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Assembly and Machine Code



PCRS C Visualizer
I More up-to-date C visualizer
I Investing time to learn gdb will pay off handsomely
I gdbgui is installed on lab PCs: very powerful for generating

visualizations

http://pythontutor.com/c.html
https://www.gdbgui.com/


Programming in C: Return Values

while (scanf(...) != EOF) { ... }

I Almost every library call has a return value
I Always check return values

I C does not throw exceptions like Java or Python
I Rightfully be paranoid about whether or not each library call

completes successfully
What does the above code do? Check man 3 scanf and
scroll to RETURN VALUE



Programming in C: Macros

I Return values are often defined as macros, e.g., EOF
I These typically “expand” to integer constants
I Typically defined in .h files
I Already saw an example of this in PCRS:

#define DAYS 365





Compiler Warnings (and Errors) are Your Friends

Common gcc compiler flags (all explained in man gdb):

I -g: Include debugging symbols in compiled program (gdb and
valgrind make use of these)

I -Wall: Warn about highly-questionable code
I -Wextra: More warnings (sometimes helpful)
I -Wpedantic: All possible warnings
I -Werror: Treat all warnings as errors

Your assignments must compile with -Wall and -Werror



C: Memory (un)Safety

I C assumes that you know what you’re doing
I A perilous assumption: 70% of security vulnerabilities in

Microsoft products are due to avoidable mistakes that
C/C++ allow you to make

I Example of unsafe code that will compile and run:

int arr[10];
arr[-1] = 123;

Use gcc flag -fsanitize=address to catch memory
safety bugs

https://www.zdnet.com/article/microsoft-70-percent-of-all-security-bugs-are-memory-safety-issues/
https://www.zdnet.com/article/microsoft-70-percent-of-all-security-bugs-are-memory-safety-issues/


C: Undefined Behaviour

I Undefined behaviour is any operation for which the C standard
imposes no requirements

I Example: The contents of uninitialized variables are undefined
I The following code will likely print garbage values, but it will

compile and run regardless:

int a;
printf("%d", a);

Use valgrind to detect reads on uninitialized variables



Compiling C Programs

I C programs can consist of multiple .c files
I Each individual .c file can be compiled to an object file
I Object files contain “placeholders” for addresses of functions

that were declared but not defined
I Header (.h) files ensure consistency between function

declarations across your program’s multiple source files
I The linker connects object files together to create an

executable file



Makefiles (just for reference)

I Makefiles facilitate building (i.e., compiling, linking, sometimes
testing and packaging) projects consisting of multiple source
files

I If only one source file has changed, no need to recompile
everything; instead:
1. Recompile source files that have changed
2. Relink updated object files to generate new executable file

I Makefile slides are for reference. You might need to use
them in assignments and/or PCRS, but they will NOT be
asked at exams.



Makefile format

A Makefile contains a sequence of rules, each in the format:

target: prereq_1 prereq_2 ... prereq_n
action_1
...
action_n



Using make

I Makefiles are processed by the make program
I Run make with no arguments to evaluate first rule
I Run make TARGET to execute action(s) defined in rule for

TARGET
I Only if TARGET prerequisites were modified since last time that

make TARGET was run
I To force make TARGET to recompile code, you can:

I Update last modified time of prerequisite source files, with
touch, or

I Delete prerequisite object files



Makefile Syntax: Defining Variables

You may define variables; e.g., to store compiler flags:

CFLAGS= -g -Wall -Werror -fsanitize=address

reverse : reverse.c
gcc $(CFLAGS) -o reverse reverse.c



Makefile Syntax: Automatic (Built-In) Variables

Variable Meaning

$@ Target
$< First prerequisite
$? All out of date prerequisites
$ˆ All prerequisites

CFLAGS= -g -Wall -Werror -fsanitize=address

hello: hello.c hello.h
gcc $(CFLAGS) -o $@ $<

Ref.: 10.5.3: Automatic Variables, GNU Make manual

https://www.gnu.org/software/make/manual/html_node/Automatic-Variables.html


Makefile Example (Assignment 1)

