
Algorithms and Data Structures for
Computational Biology

Math, Theory, and Practice for Large-Scale Biological Data Analysis

K. Jun Gao

May 4, 2023

© Copyright 2023 by K. Jun Gao

Contents

I Basic Mathematics 1

1 Graphs and Combinatorics 3

1.1 Graph Theory . 3

1.2 Eulerian and Hamiltonian Circuits . 7

1.3 Hall’s Theorem . 13

1.4 Partially Ordered Sets . 15

1.5 Counting . 16

2 Probability 23

2.1 Review of Basic Probability Theory . 23

2.2 Concentration Inequalities . 25

2.3 Moment Generating Functions . 28

II Information and Compression 31

3 Measure of Information and Complexity 33

3.1 Entropy . 33

3.2 Entropy of Biological Sequences . 34

3.3 Kolmogorov Complexity . 36

3.4 Lempel-Ziv Complexity . 38

4 Entropy Coding 43

4.1 Worst-Case Entropy . 43

4.2 Zero-Order Empirical Entropy . 44

4.3 Symbol Codes . 44

4.4 Lower Bounds . 48

iii

iv CONTENTS

III Index Data Structures 51

5 Suffix Tree 53

5.1 Suffix Tries . 53

5.2 Ukkonen’s Linear-Time Construction . 55

6 Suffix Array 59

6.1 String Sorting . 59

6.2 Naive Construction From Suffix Tree . 64

6.3 A Divide-and-Conquer Approach . 65

6.4 Kärkkäinen-Sanders Algorithm . 65

7 Burrows-Wheeler Transform and FM Index 71

7.1 Burrows-Wheeler Transform . 71

7.2 FM Index . 74

7.3 Bidirectional BWT Index . 80

IV Data in High-Dimensional Space 83

8 Geometry of High-Dimensional Objects 85

8.1 Most Volume of High-dimensional Objects is Near the Surface 85

8.2 Most Points in a Unit Ball Are Nearly Orthogonal . 86

9 Comparing Data in High Dimension 91

9.1 Johnson-Lindenstrauss Lemma and Random Projection . 91

9.2 Alignment-Free Sequence Comparison . 93

V Randomness and Randomization 99

10 Markov Chain and Random Process 101

10.1 Definitions . 101

10.2 Fundamental Theorem of Markov Chain . 103

10.3 The Metropolis-Hastings Algorithm . 107

10.4 Gibbs Sampling . 108

CONTENTS v

10.5 Hidden Markov Model . 110

10.6 The Viterbi Algorithm . 111

11 Random Graph Theory 113

11.1 Bulk Properties of Random Graphs . 113

11.2 Structures in Random Graphs . 114

11.3 Phase Transitions in Random Graphs . 115

11.4 Modeling Protein-Protein Interaction Network . 117

12 Hashing 119

12.1 Hash Functions . 119

12.2 Strong Universality (2-Independence) . 119

12.3 Finite Fields . 121

12.4 Universal Hashing of Variable-Length Strings . 122

12.5 Applications of Hashing . 122

12.6 Locality Sensitive Hashing . 124

13 Probabilistic Sampling and Sketching 131

13.1 Frequency Moments . 131

13.2 Distinct Elements . 131

13.3 Second Frequency Moment Sketch . 136

13.4 Majority Element and Misra-Gries . 136

13.5 CountMin Sketch . 138

Bibliography 142

Index 142

Part I

Basic Mathematics

1

Chapter 1

Graphs and Combinatorics

Graphs are ubiquitous in computational biology. Its application ranges from assembly graph in genome
assembly to interaction networks in systems biology. Many algorithms in computational biology involves the
use of graph and concepts from graph theory. In this chapter, will introduce some basic definitions and some
important results from graph theory.

1.1 Graph Theory

We begin by providing a formal definition of graphs.

Definition 1.1 (Undirected Graph). An undirected graph is a pair (V,E) where V is a finite set, and
E is a collection of subsets of V of size 2. The set V is called the vertex set, and members of V are called
vertices. The set E is called the edge set and members of E are called edges.

Similarly, we can define a directed graph as graphs where the edges are directed. Formally,

Definition 1.2 (Directed Graph). A directed graph is a pair (V,E) where V is a finite set, and E is a
collection of ordered pairs of V of size 2 (E ⊆ V × V).

We generally use G to denote a graph. For x, y ∈ V , the edge between x and y is denoted {x, y}, or sometimes
xy or yx. The set notation {·} is to highlight the unordered nature of an undirected edge. If x, y ∈ V and
{x, y} ∈ E, we say that x and y are adjacent.

1.1.1 Classic Graphs

Definition 1.3 (Complete Graph). For n ≥ 1, we let Kn denote the complete graph ([n], E) where E =
{e ⊆ [n] | |e| = 2}.

Conversely, if for all distinct x, y ∈ V , {x, y} ̸∈ E, the graph is called an independent graph, denoted In.

Definition 1.4 (Path Graph). For n ≥ 1, we let Pn denote the path graph ([n], E) where E = {{i, i+ 1} ⊆
[n] | i ∈ [n]}.
Definition 1.5 (Cycle Graph). For n ≥ 3, we let Cn denote the cycle graph ([n], E) where E = {{0, 1}, {1, 2}, . . . , {n−
2, n− 1}, {n− 1, 0}}.

