
CSC209: Software Tools and Systems Programming

Week 2: C, Unix, and Makefile1

Kianoosh Abbasi

1Slides are mostly taken from Andi Bergen’s in summer 2021.

Assembly and Machine Code

PCRS C Visualizer
I More up-to-date C visualizer
I Investing time to learn gdb will pay off handsomely
I gdbgui is installed on lab PCs: very powerful for generating

visualizations

http://pythontutor.com/c.html
https://www.gdbgui.com/

Programming in C: Return Values

while (scanf(...) != EOF) { ... }

I Almost every library call has a return value
I Always check return values

I C does not throw exceptions like Java or Python
I Rightfully be paranoid about whether or not each library call

completes successfully
What does the above code do? Check man 3 scanf and
scroll to RETURN VALUE

Programming in C: Macros

I Return values are often defined as macros, e.g., EOF
I These typically “expand” to integer constants
I Typically defined in .h files
I Already saw an example of this in PCRS:

#define DAYS 365

Compiler Warnings (and Errors) are Your Friends

Common gcc compiler flags (all explained in man gdb):

I -g: Include debugging symbols in compiled program (gdb and
valgrind make use of these)

I -Wall: Warn about highly-questionable code
I -Wextra: More warnings (sometimes helpful)
I -Wpedantic: All possible warnings
I -Werror: Treat all warnings as errors

Your assignments must compile with -Wall and -Werror

C: Memory (un)Safety

I C assumes that you know what you’re doing
I A perilous assumption: 70% of security vulnerabilities in

Microsoft products are due to avoidable mistakes that
C/C++ allow you to make

I Example of unsafe code that will compile and run:

int arr[10];
arr[-1] = 123;

Use gcc flag -fsanitize=address to catch memory
safety bugs

https://www.zdnet.com/article/microsoft-70-percent-of-all-security-bugs-are-memory-safety-issues/
https://www.zdnet.com/article/microsoft-70-percent-of-all-security-bugs-are-memory-safety-issues/

C: Undefined Behaviour

I Undefined behaviour is any operation for which the C standard
imposes no requirements

I Example: The contents of uninitialized variables are undefined
I The following code will likely print garbage values, but it will

compile and run regardless:

int a;
printf("%d", a);

Use valgrind to detect reads on uninitialized variables

Compiling C Programs

I C programs can consist of multiple .c files
I Each individual .c file can be compiled to an object file
I Object files contain “placeholders” for addresses of functions

that were declared but not defined
I Header (.h) files ensure consistency between function

declarations across your program’s multiple source files
I The linker connects object files together to create an

executable file

Makefiles (just for reference)

I Makefiles facilitate building (i.e., compiling, linking, sometimes
testing and packaging) projects consisting of multiple source
files

I If only one source file has changed, no need to recompile
everything; instead:
1. Recompile source files that have changed
2. Relink updated object files to generate new executable file

I Makefile slides are for reference. You might need to use
them in assignments and/or PCRS, but they will NOT be
asked at exams.

Makefile format

A Makefile contains a sequence of rules, each in the format:

target: prereq_1 prereq_2 ... prereq_n
action_1
...
action_n

Using make

I Makefiles are processed by the make program
I Run make with no arguments to evaluate first rule
I Run make TARGET to execute action(s) defined in rule for

TARGET
I Only if TARGET prerequisites were modified since last time that

make TARGET was run
I To force make TARGET to recompile code, you can:

I Update last modified time of prerequisite source files, with
touch, or

I Delete prerequisite object files

Makefile Syntax: Defining Variables

You may define variables; e.g., to store compiler flags:

CFLAGS= -g -Wall -Werror -fsanitize=address

reverse : reverse.c
gcc $(CFLAGS) -o reverse reverse.c

Makefile Syntax: Automatic (Built-In) Variables

Variable Meaning

$@ Target
$< First prerequisite
$? All out of date prerequisites
$ˆ All prerequisites

