
APRIL 2019 Final Exam CSC 209H5S

Last Name: First Name:

Student #: Signature:

UNIVERSITY OF TORONTO MISSISSAUGA
APRIL 2019 FINAL EXAMINATION

CSC209H5S
Software Tools and Systems Programming

Furkan Alaca & Paul Vrbik
Duration - 3 hours

Aids: none

The University of Toronto Mississauga and you, as a student, share a commitment to academic integrity. You are
reminded that you may be charged with an academic offence for possessing any unauthorized aids during the writing
of an exam. Clear, sealable, plastic bags have been provided for all electronic devices with storage, including but not
limited to: cell phones, smart devices, tablets, laptops, calculators, and MP3 players. Please turn off all devices, seal
them in the bag provided, and place the bag under your desk for the duration of the examination. You will not be
able to touch the bag or its contents until the exam is over.

If, during an exam, any of these items are found on your person or in the area of your desk other than in the clear,
sealable, plastic bag, you may be charged with an academic offence. A typical penalty for an academic offence may
cause you to fail the course.

Please note, once this exam has begun, you CANNOT re-write it.

You must earn 40% or above on the exam to pass the course; else, your final course mark will be set no higher than

47%.

This final examination consists of 6 questions
on 24 pages (including this one). When you
receive the signal to start, please make sure
that your copy of the examination is complete.

If you need more space for one of your
solutions, use the last pages of the exam and
indicate clearly the part of your work that
should be marked.

Marking Guide

1: /28

2: /12

3: /10

4: /14

5: /12

6: /14

TOTAL: /90Good Luck!

Page 1 of 24 cont’d. . .

CSC 209H5S Final Exam APRIL 2019

Question 1. [28 marks]

Multiple Choice (2 marks each)

1.1. Select the option below that is NOT equivalent to the following statement: int *p = 20;

A. int* p = 20;

B. int * p = 20;

C. int *p; p = 20;

D. int *p; *p = 20;

E. None of the above: All of the above statements are equivalent.

1.2. Consider the program below, which has a function call missing from main(). Select the correct
function call that would result in the program printing the string “Hello, world!”.

void increment1(int count) {

count++;

}

void increment2(int *count_ptr) {

(*count_ptr)++;

}

int main(int argc, char **argv) {

int count = 0;

_____________________; // Correct function call (from the options below) goes here

if(count == 1) printf("Hello, world!");

return 0;

}

A. increment1(&count);

B. increment1(*count);

C. increment2(count);

D. increment2(&count);

E. increment2(*count);

Page 2 of 24 cont’d. . .

APRIL 2019 Final Exam CSC 209H5S

1.3. Suppose we have the following declarations at the start of a program. Select the statement
below that does NOT assign the value 4 to the variable q.

int x = 4;

int *y = &x;

int **z = &y;

int q;

A. q = x;

B. q = *(&x);

C. q = *y;

D. q = &(*x);

E. q = **z;

1.4. Consider the following code fragment, and assume (for the purposes of answering this question)
that integers are 4 bytes and pointers are 8 bytes. Select the correct answer for how many bytes
are allocated on the stack, and how many on the heap.

int *A = malloc(sizeof(int) * 20);

A. Stack: 8 Heap: 160

B. Stack: 8 Heap: 80

C. Stack: 0 Heap: 168

D. Stack: 0 Heap: 88

E. None of the above.

Page 3 of 24 cont’d. . .