1.1.2 Subgraphs

Definition 1.6 (Subgraph). Given a graph G = (V,E), a subgraph H of G is a pair H = (W,E′) such
that W ⊆ V and E′ ⊆ {s ∈ E | s ⊆ W}.

Sometimes, we abuse notation and write H ⊆ G.

3

4 CHAPTER 1. GRAPHS AND COMBINATORICS

Figure 1.1: From left to right: complete graph, path graph, cycle graph with 4 vertices.

Definition 1.7 (Induced Subgraph). Given a graph G = (V,E), an induced subgraph H ⊆ G is one of
the form (W,E′) where

E′ = {{x, y} ∈ E | {x, y} ∈ W}
for W ⊆ V .

Note that induced subgraphs are uniquely defined by the vertex set whereas a subgraph is not. A subgraph
need not contain all edges between the vertices in the subgraph.

1.1.3 Isomorphism

Definition 1.8 (Isomorphic Graphs). Let G = (V1, E1) and H = (V2, E2) be graphs. We say that G and H
are isomorphic if there is a bijection f : V1 → V2 such that {x, y} ∈ E1 ⇐⇒ {f(x), f(y)} ∈ E2.

Theorem 1.9. Let G be a graph with n vertices. G is isomorphic to a subgraph of Kn.

Proof. Consider G = (V,E). Label the vertices such that V = {v0, . . . , vn−1}. Let f : V → [n] be a function
such that f(vi) = i. Consider the set E′ = {{i, j} ⊆ [n] | {vi, vj} ∈ E}. Clearly, H = ([n], E′) is a subgraph
of Kn by definition. Further, we claim that f is an isomorphism between G and H.

To show that f is an isomorphism, it suffices to show that {vi, vj} ∈ E ⇐⇒ {f(i), f(j)} ∈ E′. For the
forward direction, suppose {vi, vj} ∈ E, then {i, j} ∈ E′ by construction. This immediately implies that
{f(vi), f(vj)} ∈ E′ by construction of f . For the reverse direction, suppose {i, j} ∈ E′, which is equivalent
to {f(vi), f(vj)} ∈ E′. By definition of f , this is only true when {vi, vj} ∈ E. Therefore, f is an isomorphism
between G and H.

It follows that G is isomorphic to H, which is a subgraph of Kn.

1.1.4 Degree

Definition 1.10 (Degree). Given a graph G = (V,E) and a vertex v ∈ V , we let degG(v) = |{u ∈ V |
{u, v} ∈ E}|, which is the number of vertices ahring an edge with v.

Lemma 1.11 (The Handshaking Lemma). Let G = (V,E) be a graph, and let |E| = e. Then,∑
v∈V

degG(v) = 2e

Proof. For each v ∈ V , let EV = {{v, u} | {v, u} ∈ E}. Notice that for distinct u, v, |Eu ∩ Ev| ≤ 1 and is
equal to one exactly when u and v form an edge. No three distinct sets overlap. It follows that

e = |E| =
∣∣∣∣∣ ⋃
v∈V

Ev

∣∣∣∣∣ = ∑
v∈V

|Ev| −
∑

u,v∈V

|Ev ∩ Eu| =
∑
v∈V

degG(v)− e

1.1. GRAPH THEORY 5

This implies
∑

v∈V degG(v) = 2e.

For directed graphs, we define in-degree and out-degree separately. We use deg+ to denote the in-degree
(i.e. number incoming edges) and deg− to denote the out-degree (i.e. number of outcoming edges).

1.1.5 Connectivity

Definition 1.12 (Path). A path in a graph G = (V,E) is a sequence of distinct vertices x1, . . . , xn that
are each successively connected with an edge. We call the number of edges in the sequence the length of the
path.

Definition 1.13 (Walk). A walk in a graph G = (V,E) is a sequence of vertices that are each successively
connected with an edge.

Note that a walk does not have the distinctness requirement, meaning repeating vertices in a walk is allowed.

Definition 1.14 (Connectivity). We call a graph G connected if every pair of distinct vertices is connected
by a path.

Definition 1.15 (Connected Component). Given a graph G, we call a maximally connected vertex set a
connected component. More formally, if we denote the equivalence relation ∼ on V given by

v ∼ w ⇐⇒ v = w

(i.e. v is connected to w), the connected components are the equivalence classes given by this relation.

Now that the edges are directed, the original definition of connectedness is no longer symmetric and thus is
no longer an equivalence relation. For directed graphs, there are two different notion of connectivity.

Definition 1.16 (Strongly and Weakly Connected). A directed graph D is weakly connected if ∀x, y ∈ V ,
there exists either an x, y-walk or a y, x-walk. D is strongly connected if ∀x, y ∈ V , ∃ both a walk from x
to y and a walk from y to x.

1.1.6 Trees and Spanning Trees

Definition 1.17 (Tree). A tree is a graph G = (V,E) with the property that every two vertices are connected
by a unique path.

Lemma 1.18. Every acyclic and connected graph G with n ≥ 2 vertices has a leaf v ∈ V such that deg(v) = 1.

Proof. Let G be an acyclic and connected graph. Note that since G is connected, degG(v) ≥ 1 for all v ∈ V .
We prove the contrapositive. Suppose for all v ∈ V , degG(v) > 1. Fix a vertex v. Starting from v, follow a
sequence of distinct edges until a vertex repeats. It is possible to visit all vertices without repeating edges
because each vertex has two incident edges. Further, because every vertex has degree of at least 2, once we
have visited every vertex, there should still be at least one edge unvisited. When we follow that edge, we
will arrive at a vertex that has previously been visited. This creates a cycle. So, G is not acyclic.

