CSC209: Software Tools and Systems Programming

Week 4: Arrays and Pointers pt. 2!
Kianoosh Abbasi

!Slides are mostly taken from Andi Bergen'’s in summer 2021,

Pointers Recap From Last Week

1. * and & are operators

> & “returns” the address of any named variable
» * dereferences any address (whether stored in a pointer or not)

2. Only for variable declaration, * serves to identify variables
that are pointers

3. When reading/writing a pointer variable without dereferencing,
you are reading/writing the address contained in the pointer

Casting Pointers

What does the following program print:

#include <stdio.h>

int main() {
int x = 0x00616263;
char *y = (char *)&x;
printf("%s\n", y);
return O;

» Hint: See ASCII Table

» Notice the ordering of the bytes

» You are expected to understand hexadecimal: Read this forum
post to clear up any confusion

http://www.asciitable.com/
https://piazza.com/class/knyxhn30q206ai?cid=60
https://piazza.com/class/knyxhn30q206ai?cid=60

Local Variables

» Local variables are allocated in the function’s stack frame
» In gdb, backtrace prints list of stack frames, tracing from
currently-executing function up to main()
» When a function returns, its stack frame is deallocated
» The freed-up space on the stack can be re-used by a future
function that is called

Global Variables

> Global variables are stored in another region of memory
» Includes read-only string literals

» These variables remain in memory for the entire duration that
the program is running

Dynamic Memory Allocation

Dynamically allocated variables:

» Are put on the heap
> Remain allocated even after the allocating function returns

Memory Model

Try info proc mappings in gdb to print mapped memory regions

Program File

Global Data

Program
Machine
Code

Process image in

main memory

Kernel
Code
and

Data

Stack l

Spare
Memory

Heap T

Global Data

Program
Machine
Code

|Pr0cess Control Block

+—— Top of Memory

+—— Bottom of Memory

Dynamic allocation in Java

ArrayList createArray() {
Arraylist a = new ArrayList()
return a;

}

Dynamic allocation in C:

int *createArray() {
int *a = malloc(sizeof (int)*ARRAY_LEN) ;
return a;

}

Freeing Memory: Java vs. C

» Java garbage collector frees up memory when an object is no
longer referenced by any variable
» In C, you have to collect your own garbage
> Use free() to free up allocated space that is no longer being
used
» Failure to do so results in memory leaks, which unnecessarily
occupy space in memory
» Use valgrind to detect memory leaks

Memory Leaks
Cprogrammer: Forgets to call free()

Dynamically-allocated variables:

Brief Intro to Strings in C

» C strings are contiguous memory regions where the last
character is \0

int main() {

char
char
char
char
char
char

s1[] = "Hello";

s2[209] = "World";

s3[7] = "CSC209";

s4[3] = {'U', 'T', 'M'}; // This is wrong!
s5[4] = {'Uu', 'T', 'M', '\0'};

*86 = malloc((1000) * sizeof(char));

strcpy(s6, "hello");
printf("s1:%s|\ns2:%s[\ns3:%s|\n", s1, s2, s3);
printf("s4:%s|\ns5:%s|\ns6:%s|\n", s4,s5, s6);
return EXIT_SUCCESS;

Command-Line Arguments: Key Points

./mycalc add 56 4 3 2 1

1. Just like stdin, command-line arguments are another method
of providing input to a program.
2. Use strtol() to parse strings containing integers

» More robust than other methods
> We don't want segmentation faults when processing invalid
input: Always terminate gracefully upon errors

Extra Slides

Installing and Using gdbgui

$ python3 -m pip install gdbgui

$ gcc -g -0 myprog myprog.c

$ python3 -m gdbgui ./myprog

The first step is not necessary on the lab PCs, since gdbgui is
already installed.

	Extra Slides

