UNIVERSITY OF TORONTO MISSISSAUGA
APRIL 2017 FINAL EXAMINATION

CSC209H5S
Software Tools and Systems Programming
Instructors: Chaturvedi, Petersen
Duration: 2 hours
Examination Aids: None

Student Number: |, | | | , 4+ | 4

UtorlD:

Family Name(s):

Given Name(s):

The University of Toronto Mississauga and you, as a student, share a commitment to academic integrity. You are
reminded that you may be charged with an academic offence for possessing any unauthorized aids during the writing
of an exam. Clear, sealable, plastic bags have been provided for all electronic devices with storage, including but not
limited to: cell phones, SMART devices, tablets, laptops, calculators, and MP3 players. Please turn off all devices,
seal them in the bag provided, and place the bag under your desk for the duration of the examination. You will not

be able to touch the bag or its contents until the exam is over.

If, during an exam, any of these items are found on your person or in the area of your desk other than in the clear,
sealable, plastic bag, you may be charged with an academic offence. A typical penalty for an academic offence may

cause you to fail the course.

Please note, once this exam has begun, you CANNOT re-write it.

Do not turn this page until you have received the signal to start.
In the meantime, please read the instructions below carefully.

This final examination paper consists of 5 questions on 16 pages (including this
one). When you receive the signal to start, please make sure that your copy of the
final examination is compleie.

Comments are not required, although they may help us mark your answers.

No error checking is required except where indicated.

You do not need to provide include statements.

H you use any space for rough work, indicate clearly what you want marked.

You may tear the API page off the back of this exam.

Page 1 of 16 Good Luck!

#l_ /4

2 /12

4 3 /12

4 /3

4 5: /9

TOTAL: __ /40
CONT'D...

April 2017 Final Examination CSC209H58

Question 1. [4 MARKs]
Programming Tools
Part (a) [3 MARKS]

Assume that you have a project which contains the source files rcopy_client.c, rcopy_server.c, and
rcopy.c. The project results in two executables rcopy_client and rcopy.server; each is built using the
source file of the same name (with a “.¢”) plus rcopy.c.

Write a Makefile that uses separate compilation to produce the two executables. (“Separate compilation”
means that each source file should be compiled separately.) When make is run without a command line
argument, both executables should be built. You may assume that there are no header files, and you do
not need to write a clean target.

Part (b) [l MARK]

You've just run your program fcopy and you see the dreaded message “Segmentation fault: 11”.
Briefly explain how you would use gdb to identify what has caused the error.

Page 2 of 16 CONT'D. ..

April 2017 Final Examination CSC209H58

Question 2. [12 MARKs]

Memory

Several of the sections of this question feature a small piece of code and a blank diagram representing
mermory. Your task is to fill in the diagram so that it represents the variables and values in the code. Place
the name and type of each variable to the right of the diagram, place numeric and string values into the
appropriate locations in the diagram (subdividing the boxes when necessary), and represent addresses as
arrows from the pointer location to the location they point to.

Pointers are 8 bytes. Integers are 4. If the value of a variable i3 unspecified, write “777”.

In some cases, variables are mentioned without a type. You will need to infer the type of the variable but
may assume that it is located on the stack.

There are 14 points for subquestions in this section, but the question is only worth 12. The additional 2
points are a bonus {because there are many small details that would be casy to miss).

Part (a) [2 MARKS]

Type
and Name Memory

Stack

int age = 37; ™

x = kage;

y = kx;
Heap

Data and
Code
S 1 Y

Page 3 of 16 : CONT'D...

April 2017

Part (b) [3 MARKS]

char #namel = "Ri";
char name2{3] = "tu";
char *name_pt = name2;

Part (¢) [2 MARKS]

Final Examination CSC209H58S8
Type
and Name Memory
Stack
Heap
Data and
Code

Write a code snippet that uses namel and name2 from the code above to create the string “Ritu”. Assign
this value to the variable full name. Make sure the string is located in dynamic memory.

Page 4 of 16

CONT'D...

April 2017 Final Examination CSC209H5S8

Part (d) [3 MARKS]

Assume that the malloc call in the following code succeeds.

Type
and Name Memory

Stack

i = malloc(sizeof(int)); o

*1 = 42;

i_ptr = &i;
Heap

Data and

Code

Part (e) [l MARK]

Given the following code:

int x;

agsign(... parameters here ...);

printf("%d\n", x);

write a prototype for the function assign that results in the code printing the value ‘42’.

Page 5 of 16 CONT'D...