CFLAGS= -g -Wall -Werror -fsanitize=address

hello: hello.c hello.h
gcc $(CFLAGS) -o $@ $<

Ref.: 10.5.3: Automatic Variables, GNU Make manual

https://www.gnu.org/software/make/manual/html_node/Automatic-Variables.html

Makefile Example (Assignment 1)

FLAGS= -Wall -Werror -fsanitize=address -g
OBJ = simfs.o initfs.o printfs.o simfs_ops.o
DEPENDENCIES = simfs.h simfstypes.h

all : simfs

simfs : ${OBJ}
gcc ${FLAGS} -o $@ $ˆ

%.o : %.c ${DEPENDENCIES}
gcc ${FLAGS} -c $<

clean :
rm -f *.o simfs

Makefile Example: Pattern Rules

%.o : %.c ${DEPENDENCIES}
gcc ${FLAGS} -c $<

I Most files are compiled in the same way, so we write a pattern
rule for the general case

I % expands to the stem of the file name (i.e., without extension)
I gcc -c compiles the source file(s), but does not link

Makefile Example: Phony Targets

You may want a command that builds a target:

OBJ = simfs.o initfs.o printfs.o simfs_ops.o

simfs: ${OBJ}
gcc ${FLAGS} -o $@ $ˆ

Or a target that doesn’t build anything:

clean:
rm -f *.o simfs

Unix and Linux

UNIX vs. Linux vs. UNIX-like

I UNIX is a proprietary OS developed by AT&T in 1969
I Free and commercial imitations followed, such as BSD, Linux,

Solaris
I The macOS kernel is a BSD derivative

I We say UNIX to refer to UNIX-like OSs, often colloquially
called *nix

I Linux is the most widely-used UNIX-like OS: It runs on all
kinds of devices, e.g., PCs, smartphones, printers, security
cameras, wireless routers. . .

The UNIX Timeline

System III & V family

BSD (Berkeley Software Distribution)

FreeBSD

NetBSD

OpenBSD

SunOS

Solaris

NextStep

Xenix OS

GNU

Linux

CommercialUNIX

HP-UX

AIX

UnixWare

IRIX

BSD family

1970 1980 1990 2000 Time

Microsoft/SCO

Richard Stallman

Darwin

GNU/Hurd

Linus Torvalds

Andrew S. Tanenbaum

Minix

3.3

6.5.30

4.1.4

Research UNIX 10.5

Bell Labs: Ken Thompson,
Dennis Ritchie, et al.

Bill Joy

AT&T

IBM

SGI

Univel/SCO

2010

4.4

6.1

11.0

macOS 10.12

7.1

11.3

7.2

11i v 3

4.11

3.4

16.4

Sun/Oracle

Apple

Theo de Raadt

0.9

Matthew Dillon

DragonFly BSD 4.8

GNU/Linux: User Space vs. Kernel Space

User applications
(Python interpreter, vim, etc.)

GNU C Library (glibc)

Computer hardware platform

Linux Kernel

System Call Interface

User space (CSC209)

Kernel space (CSC369)

Process
Management

Virtual File
System

Memory
Management Network Stack

Architecture-
Dependent Code Device Drivers

The UNIX Philosophy

Brief summary of the UNIX philosophy, from A Quarter-Century of
UNIX by P. H. Salus, 1994:

I Write programs that do one thing and do it well
I Write programs to work together

I Expect that the output from your program will be used as input
for another (e.g., by piping)

I Don’t require interactive input
I Write programs that handle text streams, because that is a

universal interface

https://en.wikipedia.org/wiki/Unix_philosophy

Common UNIX Tools/Commands and Abstractions

File/directory
operations

Text
filtering

System
Information

Input/Output
Abstractions

cd, ls head who, last stdin
mkdir tail free stdout
touch sort ps stderr
cp, mv, rm grep top pipes/fifos
cat, diff tr, wc type sockets

Look these up in the man pages for practice!