Theorem 1.19. Let G be a connected graph with n edges. The following are equivalent:

1. G is a tree

2. G does not contain a cycle

6 CHAPTER 1. GRAPHS AND COMBINATORICS

3. G has n− 1 edges

Proof. Let G be a connected graph.

(1 =⇒ 2): Assume that G is a tree. We show that G does not contain a cycle by contradiction, so suppose
not and G contains a cycle. Let the cycle be c = x1x2 . . . xn. Notice that x1x2 . . . xn is a path from x1 to
xn. Since c is a cycle, {x1, xn} ∈ E. So, x1xn is also a path from x1 to xn. However, this is a contradiction
to the path uniqueness requirement in the definition of a tree. So G does not contain a cycle.

(2 =⇒ 3): We prove this implication by induction. Assume G is acyclic and connected.

Base Case: n = 1. There is 0 = n− 1 edge. The implication holds.

Inductive Step: Let n ∈ N and n ≥ 2. As induction hypothesis, suppose all acyclic and connected graphs
with m ≤ n vertices have m − 1 edges. Let G be a graph with n + 1 vertices. Suppose that G is also
connected and acyclic. By Lemma 1.18, G has at least one vertex v such that degG(v) = 1. Construct G′ by
removing v and the one edge incident to v. G′ has n vertices, so by induction hypothesis, has n − 1 edges.
If we add back the removed edge, we can see that G has n edges.

By induction, this implication holds.

(3 =⇒ 1): Let G be a connected graph with n − 1 edges. To show that G is a tree, we need to show
that every two vertices are connected by a unique path. It suffices to show that deleting any edge from G
leaves the graph disconnected. Suppose for contradiction that deleting an edge {u, v} does not disconnect
the graph. This implies that there is another path from u to v containing at least 2 edges. This also implies
that G is connected with n − 2 edges. But this is impossible because the minimum number of edges in a
connected graph with n vertices is n − 1. Therefore, every pair of vertices is connected via a unique path
since deleting any edge breaks this path and thus disconnects the graph. By definition, this means G is a
tree.

Definition 1.20. Let T = (V,E) be a tree. We call a vertex v a leaf if degT (v) = 1.

Lemma 1.21. If G = (V,E) is a tree with n ≥ 2 vertices, then G has at least two leaves.

Proof. We prove this lemma by strong induction on n for n ≥ 2.

Base Case: n = 2. Since T is a tree, T is connected and has exactly one edge. Clearly, both vertices in T
have degree 1.

Inductive Step: Suppose, as inductive hypothesis, that for some n ≥ 2, every tree with 2 ≤ k ≤ n vertices
has at least two leaves. Let T be a tree with n+1 vertices. Pick an edge {u, v} ∈ E and form a new graph T ′

by deleting {u, v}. More formally, T ′ = (V,E − {{u, v}}). Since T is a tree, there is no other path between
u and v (otherwise we would have a cycle). It follows that in T ′, u and v are disconnected. Deleting an
edge will not create a cycle either, so T ′ is a forest with two connected components Tu and Tv. Consider the
following cases:

Case 1: Both Tu and Tv contain at least 2 vertices. Then, we can apply our induction hypothesis. Take one
leaf from each component. If both are endpoints of the deleted edge {u, v}, they are no longer leaves in T ,
but we still have at least two leaves, one from Tu and one from Tv. In general, Tu must have a leaf x that
is not u and Tv must have a leaf y that is not v. Adding {u, v} back does not affect x and y so they will
remain leaves, which implies that there exist at least two leaves.

Case 2: If each component of T ′ has only one vertex, then T is isomorphic to K2, which has two leaves.

Case 3: If exactly one of the components has only one vertex, then it must become a leaf when we reconnect
{u, v} to form T .

1.2. EULERIAN AND HAMILTONIAN CIRCUITS 7

In all cases, we have that T has at least two leaves. By induction, every tree with at least 2 vertices has at
least two leaves.

u

v

Figure 1.2: In each of the two components, there exists at least one leaf that is not u or v (colored red).
When we reconnect {u, v}, those vertices will remain leaves.

1.1.7 Spanning Trees

Definition 1.22 (Spanning Subgraph). Given a graph G = (V,E), we call a subgraph H ⊆ G spanning if
H = (V,E′).

Definition 1.23 (Spanning Tree). Given a graph G, a spanning tree is a spanning subgraph T ⊆ G that
is a tree.

Theorem 1.24. Every connected graph has a spanning tree.

Proof. By induction on the number of edges.

Base Case: If G is connected and has no edges, G contains one single vertex. G is trivially a tree and a
spanning tree.

Inductive Step: Suppose G has m ≥ 1 edges. If G is a tree, then we are done because it is trivially a
spanning tree. Otherwise, G has cycles. For each cycle, remove an edge from the cycle to disconnect the
cycle. By definition of a cycle, the graph is still connected after the removal of edges from the cycles. The
resulting graph is still connected but has no cycle, which by Theorem 1.19, means the resulting graph is a
tree. By definition of a spanning tree, this means the resulting graph is a spanning tree.

By induction, a connected graph with n edges has a spanning tree for all n ∈ N. This implies that all
connected graphs have a spanning tree.