CSC 209H5S Final Exam APRIL 2019

1.5. Consider the program below, and select the correct output that matches what the program
will print.

struct StudentNode {

char *name;

int num;

};

void updateStudent(struct StudentNode s) {

s.num = s.num + 2;

strcat(s.name, " v2");

}

int main() {

struct StudentNode s1;

s1.num = 12345;

s1.name = malloc(256*sizeof(char));

strcpy(s1.name, "Bob");

updateStudent(s1);

printf("%s; ", s1.name);

printf("%d\n", s1.num);

}

A. Bob; 12345

B. Bob; 12347

C. Bob v2; 12345

D. Bob v2; 12347

E. This code will cause a segmentation fault, because strcpy is unsafe.

1.6. Select the statement below that is TRUE (or All of the above, if they are all true), concerning
signals.

A. A process can only send a signal to its parent process or its child processes.

B. The kill system call is used only to terminate processes.

C. The default action of a SIGKILL signal cannot be modified.

D. A signal handler runs in a separate process from the program receiving the signal.

E. All of the above are true.

Page 4 of 24 cont’d. . .

APRIL 2019 Final Exam CSC 209H5S

1.7. Recall: (1) The tee program, which reads from stdin and copies the stream to both stdout
and to the file specified by the command-line argument; (2) The sort program, which sorts the lines
of text contained in the file specified by the command-line argument, and outputs to stdout; and
(3) The head program, which reads from stdin and outputs the first 10 lines to stdout. Consider
the following shell command, and select the statement below that is TRUE.

sort input.txt | tee output.txt | head

A. The contents of input.txt and output.txt are identical.

B. Only the first 10 lines of output.txt will be displayed in the terminal.

C. The entire contents of input.txt followed by the first 10 lines of output.txt will be
displayed in the terminal.

D. The entire contents of output.txt followed by the first 10 lines of output.txt will be
displayed in the terminal.

E. The entire contents of both input.txt and output.txt, followed by the first 10 lines of
output.txt, will be displayed in the terminal.

1.8. Select the statement below that is TRUE, concerning the invocation of the read() or write()
system calls on a pipe.

A. A read() invocation on a pipe that has completely filled its buffer will return the number
of bytes that were read, but only if at least one process still has an open write descriptor
to the pipe.

B. A read() invocation on an empty pipe will block indefinitely until data is available, or
until all processes close their write descriptors to the pipe.

C. A read() invocation on an empty pipe will immediately generate a SIGPIPE signal, if all
processes have closed their write descriptors to the pipe.

D. A write() invocation on a full pipe will immediately generate a SIGPIPE signal, if another
process has an open read descriptor to the pipe but never invokes read().

E. A write() invocation on a pipe will block indefinitely if no process has an open read
descriptor to the pipe.

Page 5 of 24 cont’d. . .

CSC 209H5S Final Exam APRIL 2019

1.9. Select the statement below that is TRUE, concerning the fork() system call.

A. After fork() returns, the child process will always execute first .

B. After fork() returns, the parent process will always execute first .

C. If a child process updates the value of a static variable, it will be updated in the parent
process as well.

D. The child process will inherit the open file descriptor table of its parent.

E. The parent process will not terminate until all of its children have terminated.

1.10. Select the statement below that is TRUE (or All of the above, if they are all true), concerning
the exec() family of system calls.

A. The exec system calls do not create a new process.

B. After exec is called, the new program inherits the open file descriptor table of the original
program.

C. If a call to exec succeeds, it will not return a value.

D. After exec, the new program will retain the PID of the previously-running program.

E. All of the above are true.

Page 6 of 24 cont’d. . .

APRIL 2019 Final Exam CSC 209H5S

1.11. Select the statement that is TRUE, considering the program consisting of the following two
source files. Assume that the program is compiled with gcc -o hello hello.c main.c.

/* Complete contents of main.c */

void hello(void);

int main(void) {

hello();

return 0;

}

/* Complete contents of hello.c */

#include <stdio.h>

void hello() {

printf("Hello, world!\n");

}

A. The program will fail to compile, because main.c is missing the line #include "hello.c".

B. The program will fail to compile, because main.c is missing the line #include <stdio.h>.

C. The program will fail to compile, because the gcc command is incorrect.

D. The program will compile successfully, but its behaviour is undefined (e.g., it may trigger
a segmentation fault or print out garbage values).

E. The program will compile and print Hello, world! to the terminal.

1.12. Select the statement below that is TRUE (or All of the above, if they are all true), concerning
threads and processes.

