
CSC209: Software Tools and Systems Programming

Week 4: Arrays and Pointers pt. 21

Kianoosh Abbasi

1Slides are mostly taken from Andi Bergen’s in summer 2021.

Pointers Recap From Last Week

1. * and & are operators

I & “returns” the address of any named variable
I * dereferences any address (whether stored in a pointer or not)

2. Only for variable declaration, * serves to identify variables
that are pointers

3. When reading/writing a pointer variable without dereferencing,
you are reading/writing the address contained in the pointer

Casting Pointers

What does the following program print:

#include <stdio.h>
int main() {

int x = 0x00616263;
char *y = (char *)&x;
printf("%s\n", y);
return 0;

}

I Hint: See ASCII Table
I Notice the ordering of the bytes
I You are expected to understand hexadecimal: Read this forum

post to clear up any confusion

http://www.asciitable.com/
https://piazza.com/class/knyxhn30q206ai?cid=60
https://piazza.com/class/knyxhn30q206ai?cid=60

Local Variables

I Local variables are allocated in the function’s stack frame
I In gdb, backtrace prints list of stack frames, tracing from

currently-executing function up to main()
I When a function returns, its stack frame is deallocated

I The freed-up space on the stack can be re-used by a future
function that is called

Global Variables

I Global variables are stored in another region of memory
I Includes read-only string literals

I These variables remain in memory for the entire duration that
the program is running

Dynamic Memory Allocation

Dynamically allocated variables:

I Are put on the heap
I Remain allocated even after the allocating function returns

Memory Model

Try info proc mappings in gdb to print mapped memory regions

Dynamic allocation in Java

ArrayList createArray() {
ArrayList a = new ArrayList()
return a;

}

Dynamic allocation in C:

int *createArray() {
int *a = malloc(sizeof(int)*ARRAY_LEN);
return a;

}

Freeing Memory: Java vs. C

I Java garbage collector frees up memory when an object is no
longer referenced by any variable

I In C, you have to collect your own garbage
I Use free() to free up allocated space that is no longer being

used
I Failure to do so results in memory leaks, which unnecessarily

occupy space in memory
I Use valgrind to detect memory leaks

Memory Leaks

Brief Intro to Strings in C

I C strings are contiguous memory regions where the last
character is \0

int main() {

char s1[] = "Hello";
char s2[209] = "World";
char s3[7] = "CSC209";
char s4[3] = {'U', 'T', 'M'}; // This is wrong!
char s5[4] = {'U', 'T', 'M', '\0'};
char *s6 = malloc((1000) * sizeof(char));
strcpy(s6, "hello");
printf("s1:%s|\ns2:%s|\ns3:%s|\n", s1, s2, s3);
printf("s4:%s|\ns5:%s|\ns6:%s|\n", s4,s5, s6);
return EXIT_SUCCESS;

}

Command-Line Arguments: Key Points

./mycalc add 5 4 3 2 1

1. Just like stdin, command-line arguments are another method
of providing input to a program.

2. Use strtol() to parse strings containing integers

I More robust than other methods
I We don’t want segmentation faults when processing invalid

input: Always terminate gracefully upon errors

Extra Slides

Installing and Using gdbgui

$ python3 -m pip install gdbgui
$ gcc -g -o myprog myprog.c
$ python3 -m gdbgui ./myprog

The first step is not necessary on the lab PCs, since gdbgui is
already installed.

	Extra Slides