1.2 Eulerian and Hamiltonian Circuits

1.2.1 Path, Walk, Trail, and Circuits in a Graph

Recall the following definition of path and walks.

Definition 1.25 (Path). A path in a graph G = (V,E) is a sequence of distinct vertices x1, . . . , xn that
are each successively connected with an edge. We call the number of edges in the sequence the length of the
path.

8 CHAPTER 1. GRAPHS AND COMBINATORICS

Definition 1.26 (Walk). A walk in a graph G = (V,E) is a sequence of vertices that are each successively
connected with an edge.

In addition, we define a trail and a circuit in a graph as follows.

Definition 1.27 (Trails). A trail is a walk with no repeating edges.

Definition 1.28 (Circuits). A circuit in a graph G = (V,E) is a sequence of distinct vertices v1, . . . , vk
such that for all i ∈ {1, . . . , k − 1}, {vi, vi+1} ∈ E and {vk, v1} ∈ E. Note, a circuit induces a copy of a
subgraph isomorphic to Ck for k ≥ 3. Specially, we define a single vertex a circuit as well.

In other words, circuit is a closed (starts and ends with the same vertex) trail.

1.2.2 Eulerian Circuit

There are two special types of circuits that we would like to characterize. They are the Eulerian circuits and
Hamiltonian circuit.

Definition 1.29 (Eulerian Circuit). Given a graph G = (V,E), an Eulerian circuit is a sequence of
vertices x0, . . . , xt such that

• x0 = xt

• ∀i ∈ [t]. {xi, xi+1} ∈ E

• ∀e ∈ E.∃ unique i ∈ [t]. e = {xi, xi+1} (i.e. every edge appears exactly once in an Eulerian circuit)

We say a graph is Eulerian if and only if it has an Eulerian circuit. An Eulerian circuit is also referred
to as an Euler tour in some texts. The notion of an Eulerian circuit and graph appears in the famous
problem of the bridges of Königsberg.

In 1736, Euler gave his famous characterization of an Eulerian graph, stated as follows

Theorem 1.30 (Euler, 1736). A connected graph G = (V,E) is Eulerian if and only if all its vertices have
even degree.

Proof. The forward direction of the proof is quite straightforward whereas the reverse direction requires a
slightly more involved proof by induction.

(=⇒): Let G be a connected graph. Assume that G is Eulerian so it must have an Eulerian circuit. Note
that in an Eulerian circuit, every time we enter a vertex, we must also leave the vertex. This is the case
for all vertices because otherwise we would have an infinite graph. Hence, all vertices in G must have even
degree.

(⇐=): Let G be a graph. We proceed by strong induction on the number of edges.

Base Case: G is a graph with m = 0 edge. The result trivially holds.

Inductive Step: Let m ∈ N be arbitrary. Assume that for all k ∈ N such that 0 ≤ k < m, the implication
holds. Let G = (V,E) be a connected graph with m edges. Further, assume that degG(v) is even for all v ∈ V .
Since the graph is connected and every vertex has even degree, it follows immediately that degG(v) ≥ 2 for
all v ∈ V . This also implies that G contains a cycle. Let c = v1 . . . vk be such cycle of maximal length and
E′ be the edges contained in this cycle.

1.2. EULERIAN AND HAMILTONIAN CIRCUITS 9

If c contains all edges exactly once, we are done. Hence, suppose E′ ̸= E and consider the graph G′ =
(V,E \ E′). It has connected components S1, . . . , Sl. Since E′ ̸= E, each of the connected components Si

contains strictly fewer edges than |E| = m. For every v ∈ G, an even number of edges of G at v are in
the cycle c, so we we remove these edges, each vertex in the remaining graph should still have even degree.
Apply the induction hypothesis to the components, which asserts that each of the components S1, . . . , Sl

possess an Eulerian circuit. Further, since c is a cycle, C = ({v1, . . . , vk}, E′) itself is also Eulerian. Now, we
recursively construct an Eulerian circuit, say x, in the original graph G. Start from v1, find the component
Si containing v1, and concatenate the Eulerian tour in Si to x. Next, move from v1 to v2 along {v1, v2} ∈ E′.
If {v1, v2} ̸∈ E, then they must have been in the same connected component, in which case we skip v2 and
move to v3. Repeat this until we have walked through every edge in each one of the l connected components
and the edges in E′ connecting each component. It is clear that x is Eulerian since it visits every edge
exactly once.

By induction, the implication holds.

c

S1

S2

S3

S4

by I.H.

Figure 1.3: Construct an Eulerian circuit in the original graph G by first finding a cycle c, remove the cycle,
find an Eulerian circuit within each component S1, . . . , Sl, and concatenate these circuits via the cycle c.

1.2.3 Hamiltonian Circuit

Definition 1.31 (Hamiltonian Graph). We call a graph with n vertices Hamiltonian if it admits a circuit
of length n, which is to say that the graph has a spanning subgraph that is isomorphic to Cn.

A sufficient condition for Hamiltonian graphs.

Theorem 1.32 (Dirac, 1952). Let G = (V,E) be a graph with n vertices where n ≥ 3. Suppose that for
every v ∈ V , degG(v) ≥ ⌈n

2 ⌉. Then, G is Hamiltonian.

