
CSC209: Software Tools and Systems Programming

Week 10: Sockets 1

Kianoosh Abbasi

1Slides are mostly taken from Andi Bergen’s in summer 2021.

Human Communication

Human communication is governed by rules: vocabulary, sentence
structure, spelling, grammar. . .

How would you like it if a l l th elect ur e sli des we r e

fo r ma ttt ed like thiiiiiis ?!.$

Computer Communication

Computer communication is also governed by rules:

I Encoding of information, e.g., text, signed/unsigned integers,
floating point

I Ordering of bytes, e.g., big endian, little endian
I Message sequencing, e.g., first send username, then send

password
I Message start and end boundaries, e.g., CRLF (\r\n) to

terminate messages

Transport Protocols

Two widespread models of transport protocols for computer
communication over a network:

1. Connectionless: Exemplified by UDP protocol
2. Connection-oriented: Exemplified by TCP protocol

Protocols are a set of rules. Both TCP and UDP protocols are
implemented by the operating system.

CSC209 vs. CSC358

I In CSC209, we learn what is necessary to use TCP to
communicate over a network
I No UDP, due to time constraints

I In CSC358, you will learn how TCP and UDP work

notes: Just like how CSC209 involves using system calls, and
CSC369 involves how system calls work “under the hood”

UDP

I UDP is used for sending a datagram from one machine to
another

I A datagram is a self-contained message with a beginning and
end

I The OS sends the datagram, but doesn’t follow up to make
sure that it got delivered

TCP

I TCP is used to establish a socket (similar to a pipe) to
communicate between two processes
I Processes may be on the same computer, or two different

computers connected by a network
I The socket is created using a system call
I The process sending the data writes a sequence of bytes to the

socket
I The OS guarantees that the bytes will be delivered over the

network, in the correct order, to the receiving process

UDP vs. TCP

I Comparing UDP and TCP is like comparing SMS and
WhatsApp

I If you send an SMS to your friend, you have no way of knowing
if they received your message
I Perhaps they may reply back to you confirming that they

received your message
I If you send a message over WhatsApp, the app itself tells you

whether or not the message was successfully delivered

We were planning to tell a UDP joke on this slide. . .

But we weren’t sure if you would get it.

Internet Protocol (IP) Addresses

I An IP address identifies a specific host (computer) on a specific
network.

I IPv4 addressing (most widespread) identifies hosts by four
decimal 8-bit integers separated by dots, e.g., 128.100.3.30

I IPv6 addressing (slowly being adopted) identifies hosts by eight
groups of four hexadecimal digits, separated by colons, e.g.,
fe80:1234:0432:a2d8:61ff:fe8b:8924:c23f

https://www.google.com/intl/en/ipv6/statistics.html

TCP and UDP Ports

I An IP address only identifies a host, but not the program
running on the host

I To communicate with a specific program on a host, you must
specify a port number between 0 and 65535

I For Assignment 3, your client and server programs must use
the same port number; otherwise, they cannot communicate

Port Number Conventions

I Ports in range 0-1023 are well-known or reserved (e.g., 22 for
SSH, 80 for HTTP, 443 for HTTPS)

I Ports in range 1024-49151 are registered (e.g., 3724 for
World of Warcraft)

I Ports in range 49152-65535 are dynamic
I These are the ones you should typically pick, to avoid conflict

See IANA for list of port assignments

https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt

localhost

I You may test your client and server programs by running both
on the same computer

I 127.0.0.1 is the “loopback” IP address, for when your
program needs to communicate with another program on the
same computer

I localhost is a hostname “aliased” to 127.0.0.1
I To test your client and server on different PCs, obtain the PC’s

IP address by running ifconfig
I Lab PCs have IP address in the range 142.1.X.Y

Pipes: Unidirectional vs. Bidirectional Communication

Process 1 Process 2Pipe
write_fd read_fd

Process 1 Process 2
Pipe 1

write_fd read_fd

Pipe 2
write_fdread_fd

Unidirectional (one-way) communication with pipes

Bidirectional (two-way) communication with pipes

Sockets

Process 1 Process 2

sock_fd sock_fd

Bidirectional (two-way) communication with sockets

Socket

Listener socket

listen_fd

I A server must have a listener socket to accept new connections
I A separate socket is created to communicate with each client

System Calls for Setting up a Server

1. socket: Creates a socket.
2. bind: Assigns an address and port to the socket. (must assign

an IP address that actually belongs to your systems).
3. listen: Establish a queue for incoming connections.
4. accept: Accept queued incoming connection and create a new

socket.
5. read/write: Receive/send data on socket.