April 2017 Final Examination CSC209H5S

Part (f) [2 MARKs]

Type
and Name Memory
Stack
int **quarters =
malloc(sizeof(int *) = 4
for (int i = 0; i < 4; i++){ e T——
quarters[i] =
malloc(sizeof (int));
*{quarters[i]) = 1i;
¥
Heap
Data and
Code
e 8 yten

Part (g) [1 MARK]

Write code to free all of the memory allocated in the code in the previous subquestion,

Page 6 of 16 CONT'D, .,

April 2017 Final Examination CSC209H58

Question 3. [12 MARKs]
Processes, Pipe, and Exec
Part (a) [2 MARKS]

Consider the process ID (PID), file descriptor table, and memory space to be the resources allocated to a
process. Which of these resources ave identical in the parent and child after the system call fork is called?
How do the remaining resources differ between the parent and child processes?

Part (b) [2 MARKS]

Consider the process ID (PID), file descriptor table, and memory space to be the resources allocated to a
process. Which of these resources remain unchanged when the system call exec is called? Which of these
resources are modified, and how are they modified?

Page T of 16 CONT’D. ..

April 2017 Final Examination CSC209H5S

Part (c) [2 MARKS]

In assignment 3, we asked why hard links were difficult to identify. What is a hard link? Why, in a
multi-process program, was it difficult to identify them?

Part (d) [1 mMARK]

int main{veoid) {
int id = 0;
for (int i = 1; 1 < 3; i++) {
if (fork() == 0) {

id = i;
printf("Child %d forked\n", id);
} else {
printf ("Parent %d created child %d\n", id, i);
}
b
return 0;

In the code above, multiple orderings of the print statements can be created based on how the operating
system schedules processes for execution. How many different orderings are possible? You may assume
that the fork and printf calls all succeed.

Page 8 of 16 CONT'D. .,

April 2017 Final Examination CSC209H58

Part (e) [l MARK]

Describe one situation where dup?2 is commonly used to duplicate the file descriptor of a pipe.

Part (f) [4 MARKS]

Write a snippet of code that (a) sets up a pipe, (b) forks, and (c) prepares the pipe so that the child can
write data that the parent reads. Please include all necessary error checks in this code and report errors

appropriately.

Page 9 of 16 CONT'D...

April 2017 Final Examination CSC209H58

Question 4. [3 MARKsS]
Signals
Part (a) [1 MARK]

What is a signal?

Part (b) [1 MARK]
Write code to install the function timeout as a handler for the signal STGALRM.

Part (¢) [1 MARK]
In the lab, why did we block SIGALRM while we were printing?

Page 10 of 16 CONT'D...

April 2017 Final Examination CSC209H5S

Question 5. [9 MARKs)
Sockets and Select

Part (a) [1 MARK]

To set up a socket for a server, you need to call socket, bind, listen, and accept. What is the purpose
of the bind call?

Part (b) [1 MARK]

To continue from part (a), why do we need to call both listen and accept?

Part (¢) [l MARK]
Why did we need to call htons on the value for the PORT?

Page 11 of 16 ' CONT’D....

April 2017 Final Examination CSC209H5S

Part (d) [6 MARKS]

Write code for a server program. The server should accept multiple clients simultaneously and accept input
from them. Whenever it reccives a message from a client, it replies with the last message it received and
then saves the message it just received to send to the next client who sends a message. The first client to
say anything receives the message “First” since no previous message was received.

For example, assume two clients connect to the server. The first client sends the message “A”. It receives
the response “First”. The second client closes its commection. It receives no message. A third client
connects to the server, It sends the message “B” and receives the response “A”. The first client sends the
message “A again”, and it receives the response “B”.

The initial server socket is set up for you, so you can focus on managing I/0. You may assume that you
will never receive more than MAX_CONNECTIONS af one time. If two messages are received simultaneously,
then the server can treat either of them as arriving first.

Please include all necessary error checks in this code and report errors appropriately.

#define MAX_CONNECTIONS &
#define MAX_MSG_LEN 128

int main(void) {
// Create the socket FD,
int sock_fd = socket(AF_INET, SOCK_STREAM, 0);
if (sock_f£fd < 0) {
perror ("server: socket");
exit(1):
}

// Code to set up the server socket (bind and listen) ...
// You may assume this code is correct, so that sock_ :fd is ready to accept comnnections.

