
CSC209: Software Tools and Systems Programming

Week 5: Strings 1

Kianoosh Abbasi

1Slides are mostly taken from Andi Bergen’s in summer 2021.



PCRS: Strings Summary

I In C, a string is an array of chars terminated by \0 (NULL
byte)

I C standard library offers string manipulation functions, defined
in string.h



String Manipulation and Memory Safety

I String manipulation is a major cause of memory errors (e.g.,
buffer overflow)

I The C standard library includes both safe and unsafe string
functions
I Some unsafe functions can be used safely if the string is

guaranteed to be NULL-terminated: strlen(argv[0]);
I But even so-called “safe” functions can cause memory errors if

used improperly: char x[2]; strncpy(x, "blabla", 7);



Unsafe String Functions: Example

From man gets (Linux):
Never use gets(). Because it is impossible to tell without
knowing the data in advance how many characters gets()
will read, and because gets() will continue to store charac-
ters past the end of the buffer, it is extremely dangerous
to use. It has been used to break computer security. Use
fgets() instead.



Also from man gets (Mac):
The gets() function cannot be used securely. Because
of its lack of bounds checking, and the inability for the
calling program to reliably determine the length of the next
incoming line, the use of this function enables malicious
users to arbitrarily change a running program’s functionality
through a buffer overflow attack. It is strongly suggested
that the fgets() function be used in all cases.



Unsafe String Functions & Security

I Question: How can an attacker exploit a buffer overflow to
break a system’s security?

I Answer: Check out this step by step tutorial
I Real example: Recent WhatsApp vulnerability
I Lessons:

I Only use C when necessary, and be mindful of safe
programming practices

I Otherwise, be responsible and use the right language for your
task

https://samsclass.info/127/proj/p3-lbuf1.htm
https://arstechnica.com/information-technology/2019/05/whatsapp-vulnerability-exploited-to-infect-phones-with-israeli-spyware/




How can we safely copy a string?

Option 1:
strcpy(dest, src);

Option 2:
#define MAXS 100
char dest[100];
strncpy(dest, src, MAXS);

Option 3:
#define MAXS 100
char dest[100];
strncpy(dest, src, MAXS - 1);

Option 4:
#define MAXS 100
char dest[100]; dest[MAXS-1] = '\0';
strncat(dest, src, MAXS - 1);



On the following 3 slides, which code snippets can be
considered unsafe.



Is this a memory-safe code snippet (1/3).

char str1[20] = "BeginnersBook";
printf("Length of string str1 %d\n", strnlen(str1, 20));
printf("Length of string str1 %d\n", strnlen(str1, 10));



Answer: Is this a memory-safe code snippet (1/3).

char str1[20] = "BeginnersBook";
printf("Length of string str1 %d\n", strnlen(str1, 20));
printf("Length of string str1 %d\n", strnlen(str1, 10));

Yes



Is this a memory-safe code snippet (2/3).

char str1[6] = "csc209";
// some other code here.
int b;
scanf("%d", &b);
printf("Length of string str1 %d\n", strnlen(str1, b));



Answer: Is this a memory-safe code snippet (2/3).

char str1[6] = "csc209"; // not enough space allocated
// some other code here.
int b;
scanf("%d", &b); // never trust external input
printf("Length of string str1 %d\n", strnlen(str1, b));



Is this a memory-safe code snippet (3/3).

char buf[209] = {'\0'};
printf("Enter your name and press <Enter>\n");
gets(buf);



Answer: Is this a memory-safe code snippet (3/3).

char buf[209] = {'\0'};
printf("Enter your name and press <Enter>\n");
gets(buf); // Accepts infinite stream



Extras



Address Sanitizer Uses

I Use after free (dangling pointer dereference)
I Heap buffer overflow
I Stack buffer overflow
I Global buffer overflow
I Use after return
I Use after scope
I Initialization order bugs
I Memory leaks

Detailed list of memory errors that Address Sanitizer can detect

https://github.com/google/sanitizers/wiki/AddressSanitizer


Challenge (New tool, for those interested)

Fuzzing

I Random, unexpected inputs
I Try testing with American Fuzzy Lop

Don’t use Address Sanitizer and AFL together (too much RAM)

https://github.com/google/AFL

	Extras

