CSC209: Software Tools and Systems Programming

Week 11: Multiplexing 1/0 !
Kianoosh Abbasi

!Slides are mostly taken from Andi Bergen's in summer 2021,

Reading From Multiple File Descriptors

Assume that a process p0O has any two file descriptors open for
reading (e.g., from a socket, regular file, pipe)

Reading From Multiple File Descriptors. . .

If pO reads from £dN, it will block until £dN has data ready to read.
But what if the other fd already has data available to be read?

Solution 1: Fork

pO can fork one child process per file descriptor to be read from;
each child calls read on one file descriptor and communicates data
to parent over a pipe.

Which should be called first: read() or wait ()?

Solution 1: Fork (With Sockets)

» It is common for server software to fork() a new process for
each client that connects: SSH does exactly that

» Performance benefit: Solves the issue of blocking read () calls
that we just discussed

» Security benefit: Each process has its own memory space,
making it less likely for there to be a bug that allows one user
to read confidential information that belongs to another user

» Drawback: Each process takes up memory

Solution 2: Select

> select () monitors several file descriptors simultaneously,
without needing to fork()

> select() blocks until at least one of the monitored file
descriptors is “ready”

> A file descriptor “ready” for reading means that read () can be

called once without blocking
» Calling read() more than once can block

> select () also returns on some other conditions, e.g., if a
signal is received, or if a predefined timeout period expires

Select:

int

Parameters

select(int nfds, fd_set *readfds, fd_set *writefds,

fd_set *exceptfds, struct timeval *timeout);

select () returns the number of FDs that are ready, or returns

-1 on error
Set nfds to one more than the highest-numbered FD of

interest
» e.g. if you are interested in FDs 3, 9, and 50, pass 51 for nfds

Select: Parameters. . .

> select () takes three file descriptor sets as part of its input:
» First set is monitored for reading
» Second set is monitored for writing
» Third set is monitored for exceptions

» The sets are modified by select () to contain only the FDs

with action of the requested type

For more about exceptions: An example of what would trigger an

exception

https://www.gnu.org/software/libc/manual/html_node/Out_002dof_002dBand-Data.html
https://www.gnu.org/software/libc/manual/html_node/Out_002dof_002dBand-Data.html

Select and the Listener Socket

» Recall that accept () is a blocking call that returns after a new
incoming connection is added to the listener socket's queue

» The listener socket file descriptor can be monitored with
select (): It is considered “ready to read” when there is at
least one connection queued up to be accepted

File Descriptor Sets

File descriptor sets are similar to signal sets. Use these macros to
operate on them:

1. FD_ZERO(): Empty the set

2. FD_SET(): Add file descriptor to the set

3. FD_CLR(): Remove file descriptor from the set

4. FD_ISSET(): Check file descriptor's membership in a set

Select: The Bottom Line

» The bottom line is that we never want to block on any calls to
read() or accept()
» Otherwise, we risk the possibility of waiting forever, even when
there might be data ready to be read from other file descriptors
» Instead, we write our client/server programs to block only on
select ()

Assignment 3 Debugging Tip

Use the strace utility on your client and/or server: If it ever blocks
on read() or accept(), it means there is a bug in your program

Question

Your Assignment 3 server will be written to not block on any
read() calls, but what if it blocks on write()?

Answer

We've only scratched the surface with this course. When might a
server block on write()? Hint: See “extra slide” on flow control
from last week. What does TCP do if a server is sending data faster
than a client can handle?

Solution: Use select() for both reads and writes. (but don't do
this for A3)

Level- and Edge-Triggering

“When is an FD ready?”
Two answers:

1. Level triggered: when an operation (e.g. read) won't block, or
2. Edge triggered: when there is new action on the FD since the
last time you asked

> select() is level triggered
> |If you don't read everything, ‘select| will keep telling you that
the FD is ready

Limitations of Select

> select() has some performance limitations, and can only

monitor at most FD_SETSIZE (1024, on Linux) file descriptors
> But it is portable!

» There are Linux-specific (not portable) alternatives that are
more efficient
» Common tradeoff: portability vs. efficiency

Reading From Clients

> When a server does a read, it is not guaranteed to get a
complete line or all of the desired bytes
P e.g. the client could be sending each character separately

P e.g. the client could send data that gets split over several
segments

» Want to operate only on full lines? The server must keep each
partial line in a buffer until it gets the newline from the client

» The following code assumes there's at most one line in the
buffer
» OK for obtaining the filename in A3... not OK in general!

Buffering for Full Lines

The server should keep a buffer for each client, and keep track of
the number of bytes in each buffer following the previous message.

struct client {
int fd;
char buf[300];
int inbuf;
struct client *next;

Buffering for Full Lines. ..

Read bytes, check for errors, and null-terminate the string.

void myread(struct client *p) {
char *startbuf = p->buf + p->inbuf;
int room = sizeof (p->buf) - p->inbuf;
int crlf;
char *tok, *cr, *1f;

if (room <= 1)

// clean up this client: buffer full
int len = read (p->fd, startbuf, room - 1);
if (len <= 0)

// Clean up this client: eof or error
p—>inbuf += len;
p—>buf [p->inbuf] = '\0';

Buffering for Full Lines. ..

If a full line exists, process it and shift it out of the buffer.

1f strchr (p->buf, '\n');
cr = strchr(p—>buf, '\r');
if (11f && 'cr)
return; //No complete line
tok = strtok(p->buf, "\r\n");
if (tok)
// use tok (complete string)
if (116)
crlf = cr - p—>buf;
else if (!cr)
crlf = 1f - p—>buf;
else
crlf = (1f > cr) ? 1f - p—>buf : cr - p->buf;
crlf++;
p—>inbuf -= crlf;
memmove (p—>buf, p->buf + crlf, p->inbuf);

Extra Slides

Don't use these for A3l

SIGPIPE

Writing to a broken pipe/socket generates a SIGPIPE.

Recall: By default, most signals (including sigpipe) will terminate
your program.

Here's how you can protect against sigpipe:

/*

*

Turn off SIGPIPE: write() to a socket that

15 closed on the other end will return -1

with errno set to EPIPE, instead of generating
a SIGPIPE signal that terminates the process.

* % %

*/
if (signal (SIGPIPE, SIG_IGN) == SIG_ERR) {
perror ("signal");
exit(1);

Non-Blocking Reads

» You can change the behaviour of read() so that it returns -1
and sets errno to EAGAIN if no data is available.
» In this mode, read () will never block
» Downside: Leads to inefficient code, e.g., using an infinite loop
that repeatedly calls read)
» Remember, read () will return immediately in non-blocking
mode, so you will be calling it many times per second

Non-Blocking Reads: Sample Code

char buf[1024];
ssize_t bytesread;
/* set O _NONBLOCK flags on fdl and fd2 */

if (fcntl(fdl, F_SETFL, 0 _NONBLOCK) == -1) {
perror ("fcntl"); exit(1);

}

if (fcntl(fd2, F_SETFL, 0_NONBLOCK) == -1) {
perror("fcntl"); exit(1);

}

for (; ;) {
bytesread = read(fdl, buf, sizeof (buf));
if ((bytesread == -1) && (errno != EAGAIN))

return; /* real error */

else if (bytesread > 0)
doSomething (buf, bytesread) ;
bytesread = read(fd2, buf, sizeof (buf));

Non-Blocking Reads: Sample Code (cont.)

if ((bytesread == -1) && (errno !'= EAGAIN))
return; /* real errorx/

else if (bytesread > 0)
doSomething(buf, bytesread);

}