A. Processes do not share the same memory space, but threads belonging to the same process
do.

B. Process creation with fork is slow, but thread creation is much faster.

C. Each thread has its own global errno variable.

D. Threads belonging to the same process share the same heap and global variables, but have
separate function call stacks.

E. All of the above are true.

Page 7 of 24 cont’d. . .

CSC 209H5S Final Exam APRIL 2019

1.13. Select the statement that is TRUE, considering the program below.

struct my_struct {

char *name;

};

void array_chief(struct my_struct *s) {

char new[4] = {’a’, ’b’, ’c’, ’\0’};

s->name = new;

}

int main(void) {

struct my_struct s1;

s1.name = "Bob";

array_chief(&s1);

printf("%s\n", s1.name);

/* Do other things, call some other functions... */

return 0;

}

A. The program will fail to compile, because array_chief() assigns an array to a pointer
variable.

B. The program will fail to compile, because s1.name in main() is a read-only string literal,
which array_chief() attempts to overwrite.

C. The program will compile without errors, but a segmentation fault will be triggered when
main() assigns the return value of array_chief() to s1.name, since the latter is a read-
only string literal.

D. The program will compile without errors, but its behaviour is undefined, e.g., it may print
abc or it may print other garbage values or result in other unpredictable behaviour.

E. The program will compile without errors, and will always print out abc.

1.14. Select the file type that is most appropriate for opening with fopen using the "rb" flag.

A. A C program’s header file(s).

B. A C program’s object file(s).

C. A C program’s source file(s).

D. A Makefile.

E. None of the above are appropriate to open using the "rb" flag.

Page 8 of 24 cont’d. . .

APRIL 2019 Final Exam CSC 209H5S

Question 2. [12 marks]

Structs and Dynamically Allocated Arrays

The program below defines a struct to manage a dynamically-allocated array. Your job is to write two
helper functions, initialize and add, to make the program work correctly. The requirements are as
follows:

• initialize initializes an array_list struct, which is passed in as the single input parameter. By
default, the array should have a capacity of 5.

• add appends one or more integers contained in the array passed in the first parameter (which may be
either on the stack or the heap). The second parameter specifies the number of integers contained in
the array being passed in the first parameter. The third parameter specifies the array_list to which
the new integer(s) should be added. If there is not enough space in the array_list, a new array
should be allocated that is big enough to hold double the new elements plus the existing elements
(i.e. double the total of the two), and the contents of the old array should be moved into the new
one (for full marks, do this without writing a loop) before appending the new integers to the list.

We have not provided you with the function signatures for initialize and add: You need to determine
these yourself, in a way that satisfies both the requirements given above and the correctness of the program
below.

Both initialize and add should perform any necessary error checking: They should return 0 on success,
and -1 on failure.

struct array_list {

int *contents;

size_t capacity; // Current capacity of the array

size_t curr_elements; // Number of elements currently occupied in the array

};

int main(void) {

struct array_list list;

initialize(&list);

int a[11] = {2, 0, 9, 4, 5, 6, 7, 8, 9, 10, 11};

add(a, 11, &list);

// The loop below should print "2 0 9 4 5 6 7 8 9 10 11 "

for(int i = 0; i < list.curr_elements; i++)

printf("%d ", list.contents[i]);

/* The program does some fancy stuff with the array here,

* generates some output, and performs any remaining

* cleanup before terminating.

*/

return 0;

}

You may write your helper functions on the next page (but two blank pages have been provided, in case
you need the extra space).

Page 9 of 24 cont’d. . .

CSC 209H5S Final Exam APRIL 2019

Page 10 of 24 cont’d. . .

APRIL 2019 Final Exam CSC 209H5S

Page 11 of 24 cont’d. . .