System Calls for Setting up a Client

1. socket: Creates a socket
2. connect: Connects to a remote server using an IP address and

port.
3. read/write: Receive/send data on socket.

 read()

 write()

 close()

 socket()

 connect()

 write()

 read()

 close()

 socket()

 bind()

 listen()

 accept()

Server Client

Establish Connection

Communicate

End Connection

IP Address Struct

I System calls expect the IP address to be passed in as an
in_addr struct

I There are system calls to help you convert back and forth
between structs and human-readable strings, e.g.
I Use inet_aton to convert IP address from a string of the form

a.b.c.d into an in_addr struct
I Use inet_ntoa to convert in_addr struct into string of the

form a.b.c.d

Endianness

I By convention, all data being sent over the network must first
be converted into big endian, known as network byte order

I The endianness of the host is referred to as host byte order
I htonl(), htons(), ntohl(), and ntohs() are used for

converting between host byte order and network byte order
I See man pages for usage
I Even port numbers must be converted
I ASCII text does not require conversion (why?)

Defining Message Boundaries

I Assume that a sender sends the sequence of bytes “Hello
world” to a receiver over a TCP socket

I TCP guarantees that the receiver will receive the entire
sequence, eventually

I But it’s possible that when the receiver calls read() on the
socket:
I The entire message wasn’t received yet
I The read() call was interrupted (e.g., see EINTR in man 2

read)

Question

How do we know when we have received a complete message, and
not a partial message?

Answer

We define a byte sequence that indicates the end of a message. In
text-based protocols, the most common convention is to signify an
end-of-message with a CRLF (carriage-return + newline, or \r\n)
sequence. Actual message content must not contain any instances
of this sequence.

Question

Are there alternative techniques for determining that we have
received a complete message?

Answer

Yes. Two common techniques:

1. Define a fixed-length message format (i.e., every message must
be identical in length).

2. Define a fixed-length “header” that contains an integer
representing the length of the remainder of the message.

Question

Is it possible for the server (or client) to call read() on a socket
and receive more than one message?

Answer

Yes. This might happen if the sender is sending the messages faster
than you are reading them. In this case, you must save the
messages in a buffer and handle them one at a time.

Buffering

I Buffering is an extremely common technique, especially in
networking.

I The Operating System also does its own buffering
I What happens if your PC receives data from the network, but

your program isn’t ready to call read() yet, because it is busy
doing something else?
I Answer: The OS saves it in a buffer, until your program calls

read()

Extra Slides

The TCP/IP Model

Data

UDP

data
UDP

header

IP

header

Frame

header

Frame

footer
Link

Internet

Transport

Application

IP data

Frame data

Link Layer

Link-layer protocols deal with how your device physically transmits
the data, e.g., wirelessly, or over a copper or fibre-optic cable

The Ethernet header

Internet Layer

Internet protocols such as IP, RIP, and OSPF govern how your data
gets transferred from one Internet Service Provider (ISP; e.g., Bell,
Rogers) to another

The IPv4 Header

The IPv6 Header

Transport Layer

Transport protocols, such as TCP and UDP, govern how your OS
“packages up” your application data to send it to another host over
the network, and check to make sure that it arrived at the
destination.

The TCP Header

The UDP Header

Application Layer

In this course, when we define a message format, what we are really
doing is defining an application-layer protocol that governs how our
server and client communicate with each other

Remark about Layering

Layering is done for a good reason: Imagine, when writing your
code for Assignment 3, that you had to write separate code based
on whether your client is connected over a WiFi connection or an
Ethernet cable!

TCP: Additional Features

I TCP has many more features that are beyond the scope of our
discussions for this course

I Flow control: If a computer is sending data too fast for the
receiver to handle, TCP will automatically slow down to avoid
data loss

I Congestion control: If the network is too congested, TCP will
automatically slow down to avoid data loss

	Extra Slides