Proof. Let G = (V,E) be a graph with n ≥ 3 vertices. Assume that degG(v) ≥ ⌈n
2 ⌉ for all v ∈ V . Let δ(G)

denote the minimum degree. That is, δ(G) = min{degG(v) | v ∈ V }. Then, the assumption is equivalent to
that δ(G) ≥ ⌈n

2 ⌉.
We claim that G is connected. We prove the claim by contradiction. So suppose not, consider the component
G′ = (VG′ , EG′) of G with the fewest number of vertices. Since δ(G) ≥ ⌈n

2 ⌉, each vertex is connected to
at least ⌈n

2 ⌉ other vertices. Since C is a component that is not connected to vertices in other components,
|VG′ | ≤ ⌈n

2 ⌉. But then, δ(G′) < |VC | ≤ ⌈n
2 ⌉, which contradicts the assumption that degG(v) ≥ ⌈n

2 ⌉ for all
v ∈ V , including those in G′.

10 CHAPTER 1. GRAPHS AND COMBINATORICS

Since G is connected, we can find the longest path in G. Let P = v0 . . . vk be a longest path in G of length
k (with k edges and k+1 vertices). We claim that there exists some 0 ≤ i ≤ k− 1 such that {v0, vi+1} ∈ E,
{vi, vk} ∈ E, and {vi, vi+1} ∈ E as shown in Figure 1.4.

· · · · · ·
v0 vi

vi+1

vk

P

Figure 1.4: The longest path P = v0 . . . vk with k+ 1 vertices is colored in red. There exists some 0 ≤ i ≤ k
such that {v0, vi+1} ∈ E and {vi, vk} ∈ E.

Such adjacent vertices vi and vi+1 such that vi is adjacent to vk and vi+1 is adjacent to v0 must exists. By
way of contradiction, suppose vi and vi+1 do not exist. Then, for every vertex adjacent to v0, there must
exists some vertex adjacent to it that is NOT adjacent to vk. Similarly, for every vertex adjacent to vk,
there must exists some adjacent vertex that is NOT adjacent to v0. Note that these two sets of vertices are
disjoint and do not include vk. This implies that

degG(v0) + degG(vk) + 1 ≤ k + 1

since we are not overcounting and the number of vertices being counted is at most the length of path P .
The additional 1 on the LHS of the inequality came from couting vk as it is not included in either degG(v0)
or degG(vk). Now, since degG(v) ≤ ⌈n

2 ⌉ for all v ∈ V ,

n+ 1 ≤
⌈n
2

⌉
+
⌈n
2

⌉
+ 1 ≤ degG(v0) + degG(vk) + 1 ≤ k + 1

so n+1 ≤ k+1. This implies that n < k+1 since both n and k are integers. But this leads to a contradiction
because the number of vertices on the path P cannot be more than the total number of vertices in the entire
graph.

The existence of such vi and vi+1 allows us to construct a cycle C = v0 → vi+1 ⇝P vk → vi ⇝P v0. We
claim this cycle is Hamiltonian.

· · · · · ·
v0 vi

vi+1

vk

①

②

③

③

Figure 1.5: The Hamiltonian path is C = v0 → vi+1 ⇝P vk → vi ⇝P v0.

To see why C is Hamiltonian, again we use a contradiction proof. Suppose C is not Hamiltonian. Then,
by definition, there must be some vertex w ∈ V such that w is not on C. But since G is connected, w
must be adjacent to some vertices, say vw ∈ V . Without loss of generality, suppose that this vw is on the
cycle C. There must also be a vw+1 immediately adjacent to vw. By construction, the cycle C contains
k + 1 edges (that’s all edges on P along with {v0, vi+1}, {vi, vk} and without {vi, vi+1}). We then consider
the path from vw to vw+1 by following the edges on the cycle. This leads to a path of length k, namely
p = vw ⇝ v0 → vi+1 ⇝ vk → vi ⇝ vw+1. Now, we extend the left end of this path to w since w is adjacent
to vw and still get back a valid path. The new path P ′ = w → vw ⇝ v0 → vi+1 ⇝ vk → vi ⇝ vw+1 is one
edge longer than p. However, this contradicts the maximality assumption for P since now we would have a
path, P ′, that contains more vertices than P . Therefore, C is indeed a Hamiltonian path.

It follows immediately that G is Hamiltonian by definition.

1.2. EULERIAN AND HAMILTONIAN CIRCUITS 11

· · ·
v0 vi

vi+1

vk
· · · · · ·

vw

vw+1

w

Figure 1.6: With the existence of a vertex w outside of the previously constructed cycle, we would have a
longer path (colored in orange), contradicting the maximality of P .

1.2.4 Graph Coloring

Definition 1.33 (Independent Set). Given a graph G = (V,E), we say A ⊆ V is independent if and only
if no no vertices in A are adjacent.

The only independent sets in Kn are singletons. We can prove this using a contradiction and the definition
of a complete graph and independent set.

Definition 1.34 (Bipartite Graph). We say a graph G = (V,E) is bipartite if and only if we can partition
V into two disjoint independent sets.

A bipartite graph (V1 ∪ V2, E) is a complete bipartite graph iff every v1 ∈ V1 is connected to every vertex in
V2 and vice versa. We denote a complete bipartite graph by K|V1|,|V2| (K with a subscript denoting the size
of the left and right partition, respectively).

Theorem 1.35. A graph is bipartite if and only it does not contain a circuit of odd length.

Proof.