CSC 209H5S Final Exam APRIL 2019

Question 3. [10 marks]

Signals

Study the following program that installs a signal handler.

int turn = 0;

void handler(int code) {

if(turn == 0) {

fprintf(stderr, "First\n");

turn = 1;

/* D */

}

else {

fprintf(stderr, "Second\n");

kill(getpid(), SIGQUIT);

}

fprintf(stderr, "Here\n");

}

int main(void) {

struct sigaction sa;

sa.sa_handler = handler;

sa.sa_flags = 0;

sigemptyset(&sa.sa_mask);

sigaddset(&sa.sa_mask, SIGINT);

/* A */

sigaction(SIGTERM, &sa, NULL);

/* B */

fprintf(stderr, "Done\n");

/* C */

return 0;

}

On the next page, provide the output of the above program when the events described in each subquestion
occurs, assuming that the code runs correctly, i.e., no undefined behaviour or other unspecified events
occur. Treat each subquestion as if the program were restarted. Each event is described as a signal that is
delivered to the program just before the program executes the line of code following the specified comment
line (i.e., A, B, C, or D). Give the TOTAL output of the program in each case.

Note: When a process exits due to a SIGTERM, SIGQUIT, or SIGKILL, the shell process prints “Terminated”,
“Quit”, or “Killed”, respectively, after the program terminates. Include these messages in your answers
where applicable.

Page 12 of 24 cont’d. . .

APRIL 2019 Final Exam CSC 209H5S

3.1. Two SIGTERM signals arrive one after the other at A.

3.2. SIGTERM arrives at B and SIGTERM arrives again at C.

3.3. SIGTERM arrives at B and SIGINT arrives at D.

3.4. SIGTERM arrives at B and SIGKILL at D

3.5. True or False: fprintf is async-signal-safe, assuming it is used in a single-threaded program.

Page 13 of 24 cont’d. . .

CSC 209H5S Final Exam APRIL 2019

Question 4. [14 marks]

Forking

4.1 Consider the program below, and enter the correct numbers in the table on the right-hand side.

int main(void)

{

int i = 0;

printf("Broccoli\n");

int r = fork();

printf("Cucumbers\n");

if (r == 0) {

printf("Kale\n");

int k = fork();

if (k >= 0) {

printf("Peppers\n");

}

} else if (r > 0) {

wait(NULL);

printf("Cabbage\n");

while(fork() == 0) {

printf("Carrots\n");

i++;

if(i == 3) break;

}

i = 0;

while(fork() > 0) {

printf("Spinach\n");

i++;

if(i == 2) break;

}

}

return 0;

}

Fruit Name Times Printed

Broccoli

Cucumbers

Kale

Peppers

Cabbage

Carrots

Spinach

You may use the blank space above for any sketches or rough work (it will not be marked). Then,
please also answer the questions on the next page.

Page 14 of 24 cont’d. . .

APRIL 2019 Final Exam CSC 209H5S

Assuming that the above program runs without errors (e.g., fork always returns successfully, and
the program is not terminated by a signal such as SIGKILL):

4.2. How many distinct processes print “Spinach”?

4.3. How many distinct processes print “Carrots”?

4.4. True or False: The second line of output should ALWAYS be “Cucumbers”.

4.5. True or False: The last line of output should ALWAYS be “Spinach”.

4.6. True or False: “Peppers” is ALWAYS printed before “Cabbage”.

4.7. List all the vegetable(s) that will NEVER be printed after the bash prompt re-appears.

4.8. List all the vegetable(s) that MIGHT be printed after the bash prompt re-appears.

Page 15 of 24 cont’d. . .

CSC 209H5S Final Exam APRIL 2019

Question 5. [12 marks]

Pipes

Write a program that forks two children. We refer to the first child (i.e. the child that is created first) as
Child A, and the second as Child B.

Child A must be able to send a stream of bytes to Child B over a pipe. All processes must close file
descriptors at the earliest appropriate point in the program, and perform any necessary error checking.
Right after this is done, Child A must invoke foo_a() and Child B must invoke foo_b() (you may assume
that neither of these functions will return back to main). You do not need to worry about writing any
data to the pipe—simply ensure that the pipe is correctly set up to allow Child A to send data over it to
Child B.

int main(void)

{

Page 16 of 24 cont’d. . .

