
CSC209 ASSIGNMENT 1 
OVERVIEW



ASSIGNMENT OVERVIEW

2

• The goal of this assignment is for you to design a simple simulated file system.
• Essentially, this file system will consist of an array of blocks, with the first block, 

or first few blocks, in the system containing information about the system and its 
files (metadata) in the form of fnodes and fentries

• Your job is to write functions that will create, delete, read, and write files. The 
function to initialize the filesystem itself has already been written for you, in 
initfs.c. You will build off of this structure.

• This assignment is fairly open ended – none of the signatures for the functions 
you will write have been written, so you may design your program however you 
wish. You may edit any of the files in the starter code except for simfstypes.h
and the Makefile.

• I recommend you read through initfs.c before getting started to understand how 
to build your functions into the existing file system.



3

UNDERSTANDING 
THIS DIAGRAM

This diagram shows an example file 
system which contains two files. Those 
files are named ‘file1’ and ‘file2’.



4

UNDERSTANDING 
THIS DIAGRAM

This diagram shows an example file 
system which contains two files. Those 
files are named ‘file1’ and ‘file2’.

In this system, MAXFILES=4 and 
MAXBLOCKS=6 (the real values of these 
constants are defined for you in 
simfstypes.h and will be higher than in 
the example.

4 spots for 
files
since 
MAXFILES=4

6 spots for 
fnodes since 
MAXBLOCKS
=6



5

UNDERSTANDING 
THIS DIAGRAM

This diagram shows an example file 
system which contains two files. Those 
files are named ‘file1’ and ‘file2’.

In this system, MAXFILES=4 and 
MAXBLOCKS=6 (the real values of these 
constants are defined for you in 
simfstypes.h and will be higher than in 
the example.

BLOCKSIZE is set to 128 (the same as in 
your code). Block 0 of the file system 
contains metadata (information about 
the files and fnodes), but not any actual 
content. This consumes 88 bytes of one 
block, and the remaining bytes of that 
block are filled with 0s.

4 spots for 
files
since 
MAXFILES=4

6 spots for 
fnodes since 
MAXBLOCKS
=6

File sizes

Inode # 
where files 
start



6

UNDERSTANDING 
THIS DIAGRAM

The fnode list contains information 
about each block. The dotted arrows 
you see in the diagram are pointing 
from an fnode (block number) to the 
specific block it is referencing. For 
example, an arrow runs from fnode 0 to 
the top of the diagram since that is the 
beginning of block 0.

4 spots for 
files
since 
MAXFILES=4

6 spots for 
fnodes since 
MAXBLOCKS
=6

File sizes

Inode # 
where files 
start



7

UNDERSTANDING 
THIS DIAGRAM

The fnode list contains information 
about each block. The dotted arrows 
you see in the diagram are pointing 
from an fnode (block number) to the 
specific block it is referencing. For 
example, an arrow runs from fnode 0 to 
the top of the diagram since that is the 
beginning of block 0.

An fnode number is negative if there is 
nothing stored in its block.

The number to the right of each fnode
number refers to the fnode which 
represents the continuation of the data 
contained in that block. The file ‘file2’ 
here is 138 bytes so takes up more than 
one block. So fnode 2 points to fnode 3, 
which contains the rest of the file. 
These may not always be in consecutive 
blocks, however.

4 spots for 
files
since 
MAXFILES=4

6 spots for 
fnodes since 
MAXBLOCKS
=6

File sizes

Inode # 
where files 
start



20XX Pitch Deck 8

UNDERSTANDING 
THIS DIAGRAM

The fnode list contains information 
about each block. The dotted arrows 
you see in the diagram are pointing 
from an fnode (block number) to the 
specific block it is referencing. For 
example, an arrow runs from fnode 0 to 
the top of the diagram since that is the 
beginning of block 0.

An fnode number is negative if there is 
nothing stored in its block.

The number to the right of each fnode
number refers to the fnode which 
represents the continuation of the data 
contained in that block. The file ‘file2’ 
here is 138 bytes so takes up more than 
one block. So fnode 2 points to fnode 3, 
which contains the rest of the file. 
These may not always be in consecutive 
blocks, however.

4 spots for 
files
since 
MAXFILES=4

6 spots for 
fnodes since 
MAXBLOCKS
=6

File sizes

Inode # 
where files 
start

For simplicity, 
each file’s 
data will start 
on a new 
block.

File data



REMEMBER!

• Error check everything! If a command or system call 
*can* fail, error check it. Error checking is required for 
this assignment, and bad user input is NOT an excuse 
for your program segfaulting, crashing, or otherwise 
malfunctioning.

• Make sure your code runs on the UTM school servers! 
That is where we will test it, and if it doesn’t compile 
and run on our systems you will lose marks.

• Make sure you compile and test your code right before 
submitting, even if you only made a small change. 
Mistakes happen and we would hate to have your code 
not compile because you made a small change that 
resulted in an error at the last minute.

9