FLAGS= -Wall -Werror -fsanitize=address -g
OBJ = simfs.o initfs.o printfs.o simfs_ops.o
DEPENDENCIES = simfs.h simfstypes.h

all : simfs

simfs : ${OBJ}
gcc ${FLAGS} -o $@ $ˆ

%.o : %.c ${DEPENDENCIES}
gcc ${FLAGS} -c $<

clean :
rm -f *.o simfs



Makefile Example: Pattern Rules

%.o : %.c ${DEPENDENCIES}
gcc ${FLAGS} -c $<

I Most files are compiled in the same way, so we write a pattern
rule for the general case

I % expands to the stem of the file name (i.e., without extension)
I gcc -c compiles the source file(s), but does not link



Makefile Example: Phony Targets

You may want a command that builds a target:

OBJ = simfs.o initfs.o printfs.o simfs_ops.o

simfs: ${OBJ}
gcc ${FLAGS} -o $@ $ˆ

Or a target that doesn’t build anything:

clean:
rm -f *.o simfs



Unix and Linux



UNIX vs. Linux vs. UNIX-like

I UNIX is a proprietary OS developed by AT&T in 1969
I Free and commercial imitations followed, such as BSD, Linux,

Solaris
I The macOS kernel is a BSD derivative

I We say UNIX to refer to UNIX-like OSs, often colloquially
called *nix

I Linux is the most widely-used UNIX-like OS: It runs on all
kinds of devices, e.g., PCs, smartphones, printers, security
cameras, wireless routers. . .
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GNU/Linux: User Space vs. Kernel Space
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The UNIX Philosophy

Brief summary of the UNIX philosophy, from A Quarter-Century of
UNIX by P. H. Salus, 1994:

I Write programs that do one thing and do it well
I Write programs to work together

I Expect that the output from your program will be used as input
for another (e.g., by piping)

I Don’t require interactive input
I Write programs that handle text streams, because that is a

universal interface

https://en.wikipedia.org/wiki/Unix_philosophy


Common UNIX Tools/Commands and Abstractions

File/directory
operations

Text
filtering

System
Information

Input/Output
Abstractions

cd, ls head who, last stdin
mkdir tail free stdout
touch sort ps stderr
cp, mv, rm grep top pipes/fifos
cat, diff tr, wc type sockets

Look these up in the man pages for practice!



How to Learn Linux

Use it.

I Don’t worry about memorizing stuff
I Work on your task(s) at hand, look things up as needed

I Man pages: Comprehensive documentation
I Arch Wiki: Community-maintained tutorials

I Common tasks will quickly start to become familiar
I A key outcome of your CS degree: Being able to quickly locate

the required information to learn new concepts on your own

http://man7.org/linux/man-pages/
https://wiki.archlinux.org/




Man pages

I The man pages are sectioned; you will mainly use:
I 1: General commands

I e.g., man ls to learn how to use ls
I 2: System calls
I 3: Library functions
I 7: Miscellanea

I e.g., man gittutorial or man man-pages
I If the command exists in more than one section, specify the

section you want:
I e.g., man 3 printf for the printf library function, man 1 printf

for the printf shell command



Even the man command has its own man page: man man

You likely won’t use any special options, aside from man -k or man
-K (to search); man man-pages will be more generally informative.



The Shell Prompt

$ gcc -o hello hello.c

I The $ is a prompt indicating that the user can enter a
command via keyboard input

I Commands can be shell builtins (e.g., cd, ls, type)
I Check man builtins

I Commands may also launch an executable file, by providing
either:
I The full path to the executable file
I The name of the executable file; the shell will search for the file

in the directories listed in the PATH environment variable



Executing Programs in the Shell

$ gcc -o hello hello.c $ ./hello

I The first line compiles the C program hello.c into an executable
file hello

I The second line tells the OS to load the hello program into
memory and jump to its entry point
I C compiles to machine code
I Recall CSC207: Java compiles to bytecode

I Let’s see how the executable file is loaded into memory. . .



Memory Model

I Memory is divided into segments
I The executable program code is loaded into the bottom

segments:
I Read/write data
I Read-only code and data



Did You Notice?

