CSC209: Software Tools and Systems Programming

Week 4: Arrays and Pointers pt. 2!
Kianoosh Abbasi

!Slides are mostly taken from Andi Bergen'’s in summer 2021,



Pointers Recap From Last Week

1. * and & are operators

> & “returns” the address of any named variable
» * dereferences any address (whether stored in a pointer or not)

2. Only for variable declaration, * serves to identify variables
that are pointers

3. When reading/writing a pointer variable without dereferencing,
you are reading/writing the address contained in the pointer



Casting Pointers

What does the following program print:

#include <stdio.h>

int main() {
int x = 0x00616263;
char *y = (char *)&x;
printf("%s\n", y);
return O;

» Hint: See ASCII Table

» Notice the ordering of the bytes

» You are expected to understand hexadecimal: Read this forum
post to clear up any confusion


http://www.asciitable.com/
https://piazza.com/class/knyxhn30q206ai?cid=60
https://piazza.com/class/knyxhn30q206ai?cid=60

Local Variables

» Local variables are allocated in the function’s stack frame
» In gdb, backtrace prints list of stack frames, tracing from
currently-executing function up to main()
» When a function returns, its stack frame is deallocated
» The freed-up space on the stack can be re-used by a future
function that is called



Global Variables

> Global variables are stored in another region of memory
» Includes read-only string literals

» These variables remain in memory for the entire duration that
the program is running



Dynamic Memory Allocation

Dynamically allocated variables:

» Are put on the heap
> Remain allocated even after the allocating function returns



Memory Model

Try info proc mappings in gdb to print mapped memory regions
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Dynamic allocation in Java

ArrayList createArray() {
Arraylist a = new ArrayList()
return a;

}



Dynamic allocation in C:

int *createArray() {
int *a = malloc(sizeof (int)*ARRAY_LEN) ;
return a;

}



Freeing Memory: Java vs. C

» Java garbage collector frees up memory when an object is no
longer referenced by any variable
» In C, you have to collect your own garbage
> Use free() to free up allocated space that is no longer being
used
» Failure to do so results in memory leaks, which unnecessarily
occupy space in memory
» Use valgrind to detect memory leaks



Memory Leaks
Cprogrammer: Forgets to call free()

Dynamically-allocated variables:



Brief Intro to Strings in C

» C strings are contiguous memory regions where the last
character is \0

int main() {

char
char
char
char
char
char

s1[] = "Hello";

s2[209] = "World";

s3[7] = "CSC209";

s4[3] = {'U', 'T', 'M'}; // This is wrong!
s5[4] = {'Uu', 'T', 'M', '\0'};

*86 = malloc((1000) * sizeof(char));

strcpy(s6, "hello");
printf("s1:%s|\ns2:%s[\ns3:%s|\n", s1, s2, s3);
printf("s4:%s|\ns5:%s|\ns6:%s|\n", s4,s5, s6);
return EXIT_SUCCESS;



Command-Line Arguments: Key Points

./mycalc add 56 4 3 2 1

1. Just like stdin, command-line arguments are another method
of providing input to a program.
2. Use strtol() to parse strings containing integers

» More robust than other methods
> We don't want segmentation faults when processing invalid
input: Always terminate gracefully upon errors



Extra Slides



Installing and Using gdbgui

$ python3 -m pip install gdbgui

$ gcc -g -0 myprog myprog.c

$ python3 -m gdbgui ./myprog

The first step is not necessary on the lab PCs, since gdbgui is
already installed.
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