How to Learn Linux

Use it.

I Don’t worry about memorizing stuff
I Work on your task(s) at hand, look things up as needed

I Man pages: Comprehensive documentation
I Arch Wiki: Community-maintained tutorials

I Common tasks will quickly start to become familiar
I A key outcome of your CS degree: Being able to quickly locate

the required information to learn new concepts on your own

http://man7.org/linux/man-pages/
https://wiki.archlinux.org/

Man pages

I The man pages are sectioned; you will mainly use:
I 1: General commands

I e.g., man ls to learn how to use ls
I 2: System calls
I 3: Library functions
I 7: Miscellanea

I e.g., man gittutorial or man man-pages
I If the command exists in more than one section, specify the

section you want:
I e.g., man 3 printf for the printf library function, man 1 printf

for the printf shell command

Even the man command has its own man page: man man

You likely won’t use any special options, aside from man -k or man
-K (to search); man man-pages will be more generally informative.

The Shell Prompt

$ gcc -o hello hello.c

I The $ is a prompt indicating that the user can enter a
command via keyboard input

I Commands can be shell builtins (e.g., cd, ls, type)
I Check man builtins

I Commands may also launch an executable file, by providing
either:
I The full path to the executable file
I The name of the executable file; the shell will search for the file

in the directories listed in the PATH environment variable

Executing Programs in the Shell

$ gcc -o hello hello.c $./hello

I The first line compiles the C program hello.c into an executable
file hello

I The second line tells the OS to load the hello program into
memory and jump to its entry point
I C compiles to machine code
I Recall CSC207: Java compiles to bytecode

I Let’s see how the executable file is loaded into memory. . .

Memory Model

I Memory is divided into segments
I The executable program code is loaded into the bottom

segments:
I Read/write data
I Read-only code and data

Did You Notice?

$ gcc -o hello hello.c $./hello

I Q: Why is hello prefixed by ./, but gcc isn’t?
I A: Current directory is not included in PATH

I Pay attention to detail: Understand the meaning behind
every character

I Even missing (or extra) spaces can cause you hours of grief

Avoid spamming gcc with code until it compiles: Compilers catch
syntax errors, but not logical flaws

The UNIX File System Hierarchy

/ "root"

"essential user
command binaries"

bash
cat
chmod
cp
date
echo
grep
gunzip
gzip
hostname
kill
less
ln
ls
mkdir
more
mount
mv
nano
open
ping
ps
pwd
rm
sh
su
tar
touch
umount
uname

/bin
/dev
"device files
incl. /dev/null"

/home
"user home
directories"

/proc
"process & kernel
information files"

/lib
"libraries &
kernel modules"

/mnt
"mount files for
temporary
filesystems"

/usr
"read-only user application
support data & binaries"

"standard include
files for 'C' code"

"obj, bin, lib
files for coding
& packages"

/usr/bin
"most user
commands"

/usr/include

/usr/lib

/usr/local
"local software"
 /usr/local/bin

/usr/local/lib
/usr/local/man
/usr/local/sbin
/usr/local/share

/usr/share
"static data sharable
accross all architectures"
 /usr/share/man

"manual pages"

/etc
"configuration files
for the system"
 crontab

cups
fonts
fstab
host.conf
hostname
hosts
hosts.allow
hosts.deny
init
init.d
issue
machine-id
mtab
mtools.conf
nanorc
networks
passwd
profile
protocols
resolv.conf
rpc
securetty
services
shells
timezone

/var
"variable data files"

/var/cache
"application
cache data"

"data modified as
programmes run"

/var/lib

"lock files to track
resources in use"

/var/lock

/var/log
"log files"

/var/spool
"tasks waiting to
be processed"
 /var/spool/cron

/var/spool/cups
/var/spool/mail

/var/opt
"variable data for
installed packages"