$ gcc -o hello hello.c $ ./hello

I Q: Why is hello prefixed by ./, but gcc isn’t?
I A: Current directory is not included in PATH

I Pay attention to detail: Understand the meaning behind
every character

I Even missing (or extra) spaces can cause you hours of grief



Avoid spamming gcc with code until it compiles: Compilers catch
syntax errors, but not logical flaws



The UNIX File System Hierarchy

/    "root"

"essential user 
command binaries"

bash
cat
chmod
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date
echo
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gunzip
gzip
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kill
less
ln
ls
mkdir
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mv
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pwd
rm
sh
su
tar
touch
umount
uname

/bin
/dev 
"device files
incl. /dev/null"
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"user home
directories"
 

/proc 
"process & kernel
information files"
 

/lib 
"libraries &
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/mnt 
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filesystems"
 

/usr 
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"standard include
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/usr/bin 
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"lock files to track 
resources in use"
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"log files"
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/opt 
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"home dir. for
the root user"
 



File System Hierarchy on Lab PCs

I On most UNIX systems, a user bob’s home directory is
/home/bob
I But on the lab PCs, it is /student/bob

I Devices or networked file systems can be mounted to
directories in your file system tree
I Your home directory is mounted from the MCS server
I Run df to see list of mounted devices and network locations



Absolute File Paths

/usr/bin/bash

I Above: Path to the executable file bash (our shell program)
I The leading / represents the root directory
I usr is a subdirectory of /
I bin is a subdirectory of usr
I bash is a file located in bin
I The ~ shortcut translates (expands) to your home directory,

e.g., try cd ~/my_git_repo



Relative File Paths

I You may also access files relative to your present working
directory
I ./file1 refers to file1 in your working directory
I ../file2 refers to file2 in the parent of your working

directory
I ../../file3 refers to file3 in. . . you get the idea

I Run pwd to see your present working directory



What is a Directory?

I A directory is a file that contains directory entries
I Directory entries map file names to inode numbers
I An inode is a data structure containing information about a

file, such as its:
I Access permissions
I Size
I Physical location on disk



Directory Entries and inodes



Files in UNIX

I “Everything is a File” is a key UNIX feature
I Files and processes: Principal UNIX abstractions

I UNIX provides a file interface for all Input/Output:
I Regular files
I Directories
I Special files (e.g., /dev/null, /dev/urandom)
I Physical Devices (e.g., keyboard, mouse, printer)

I Try cat /dev/urandom | padsp tee /dev/audio > /dev/null
with your volume turned up

I Pipes for inter-process communication
I Network sockets

https://en.wikipedia.org/wiki/Everything_is_a_file


Output Redirection

I Standard I/O streams that every process starts with:
I stdin: By default, reads input from keyboard
I stdout: By default, writes to the console display
I stderr: By default, writes to the console display

I The process treats these streams as files (surprise!)
I Use > to redirect stdout, and 2> to redirect stderr

I > overwrites the output file, >> appends
I e.g., try ls >myfiles.txt

I Refer to Section 5.1: Simple redirections, Introduction to Linux

https://linux.die.net/Intro-Linux/sect_05_01.html


Pipes and Process Substitution

I Pipes transfer output from one process to another
I e.g., ls | grep “pdf”

I Input redirection transfers the contents of a file into stdin of
a process
I e.g., wc <essay.txt

I Process substitution creates a temporary file to transfer the
output from one or more processes to stdin of another process
I e.g., wc <(ls) or wc <(ls | grep “pdf”)

I Refer to Chapter 23: Process substitution, Advanced
Bash-Scripting Guide

http://tldp.org/LDP/abs/html/process-sub.html


UNIX File Permissions

I Each file has a permission string, e.g., rw-r-xr-x
I rwx flags represent read, write, & execute permissions
I Separate permissions are assigned to three categories of users:

I The file’s owning user
I The file’s owning group
I All other users



UNIX File Permissions: Directories

I First column: d (directory), l (link), or - (regular file)
I For directories: r allows listing its contents (ls), w allows

creating/deleting directory entries, x allows entering the
directory (cd)



Symbolic Links
I Symbolic links are files that contain a reference to another file

name (i.e., directory entry)
I In Windows terminology, a shortcut:



Hidden Files

$ ls
file1 file2 file3 test1 test2

$ ls -a
. .. file1 file2 file3 .hidden test1 test2

Files prefixed by a . are hidden files



Interpreting Directory Listings

$ ls -la
total 16
drwxr-xr-x 4 bob staff 4096 Jan 6 20:18 .
drwxr-xr-x 3 bob staff 4096 Jan 6 20:18 ..
-rw-r--r-- 1 bob staff 0 Jan 6 20:16 file1
-rw-r--r-- 1 bob staff 0 Jan 6 20:17 file2
lrwxrwxrwx 1 bob staff 5 Jan 6 20:17 file3 -> file2
-rw-r--r-- 1 bob staff 0 Jan 6 20:18 .hidden
drwxr-xr-x 2 bob staff 4096 Jan 6 20:16 test1
drwxr-xr-x 2 bob staff 8192 Jan 6 20:16 test2
$

I From left to right: file permissions, link count, owning user,
owning group, file size, last modified date, and file name
(symbolic link indicated by ->)

I ls -ali shows inode numbers in the first column



Changing File Permissions

I The file owner (or root user) can change a file’s permissions
with chmod
I e.g., chmod o+r file.txt grants all other users permission to

read file.txt
I Octal notation: For each user category, add up the values for r

(4), w (2), and x (1)
I e.g., chmod 754 file.txt grants:

I rwx to the owning user
I rx to the owning group
I r to all other users

I Exercise: man chmod for more chmod usage examples



Globbing

I Globbing patterns are strings that expand to match multiple
file names
I Similar, but simpler, than regex: see man 7 glob

I ? matches any single character
I * matches any string, including the empty string
I [list of characters] matches a single character inside the

list, e.g., [abc]
I Usage examples:

I rm *.log: Remove all files ending in .log
I ls *.pdf: List files ending in .pdf



Extra Slides



Common Size of C Primitives

Type sizeof (bytes) bits

char 1 8
int 4 32
long int 8 64
long long int 8 64

GNU C compiler (gcc) default values (std=gnu11) on a 64-bit
system. See GNU C Reference Manual.

Note: Compiler and machine dependent.

https://www.gnu.org/software/gnu-c-manual/


Hexadecimal, Decimal, Octal, and Binary

I A hexadecimal digit corresponds to 4 binary digits
I 0x prefix indicates hex, e.g., 0xFF
I b prefix indicates binary, e.g., 0b11

I You may also encounter octal notation
I 0 prefix, e.g., 012
I \ prefix followed by up to 3 digits, e.g., \111

I Try declaring int x and assigning values in hex, decimal, octal,
and binary

I Tutorial on binary, decimal, and hexadecimal notation

https://linux.die.net/man/1/bin_dec_hex


UNIX File Systems



Files and inodes

I In UNIX, every file is associated with an inode
I An inode is a structure that contains key information about the

file, including:
I A unique numeric ID
I Access permissions
I Owning user and group



Directory Entries and Links

I A directory is a file containing directory entries
I A directory entry maps a file name to an inode number
I Hard links refer to directory entries that assign one or more file

names to the same inode number
I A symbolic link is a file that contains a reference to a file path,

i.e., to a directory entry



Hard Links

I Hard links refer to multiple file names that map to the same
inode
I Each inode thus has a link count

I Removing a file involves deleting a directory entry, which:
I Unlinks that file name from the inode
I Decrements the corresponding inode’s link count
I If the link count is 0, the inode and associated file data is

deleted
I . and .. are hard links present in every directory

I What is a directory’s minimum link count?



Job Control

I Jobs are programs that were started in the shell
I ctrl+z suspends the foreground job
I Append & to a command to start a background job

I e.g., ./hello&
I Background jobs are killed if the terminal is closed

I jobs lists the status of jobs in the current session
I fg N resumes job number N in the foreground
I bg N resumes job number N in the background
I kill %N kills job number N



Typographical Conventions in Slides

I Commands to be typed: ping utoronto.ca
I Code fragments, commands, function names, variables: printf
I File names:

I When part of commands/code: Same as code
I Other contexts: emphasized

I New terms: emphasized
I Book titles: underlined
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