
CSC209: Software Tools and Systems Programming

Week 12: Threads 1

Kianoosh Abbasi

1Slides are mostly taken from Andi Bergen’s in summer 2021.

Why Do We Use Multiple Processes?

I Isolation: each process is protected from the others
I Parallelism: if our computer has multiple processors, then each

processor can be running a process!

But:

I fork is a heavyweight system call

I Communication between processes requires pipes, or sockets, or
signals, etc.

I So, what if we had multiple threads of execution, all within a
single process?

Threads vs. Processes

I Both processes and threads allow an application to perform
multiple concurrent tasks

I Processes don’t share memory. Threads do
I Process creation with fork is slow. Thread creation is much

faster
I Pthreads is the API we use for managing threads

Threads

I Threads belong to a process and share the same PID and
parent PID

I Threads of a process also share the heap and global variables
I Each thread also has unique attributes

I Its own thread ID
I Its own errno variable
I Its own stack for local variables and function calls

Pthread Return Values

I Many function calls we have seen so far return 0 for success
and -1 for failure

I Pthreads functions are different
I They return 0 for success and a positive integer for failure
I If a function fails, we can store the positive integer into errno

and then call perror

Creating New Threads

int pthread_create(pthread_t *thread,
const pthread_attr_t *attr,
void *(*start)(void *), void *arg);

I thread is where the ID of the new thread gets stored
I attr specifies attributes for the thread; use NULL for defaults
I start is a pointer to a function
I The new thread runs start with argument arg
I arg typically points to a heap or global variable

Thread Termination

A thread terminates when one of the following happens

I Its start function returns
I It calls pthread_exit
I It gets canceled by another thread using pthread_cancel
I Any thread in the process calls exit

I So don’t call exit unless you want the entire process to
terminate!

Thread Joining

int pthread_join(pthread_t thread, void **retval);

I This is similar to using waitpid to wait for a process to
terminate

I pthread_join waits for a thread to terminate, or returns
immediately if the thread has already terminated

Creating and Joining

Compile Pthreads programs with gcc -pthread.

errno = pthread_create(&t1, NULL, thread_func, "Hello\n");
if (errno != 0) {

perror("pthread_create"); exit(1);
}
printf("main() before joining...\n");
errno = pthread_join(t1, &res);
if (errno != 0) {

perror("pthread_join"); exit(1);
}

Thread Joining. . .

Differences between pthread_join and waitpid:

I No thread hierarchy. Any thread can use pthread_join to
wait for any other thread

I There is no way to “join with any thread”
I There is no equivalent to WNOHANG

Detaching a Thread

int pthread_detach(pthread_t thread);

I We can detach a thread if we don’t want to obtain its exit
status

I If we detach a thread, it is cleaned-up automatically
I We must detach or join every thread

Disadvantages of Threads

When using threads:

I Only thread-safe functions can be used
I A bug in one thread can damage other threads
I Its difficult to use signals with threads
I All threads in a process must run the same program

Access to Shared Variables

I Threads can easily share information using global variables
I But we run into trouble unless we synchronize access to those

variables
I Critical section: code that should be accessed by only one

thread at a time

Access to Shared Variables. . .

for (j = 0; j < loops; j++) {
loc = glob;
loc = loc + 1;
glob = loc;

}

I Suppose that loops is one million and that two threads run
this

I The expected final value is 2000000
I But that probably isn’t what we’ll get!

Access to Shared Variables. . .

I Here’s a possible (problematic) execution path
1. Thread 1 increments glob 2000 times. On iteration 2001, it

obtains the value of glob, but then . . .
2. Thread 2 increments glob 1000000 times, and terminates
3. Now thread 1 takes over, but writes 2001 into glob!

Mutexes

I Mutex: mutual exclusion
I A mutex can be used to ensure that only one thread accesses a

variable at a time
I A mutex is always in one of two states: locked or unlocked
I When unlocked, a thread can lock the mutex
I Any thread that tries to obtain a locked mutex is blocked until

the mutex is unlocked
I Only the thread that locked the mutex is allowed to unlock it

Mutexes. . .

The pattern for using a mutex:

pthread_mutex_lock(&mtx);
... access shared resource
pthread_mutex_unlock(&mtx);

Condition Variables

I A condition variable (CV) Allows a thread to notify other
threads that a shared resource has changed

I A CV also allows threads to block waiting for such notification
I Without using a CV, threaded programs can be very inefficient

I e.g. they may loop quickly to poll a variable value

Condition Variables. . .

CVs have three core operations.

I signal: wakes up at least one thread waiting for the CV
I broadcast: wakes up all threads waiting for the CV
I wait: waits (blocks) until signaled by a CV

Condition Variables. . .

I A CV always has an associated mutex
I The mutex must be locked by a thread before it calls

pthread_cond_wait
I pthread_cond_wait unlocks the mutex, blocks the thread,

and (when the thread is later signaled) relocks the mutex
I Unlocking the mutex and blocking the thread are atomic

I This means that no other thread can signal the CV between
the time that the mutex is unlocked and the time that the
thread blocks on the CV