APRIL 2019 Final Exam CSC 209H5S

Page 17 of 24 cont’d. . .

CSC 209H5S Final Exam APRIL 2019

Question 6. [14 marks]

Sockets and Select

Consider the chat server program below (simplified from Tutorial 11) which listens for incoming messages
from any connected client, and echos the received messages to all other clients. Fill in the blanks with the
correct C statements to make the program work correctly, as stated.

/* #include statements cut out to save space */

#define PORT 30000

#define MAX_CONNECTIONS 12

struct sockname {

int sock_fd;

char *username;

};

/* Accept a connection and return the new client’s file descriptor,

* or -1 on error. The client’s file descriptor and user name will

* be saved in the struct sockname array pointd to by *users.

*/

int accept_connection(int fd, struct sockname *users);

/* Read a message from client_index in the struct sockname array

* pointed to by *users, and send the message to all other

* clients that are currently connected to the server.

* Return client_index’s file descriptor if the connection has

* been closed, or 0 otherwise.

*/

int read_from(int client_index, struct sockname *users);

/* Create a new socket, set it to listen for incoming connections

* on the specified port, and return the socket’s file descriptor.

*/

int setup_socket(int port);

int main(void) {

// Create and initialize users array

struct sockname users[MAX_CONNECTIONS];

for (int i = 0; i < MAX_CONNECTIONS; i++) {

users[i].sock_fd = -1;

users[i].username = NULL;

}

// Create the socket FD.

int sock_fd = setup_socket(PORT);

int max_fd = __;

Page 18 of 24 cont’d. . .

APRIL 2019 Final Exam CSC 209H5S

// Initialize file descriptor set, to listen to multiple file descriptors.

fd_set all_fds, listen_fds;

__;

__;

while (1) {

listen_fds = all_fds;

if (__) {

perror(NULL);

exit(1);

}

// If there is a pending connection, accept the connection from the new client.

if (__) {

int client_fd = accept_connection(sock_fd, users);

if (__) {

__;

}

__;

printf("Accepted connection\n");

}

// Next, process any disconnections or messages received from clients

for (int i = 0; i < MAX_CONNECTIONS; i++) {

if (users[i].sock_fd > -1 && // complete this if statement on next line

__) {

// Don’t worry about reducing max_fd

int client_closed = __;

if (__) {

__;

__;

printf("Client %d disconnected\n", client_closed);

}

}

}

}

return 1; // Should never get here.

}

Page 19 of 24 cont’d. . .

CSC 209H5S Final Exam APRIL 2019

[Use the space below for rough work. This page will not be marked, unless you clearly indicate the part
of your work that you want us to mark.]

Page 20 of 24 cont’d. . .

APRIL 2019 Final Exam CSC 209H5S

[Use the space below for rough work. This page will not be marked, unless you clearly indicate the part
of your work that you want us to mark.]

Page 21 of 24 cont’d. . .

CSC 209H5S Final Exam APRIL 2019

[Use the space below for rough work. This page will not be marked, unless you clearly indicate the part
of your work that you want us to mark.]

Page 22 of 24 cont’d. . .

APRIL 2019 Final Exam CSC 209H5S

C function prototypes:

int accept(int sock, struct sockaddr *addr, int *addrlen)

char *asctime(const struct tm *timeptr)

int bind(int sock, struct sockaddr *addr, int addrlen)

int close(int fd)

int closedir(DIR *dir)

int connect(int sock, struct sockaddr *addr, int addrlen)

char *ctime(const time t *clock);

int dup2(int oldfd, int newfd)

int execl(const char *path, const char *arg0, ... /*, (char *)0 */);

int execvp(const char *file, char *argv[])

int fclose(FILE *stream)

int FD ISSET(int fd, fd set *fds)

void FD SET(int fd, fd set *fds)

void FD CLR(int fd, fd set *fds)

void FD ZERO(fd set *fds)

char *fgets(char *s, int n, FILE *stream)

int fileno(FILE *stream)

pid t fork(void)