(=⇒): Let G = (V,E) be a bipartite graph. In particular, V = A∪B for some A,B ⊆ V such that A∩B = ∅
and for all {a, b} ∈ E, a ∈ A and b ∈ B. Suppose, for contradiction, that G contains an odd-length cycle
C = v1v2 . . . vnv1 of length n. Without loss of generality, suppose that vi and vi+1 alternates between A and
B. So, v1 ∈ A, v2 ∈ B, v3 ∈ A, and so on. If the cycle is not in that particular order, we can reindex the
vertices and still have the same cycle.

Then, for k ∈ {1, 2, 3, . . . , n},

vk ∈
{
A k is odd
B k is even

Since C is a cycle of odd length, n is odd. It follows that vn ∈ A. But then, since v1 ∈ A and {vn, v1} ∈ E,
this is a contradiction to the assumption that G is bipartite.

(⇐=): Let G = (V,E) be a graph. Without loss of generality, assume that G is connected. Otherwise, we
can consider the connected components individually. Assume that G contains no odd cycle. Let w ∈ V be
a vertex in G.

Let A be the set of vertices whose shortest distance from w is even, and let B be the set of vertices whose
shortest distance from w is odd. That is,

A = {v ∈ V | d(v, w) ≡ 0 mod 2}
B = {v ∈ V | d(v, w) ≡ 1 mod 2}

Since G is connected, every vertex is either at an even distance or odd distance from w ∈ V . A vertex cannot
be both at an even distance and an odd distance from w at the same time. Hence, A∪B = V and A∩B = ∅.
This implies that A and B are a valid partition of V .

12 CHAPTER 1. GRAPHS AND COMBINATORICS

Now, we would like to show that G is bipartite. It suffices to show for all vertices a1, a2 ∈ V and b1, b2 ∈ B,
{a1, a2} ̸∈ E and {b1, b2} ̸∈ E. To prove this fact, we suppose the contrary and derive a contradiction. So,
suppose that there does exist such x, y ∈ A or x, y ∈ B such that {x, y} ∈ E. Fix such x, y. We can assume
that x ̸= y ̸= w. Otherwise, we have w = x and d(x,w) = 0. Since x and y are in the same partition, d(y, w)
is even and d(y, x) = 0. However, this is not possible since d(y, x) = 1, which is odd. By a similar argument,
we can show that w ̸= y either.

To obtain a contradiction, we consider the shortest path from x to w and the shortest path from y to w. Let
p be the shortest path from x to w, and let q be the shortest path from y to w. Let z be the last common
vertex of p and q. Note that z may be w. We also note that |p| and |q| have the same parity since we
assumed that y, x are in the same partition.

x

y

wz

p1

q1

q2

p2

Figure 1.7: p is the shortest path from x to w. q is the shortest path from y to w. p1 is the part of p from
x to the last common vertex of p and q. Similarly, q1 is the part of q from y to the last common vertex of p
and q.

Let p1 = x ⇝p z be the part of the path p from x to z. Similarly, let p2 = z ⇝p w, q1 = y ⇝q z, and
q2 = z ⇝q w. We claim that |p2| = |q2| since otherwise we can obtain a shorter path from x to w or
from y to w. Further, we claim that |p1| and |q1| have the same parity becuase |p| and |q| have the same
parity and the second part of both paths, p2 and q2, are of the same length. Recall that {x, y} ∈ E. Then,
C = x ⇝p1

z ⇝q1 y → x. Since |p1| and |q1| have the parity, |C| = |p1| + |q1| + 1 is odd. This is becuase
|p1|+ |q1| can be expressed as 2k for some k ∈ Z. This is an odd-length cycle, which is a contradiction to our
initial assumption that G has no odd cycle. The only additional assumption leading to this contradiction is
that G is not bipartite. Hence, G must be bipartite.

1.2.5 Coloring

Definition 1.36 (Proper Coloring). Let G = (V,E) be a graph. A (proper) coloring of G is a function
ϕ : V → [k] such that for all i ∈ [k], ϕ−1(i) is independent. Equivalently, ϕ is a (proper) coloring of G iff
∀{a, b} ∈ E. ϕ(a) ̸= ϕ(b). We call ϕ a k-coloring.

Definition 1.37 (Chromatic Number). The chromatic number of a graph G, is the smallest k such that
there is a proper k coloring of G. The chromatic number of G is denoted by χ(G).

Theorem 1.38. A graph is 2-colorable if and only if it does not contain an odd-length cycle.

Proof. Theorem 1.35 states that a graph is bipartite iff there is no odd-length cycle. To prove this theorem,
it suffices to prove that a graph is 2-colorable if and only if the graph is bipartite.

(=⇒): Let G = (V,E) be a 2-colorable graph. Take the coloring. Assign vertices with one color to V1 and
vertices with another color to V2. V1 and V2 is a partition of V . By definition of a 2-color, for all x, y ∈ V1,
{x, y} ̸∈ E and for all x, y ∈ V2, {x, y} ̸∈ E.

(⇐=): Let G = (V,E) be a bipartite graph where V = V1∪V2 is a partition. Assign one color to all vertices
in V1 and assign another color to all vertices in V2. It is easy to prove that this is a valid 2-coloring directly
from the definition of a bipartite graph.

1.3. HALL’S THEOREM 13

1.2.6 Matching

Definition 1.39 (Matching). A matching M of G is a subgraph that is a disjoint union of edges.

We say M is maximal if for all matchings M ′ such that M ′ ⊆ M , M = M ′ (in other words, we cannot
expand the matching). We say M is maximum if for all matchings M ′, |E(M)| ≥ |E(M ′)|.