/var/tmp
"temporary files saved
between reboots"

/sbin
"essential system
binaries"
 fdisk

fsck
getty
halt
ifconfig
init
mkfs
mkswap
reboot
route

/opt
"optional software
applications"

/root
"home dir. for
the root user"

File System Hierarchy on Lab PCs

I On most UNIX systems, a user bob’s home directory is
/home/bob
I But on the lab PCs, it is /student/bob

I Devices or networked file systems can be mounted to
directories in your file system tree
I Your home directory is mounted from the MCS server
I Run df to see list of mounted devices and network locations

Absolute File Paths

/usr/bin/bash

I Above: Path to the executable file bash (our shell program)
I The leading / represents the root directory
I usr is a subdirectory of /
I bin is a subdirectory of usr
I bash is a file located in bin
I The ~ shortcut translates (expands) to your home directory,

e.g., try cd ~/my_git_repo

Relative File Paths

I You may also access files relative to your present working
directory
I ./file1 refers to file1 in your working directory
I ../file2 refers to file2 in the parent of your working

directory
I ../../file3 refers to file3 in. . . you get the idea

I Run pwd to see your present working directory

What is a Directory?

I A directory is a file that contains directory entries
I Directory entries map file names to inode numbers
I An inode is a data structure containing information about a

file, such as its:
I Access permissions
I Size
I Physical location on disk

Directory Entries and inodes

Files in UNIX

I “Everything is a File” is a key UNIX feature
I Files and processes: Principal UNIX abstractions

I UNIX provides a file interface for all Input/Output:
I Regular files
I Directories
I Special files (e.g., /dev/null, /dev/urandom)
I Physical Devices (e.g., keyboard, mouse, printer)

I Try cat /dev/urandom | padsp tee /dev/audio > /dev/null
with your volume turned up

I Pipes for inter-process communication
I Network sockets

https://en.wikipedia.org/wiki/Everything_is_a_file

Output Redirection

I Standard I/O streams that every process starts with:
I stdin: By default, reads input from keyboard
I stdout: By default, writes to the console display
I stderr: By default, writes to the console display

I The process treats these streams as files (surprise!)
I Use > to redirect stdout, and 2> to redirect stderr

I > overwrites the output file, >> appends
I e.g., try ls >myfiles.txt

I Refer to Section 5.1: Simple redirections, Introduction to Linux

https://linux.die.net/Intro-Linux/sect_05_01.html

Pipes and Process Substitution

I Pipes transfer output from one process to another
I e.g., ls | grep “pdf”

I Input redirection transfers the contents of a file into stdin of
a process
I e.g., wc <essay.txt

I Process substitution creates a temporary file to transfer the
output from one or more processes to stdin of another process
I e.g., wc <(ls) or wc <(ls | grep “pdf”)

I Refer to Chapter 23: Process substitution, Advanced
Bash-Scripting Guide

http://tldp.org/LDP/abs/html/process-sub.html

UNIX File Permissions

I Each file has a permission string, e.g., rw-r-xr-x
I rwx flags represent read, write, & execute permissions
I Separate permissions are assigned to three categories of users:

I The file’s owning user
I The file’s owning group
I All other users

UNIX File Permissions: Directories

I First column: d (directory), l (link), or - (regular file)
I For directories: r allows listing its contents (ls), w allows

creating/deleting directory entries, x allows entering the
directory (cd)

Symbolic Links
I Symbolic links are files that contain a reference to another file

name (i.e., directory entry)
I In Windows terminology, a shortcut:

Hidden Files

$ ls
file1 file2 file3 test1 test2

$ ls -a
. .. file1 file2 file3 .hidden test1 test2

Files prefixed by a . are hidden files

Interpreting Directory Listings

$ ls -la
total 16
drwxr-xr-x 4 bob staff 4096 Jan 6 20:18 .
drwxr-xr-x 3 bob staff 4096 Jan 6 20:18 ..
-rw-r--r-- 1 bob staff 0 Jan 6 20:16 file1
-rw-r--r-- 1 bob staff 0 Jan 6 20:17 file2
lrwxrwxrwx 1 bob staff 5 Jan 6 20:17 file3 -> file2
-rw-r--r-- 1 bob staff 0 Jan 6 20:18 .hidden
drwxr-xr-x 2 bob staff 4096 Jan 6 20:16 test1
drwxr-xr-x 2 bob staff 8192 Jan 6 20:16 test2
$

I From left to right: file permissions, link count, owning user,
owning group, file size, last modified date, and file name
(symbolic link indicated by ->)

I ls -ali shows inode numbers in the first column

Changing File Permissions

I The file owner (or root user) can change a file’s permissions
with chmod
I e.g., chmod o+r file.txt grants all other users permission to

read file.txt
I Octal notation: For each user category, add up the values for r

(4), w (2), and x (1)
I e.g., chmod 754 file.txt grants:

I rwx to the owning user
I rx to the owning group
I r to all other users

I Exercise: man chmod for more chmod usage examples

Globbing

I Globbing patterns are strings that expand to match multiple
file names
I Similar, but simpler, than regex: see man 7 glob

I ? matches any single character
I * matches any string, including the empty string
I [list of characters] matches a single character inside the

list, e.g., [abc]
I Usage examples:

I rm *.log: Remove all files ending in .log
I ls *.pdf: List files ending in .pdf

Extra Slides

Common Size of C Primitives

Type sizeof (bytes) bits

char 1 8
int 4 32
long int 8 64
long long int 8 64

GNU C compiler (gcc) default values (std=gnu11) on a 64-bit
system. See GNU C Reference Manual.

Note: Compiler and machine dependent.

https://www.gnu.org/software/gnu-c-manual/

Hexadecimal, Decimal, Octal, and Binary

I A hexadecimal digit corresponds to 4 binary digits
I 0x prefix indicates hex, e.g., 0xFF
I b prefix indicates binary, e.g., 0b11

I You may also encounter octal notation
I 0 prefix, e.g., 012
I \ prefix followed by up to 3 digits, e.g., \111

I Try declaring int x and assigning values in hex, decimal, octal,
and binary

I Tutorial on binary, decimal, and hexadecimal notation

https://linux.die.net/man/1/bin_dec_hex

UNIX File Systems

Files and inodes

I In UNIX, every file is associated with an inode
I An inode is a structure that contains key information about the

file, including:
I A unique numeric ID
I Access permissions
I Owning user and group

Directory Entries and Links

I A directory is a file containing directory entries
I A directory entry maps a file name to an inode number
I Hard links refer to directory entries that assign one or more file

names to the same inode number
I A symbolic link is a file that contains a reference to a file path,

i.e., to a directory entry

Hard Links

I Hard links refer to multiple file names that map to the same
inode
I Each inode thus has a link count

I Removing a file involves deleting a directory entry, which:
I Unlinks that file name from the inode
I Decrements the corresponding inode’s link count
I If the link count is 0, the inode and associated file data is

deleted
I . and .. are hard links present in every directory

I What is a directory’s minimum link count?

Job Control

I Jobs are programs that were started in the shell
I ctrl+z suspends the foreground job
I Append & to a command to start a background job

I e.g., ./hello&
I Background jobs are killed if the terminal is closed

I jobs lists the status of jobs in the current session
I fg N resumes job number N in the foreground
I bg N resumes job number N in the background
I kill %N kills job number N

Typographical Conventions in Slides

I Commands to be typed: ping utoronto.ca
I Code fragments, commands, function names, variables: printf
I File names:

I When part of commands/code: Same as code
I Other contexts: emphasized

I New terms: emphasized
I Book titles: underlined

	Unix and Linux
	Extra Slides