Page 12 of 16 CONT’D.,

April 2017 Final Examination CSC209H5S

C function prototypes:

int accept(int sock, struct sockaddr *addr, int *addrlen)
char *asctime(const struct tm *timeptr)
int bind{(int sock, struct sockaddr #*addr, int addrlen)
int close(int £d)
int closedir(DIR *dir)
int connect(int sock, struct sockaddr *addr, int addrlemn)
char *ctime(const time t *clock);
int dup2(int oldfd, int newfd)
int execl{const char *path, const char *argd, ... /%, (char ®)0 */);
int execvp(const char #*file, char *argv[l)
int fclose(FILE *stream)
int FD_ISSET(int fd, fd_set #fds)
void FDSET(int fd, fd _set *fds)
void FD.CLR(int £d, fd_set *fds)
void FD_ZERO(fd_set *fds)
char *fgets(char *s, int n, FILE *stream)
int fileno(FILE *stream)
pid.t fork(void)
FILE *fopen(const char #*file, const char #mode)
int fprintf(FILE % restrict stream, const char * restrict format, ...);
size t fread(void #ptr, size t size, size t nmemb, FILE #stream);
int fseek(FILE *stream, long offset, int whence);
/* SEEK_SET, SEEK_CUR, or SEEK_END#/
size t furite(const void #ptr, size_t size, size_t nmemb, FILE *stream);
pid t getpid(void);
pid_t getppid(void);
ungigned long int htonl(unsigned long int hostlong) /* 4 bytes */
unsigned short int htons(unsigned short int hostshort) /* 2 bytes */
char *index(comst char *s, int c¢)
int kill(int pid, int signo)
int listen(int sock, int n)
void *malloc{size_t size);
unsigned long int ntohl(unsigned long int netlong)
unsigned short int ntohs(unsigned short int netshort)
int open{const char *path, int oflag)
/* oflag is D_WRONLY | O_CREAT foxr write and O_RDONLY for read */
DIR #opendir(const char *name)
int pclose(FILE *stream)
int pipe(int filedes[2])
FILE #popen(char *cmdstr, char *mode)
ssize.t read(int d, void #buf, size_t nbytes);
struct dirent *readdir(DPIR *dir)
int select(int maxfdpl, fd.set *readfds, fd.get *writefds, fd.set xexcepifds, struct timeval *timsout)
int sigaction(int signum, const struct sigaction *act, struct sigaction *oldact)
int sigaddset(sigset_t ¥set, int signum)
int sigemptyset(sigset.t *set)
int sigprocmask(int how, const sigset_t *set, sigset_t *oldset)
/* how has the value SIG_BLOCK, SIG.UNBLOCK, or SIG_SETMASK */
unsigned int sleep(unsigned int seconds)
int socket(int family, int type, int protocol) /+* family=AF_INET, type=SOCK_STREAM, protocol=0 */
int sprintf{char *s, const char *format,)
int stat(const char *filemame, struct stat *buf)
char *strchr(const char *s, int ¢)

Page 15 of 16 EnD OF FINAL EXAMINATION

April 2017 Final Examination CSC209H58

size.t strlen(const chaxr *s)

char *strncat{char *dest, comst char #src, size.t n)

int strnemp(const char #sl, const char *s2, size_t n)

char *strancpy(char xdest, const char *src, size_t n)

long striol(const char #restrict str, char s#restrict endptr, int base);
char *strrchr{const char *s, int c)

char *strstr(const char xhaystack, const char #needle)

int wait(int *status)

int waitpid(int pid, int *stat, int options) /# options = 0 or WNOHANG#/
ssize_t write(int d, const void *buf, sizet nbytes);

Useful macros:

WIFEXITED(status) WEXITSTATUS (status)
WIFSIGRALED (status) WIERMSIG(=status)
WIFSTOPPED (status) WSTOPSIG(status)

Useful structs:

struct stat {
dev.t st_dev; /+ ID of device containing file %/

struct sigaction { inot st.ino; /% inode number */
void (#sa handler) (int); mode_t st mode; /% protection */
sigset_t sa.mask; nlink t gt nlink; /* number of hard links */
int sa.flags; uid t st_uid; /* user ID of owner */

} gidt st.gid; /% group ID of owner %/

struct sockaddr.in { dev_t st.rdev; /#* device ID (if special file) */
sa_family t sin family; off t st_size; /* total size, in bytes */
unsigned short int sin port; blksize t st_blksize; /* blocksize for file system I/0 */
struct in_addr sin_addr; blkent.t st blocks; /+ number of 512B blocks allocated #/
unsigned char pad[8]; /#Unused*/ time t st_atime; /* time of last access */

time t stmtime; /* time of last modification */
time t st_ctime; /* time of last status chamge */

Useful Makefile variables:

% | wildcard

$@ | target

$~ | list of preregquisites
$< | first prerequisite

$7

return code of last program executed

Page 16 of 16 Exp orF FINAL EXAMINATION