Definition 1.40 (Perfect Matching). A perfect matching is a matching in which every vertex is matched.
Let G = (V,E) be an undirected graph with vertex partition V = L ∪ R, where |L| = |R|. For any X ⊆ V ,
the neighborhood of X, denoted N(X) is

N(X) = {y ∈ V | (x, y) ∈ E for some x ∈ X}

For a vertex v ∈ V (G), we say that v is saturated by M if v ∈ V (M). Otherwise, if v ∈ V (G) \ V (M), we
say that v is unsaturated. If every vertex is saturated by M , then M is a perfect matching.

Definition 1.41 (Alternating Path). Let M be a matching in G. An alternating path P ⊆ G is a path
where edges alternate between M and G \ M . An alternating path is an M -augmenting path if the end
points of the graph are unsaturated by M .

Lemma 1.42. If M ⊆ G has an augmenting path, then M is not maximum.

Theorem 1.43 (Berge’s Lemma). M is a maximum matching if and only if it has no augmenting paths.

Proof.
(maximum =⇒ no augmenting path): Consider the contrapositive. The claim holds by Lemma 1.42.

(no augmenting path =⇒ maximum): Consider the contrapositive. Then, suppose M is not maximum. By
definition, this means we have some M ′ such that |M ′| > |M |. Let H = M△M ′ = (M ∪M ′) \ (M ∩M ′) =
(M \M ′) ∪ (M ′ \M). We claim that degH(v) ≤ 2 for all v ∈ H. This is because M and M ′ are matchings
and every vertex is incident to at most one edge from each of M and M ′. Then, H is a union of paths and
cycles with edges alternating between M \M ′ and M ′ \M . Every cycle in H has the same number of edges
from M and M ′. Since |M ′| > |M |, H must contain a component with more edges of M ′ than of M . This
component is a path that starts and ends with an edge in M ′. Hence, H is an M -augmenting path.

1.3 Hall’s Theorem

The question is: when does a bipartite graph have a perfect matching. This is exactly what Hall’s theorem
answers. Hall’s theorem establishes the necessary and sufficient condition for a perfect matching in bipartite
graphs.

Theorem 1.44 (Hall’s Theorem). Let G be a bipartite graph where V = V1∪V2 and V1∩V2 = ∅. G contains
a perfect matching if and only if |N(S)| ≥ |S| for all S ⊆ V1.

Proof. By induction on the size of V1.

Base case: |V1| = 1. The theorem trivially holds.

Inductive step: Let V1 be a set of vertices such that |V1| = k for some k ≥ 2. Assume that for all vertex
sets of size smaller than k, the theorem holds. Suppose bipartite graph G = (V1 ∪ V2, E) satisfies Hall’s
condition.

14 CHAPTER 1. GRAPHS AND COMBINATORICS

Case 1: For all S ⊊ V1, |N(S)| ≥ |S| + 1. Let (a, b) be an edge where a ∈ V1 and b ∈ V2. Let G′ be the
subgraph induced by V −{a, b}. Clearly, |V1−{a}| ≤ |N(V1−{a})|. Here’s a more careful argument of why
G′ satisfies Hall’s condition. Let S′ ⊆ V1 − {a}, and let N ′(S′) denote the neighborhood of S′ in the graph
G′ induced by V − {a, b}. Further, S′ ⊆ V1 − {a} ⊂ V1, so by assumption that G satisfies Hall’s condition,

|N(S′)| − 1 ≥ |S′|

Since only b has been removed from the induced subgraph G′, we also have |N ′(S′)| ≥ |N(S′)|−1. It follows
that |N ′(S′)| ≥ |S′| and Hall’s condition holds for G′.

By inductive hypothesis, G′ contains a perfect matching M ′. Since (a, b) connects a ∈ V1 with b ∈ V2,
{(a, b)} is a perfect matching. Hence, M = M ′ ∪ {(a, b)} is a perfect matching in G.

a b
e

a b
e

G G

Figure 1.8: Case 1. Note that N(S′) can have one fewer vertex than N ′(S′) (this happens when there is an
edge from some vertex in S′ to b, shown as dashed lines). N(S′) can also have the same number of vertices
as N ′(S′) if there is no edge going from vertices in S′ to b. Hence the inequality |N ′(S′)| ≥ |N(S′)|−1 holds.

Case 2: There exists some S ⊊ V1 such that |S| = |N(S)|. Since S is a proper subset of V1, |S| < |V1|. Let
G1 be the subgraph induced by S ∪ N(S). S is a proper subset of V1, and V1 satisfies Hall’s condition. It
follows that any subset of S must also be a subset of V1 and hence satisfies Hall’s hypothesis. By induction
hypothesis, G1 has a perfect matching M1.

S G1

G2V1 − S

N(S)

V2 − N(S)

Figure 1.9: Case 2. We partition V1 into S and V1 − S. The reasoning behind the construction (S ∪ S′) ∪
(N(S) ∪N(S′)) when showing that G2 satisfies Hall’s condition is that there any neighboring vertices of S′

in G not included in NG2
(S′) should be included in N(S), which allows us to derive a contradiction if G2

does not satisfy Hall’s condition.