FILE *fopen(const char *file, const char *mode)

int fprintf(FILE * restrict stream, const char * restrict format, ...);

size t fread(void *ptr, size t size, size t nmemb, FILE *stream);

int fseek(FILE *stream, long offset, int whence);

/* SEEK_SET, SEEK_CUR, or SEEK_END*/

size t fwrite(const void *ptr, size t size, size t nmemb, FILE *stream);

pid t getpid(void);

pid t getppid(void);

unsigned long int htonl(unsigned long int hostlong) /* 4 bytes */

unsigned short int htons(unsigned short int hostshort) /* 2 bytes */

char *index(const char *s, int c)

int kill(int pid, int signo)

int listen(int sock, int n)

void *malloc(size t size);

void *memmove(void *dest, const void *src, size t n);

unsigned long int ntohl(unsigned long int netlong)

unsigned short int ntohs(unsigned short int netshort)

int open(const char *path, int oflag)

/* oflag is O_WRONLY | O_CREAT for write and O_RDONLY for read */

DIR *opendir(const char *name)

int pclose(FILE *stream)

int pipe(int filedes[2])

FILE *popen(char *cmdstr, char *mode)

ssize t read(int d, void *buf, size t nbytes);

struct dirent *readdir(DIR *dir)

int select(int maxfdp1, fd set *readfds, fd set *writefds, fd set *exceptfds, struct timeval *timeout)

int sigaction(int signum, const struct sigaction *act, struct sigaction *oldact)

int sigaddset(sigset t *set, int signum)

int sigemptyset(sigset t *set)

int sigprocmask(int how, const sigset t *set, sigset t *oldset)

/* how has the value SIG BLOCK, SIG UNBLOCK, or SIG SETMASK */

unsigned int sleep(unsigned int seconds)

int socket(int family, int type, int protocol) /* family=AF INET, type=SOCK STREAM, protocol=0 */

int sprintf(char *s, const char *format, ...)

int stat(const char *file name, struct stat *buf)

Page 23 of 24 cont’d. . .

CSC 209H5S Final Exam APRIL 2019

char *strchr(const char *s, int c)

size t strlen(const char *s)

char *strncat(char *dest, const char *src, size t n)

int strncmp(const char *s1, const char *s2, size t n)

char *strncpy(char *dest, const char *src, size t n)

long strtol(const char *restrict str, char **restrict endptr, int base);

char *strrchr(const char *s, int c)

char *strstr(const char *haystack, const char *needle)

int wait(int *status)

int waitpid(int pid, int *stat, int options) /* options = 0 or WNOHANG*/

ssize t write(int d, const void *buf, size t nbytes);

Useful macros:

WIFEXITED(status) WEXITSTATUS(status)

WIFSIGNALED(status) WTERMSIG(status)

WIFSTOPPED(status) WSTOPSIG(status)

Useful structs:

struct sigaction {
void (*sa handler)(int);

sigset t sa mask;

int sa flags;

}
struct sockaddr in {

sa family t sin family;

unsigned short int sin port;

struct in addr sin addr;

unsigned char pad[8]; /*Unused*/

}

struct stat {
dev t st dev; /* ID of device containing file */

ino t st ino; /* inode number */

mode t st mode; /* protection */

nlink t st nlink; /* number of hard links */

uid t st uid; /* user ID of owner */

gid t st gid; /* group ID of owner */

dev t st rdev; /* device ID (if special file) */

off t st size; /* total size, in bytes */

blksize t st blksize; /* blocksize for file system I/O */

blkcnt t st blocks; /* number of 512B blocks allocated */

time t st atime; /* time of last access */

time t st mtime; /* time of last modification */

time t st ctime; /* time of last status change */

};

Page 24 of 24 End of Examination

