrisk.

https://search.library.utoronto.ca/details?10030432
https://search.library.utoronto.ca/details?10030432


Extra Slides



Shell Skeleton Code

while (1) { // Infinite
print_prompt();
read_command(command, parameters);
if (fork ()) { // Parent

wait(&status);
} else {

execve(command, parameters, NULL);
}

}



Security Implications of Exec Functions

Using execlp and execvp can be very dangerous when used
improperly. Can you find out why?

Hint: See Section 27.2.1 of The Linux Programming Interface by
Michael Kerrisk.

https://search.library.utoronto.ca/details?10030432