Let G2 be the subgraph induced by (V1 − S) ∪ (V2 −N(S)). We claim that G2 also has a perfect matching.
It suffices to show that G2 satisfies Hall’s condition. Suppose not, then there exists some S′ ⊆ (V1 −S) such
that |S′| > |NG2(S

′)| where NG2(S
′) denotes the neighborhood of S′ in the subgraph G2. More precisely,

1.4. PARTIALLY ORDERED SETS 15

NG2
(S′) = N(S)∩ (V2 −N(S)). Consider the subgraph induced by (S ∪ S′)∪ (N(S)∪N(S′)). Since S ∪ S′

is a subset of V1 and G satisfies Hall’s condition

|N(S ∪ S′)| ≥ |S ∪ S′|

Since N(S) and NG2
(S′) are disjoint,

|N(S ∪ S′)| = |N(S) ∪NG2
(S′)|

= |N(S)|+ |NG2
(S′)|

= |S|+ |NG2
(S′)|

< |S|+ |S′|
= |S ∪ S′|

which contradicts the assumption that G satisfies Hall’s condition. So, G2 must also satisfy Hall’s condition
and by induction hypothesis, have a perfect matching M2.

M1 and M2 are perfect matchings within their individual subgraphs that are disjoint. Taking the union of
M1 and M2 yields a perfect matching M in G.

By induction, Hall’s theorem holds for bipartite graphs of all sizes.

1.4 Partially Ordered Sets

Graph is an important object in combinatorics and discrete mathematics. It is also closely related to another
topic that we will discuss in this chapter, partially ordered sets. As it turns out, we can model a set equipped
a certain type of ordering using graphs.

Definition 1.45 (Poset (partially ordered set)). A poset P is a pair P = (X,P) where X is a set and
P ⊆ X ×X is a relation that is

• reflexive: ∀a ∈ X. (a, a) ∈ P

• anti-symmetric: a ̸= b ∧ (a, b) ∈ P =⇒ (b, a) ̸∈ P

• transitive: (a, b) ∈ P ∧ (b, c) ∈ P =⇒ (a, c) ∈ P

Instead of writing (a, b) ∈ P , we use the notation a ≤P b.

Definition 1.46 (Embedding, Isomorphism, Automorphism). Given a poset P = (X,P) and Q = (Y,Q),
an embedding from P into Q is an injective map f : X → Y with the property that a ≤P b if and only
if f(a) ≤Q f(b). If the embedding is surjective, we call it an isomorphism. If Q = P, we call it an
automorphism.

For example, consider X = {⋆, ◦, ⋄} with P = {(⋆, ⋆), (◦, ◦), (⋄, ⋄), (⋄, ⋆)}, and Y = {⋆, ◦, ⋄,□} with Q =
{(⋆, ⋆), (◦, ◦), (⋄, ⋄), (□,□), (□, ⋆)}. Let P = (X,P) and Q = (Y,Q). Consider the function f : X → Y such
that f(⋆) = ⋆, f(◦) = ◦, and f(⋄) = □. f is an embedding because ⋄ ≤P ⋆ if and only if f(⋄) = □ ≤Q ⋆ =
f(⋆). However, f is not an isomorphism because ⋄ is not in the range of f so f is not surjective.

Definition 1.47 (Dual). Given a poset P = (X,P), we call the poset Pd = (X,P d) where a ≤Pd b ⇐⇒
b ≤Pd

a the dual of P. We say a poset is self-dual if it is isomorphic to its dual.

Definition 1.48 (Cover). Given a poset P = (X,P) and a point a ∈ X, we say a is covered by a point
b ∈ X if a <P b and there is no c such that a <P c <P b.

16 CHAPTER 1. GRAPHS AND COMBINATORICS

Definition 1.49 (Cover Graph). Given a poset P = (X,P), we call the graph G = (X,E) given by {x, y} ∈ E
if and only if x covers y or y covers x, the cover graph associated to P.

If we draw the cover graph in an oriented fashion where lower vertices correspond to the ≤P-smaller elements,
we have a special kind of cover graph known as Hasse diagram.

Let P = (X,P) be a poset where X = {a, b, c, d, e, f} and P = {(a, c), (b, c), (b, d), (d, e), (a, e), (e, f)}. One
possible cover graph and the Hasse diagram is shown below.

a

c b

d

f

e

a

c

b

d

c

f

Figure 1.10: Cover graph and Hasse diagram for the poset described above.

1.4.1 Linear (Total) Order

Definition 1.50 (Comparability). Given a poset P = (X,P), we say two points a, b ∈ X are comparable
if either a <P b or b <P b If two points are not comparable, we call them incomparable.

Definition 1.51 (Total/Linear Order). Given a poset P = (X,P), we say P is linearly ordered or totally
ordered if no two distinct points are incomparable.

1.5 Counting

1.5.1 The Pigeonhole Principle

Theorem 1.52 (The Pigeonhole Principle). Let X be a set of n objects. Suppose {X1, . . . , Xk} from a
partition of X (i.e. a family of disjoint sets whose union is X). If k < n, then ∃i ∈ {1, . . . , k} such that
|Xi| ≥ 2.

Proof. Suppose for contradiction that for all i ∈ {1, . . . , k}, |Xi| = 1. Since {X1, . . . , Xk} is a partition,

n = |X| =
k∑

i=1

|Xi| = k.

But this is contradiction since k < n.

The Pigeonhole Principle is often used to show that there are more than one element in a set with the same
property or to bound the size of sets. We can extend the Pigeonhole Principle to a more general case where
one set is of size m and the other is of km+ 1.

1.5. COUNTING 17

Theorem 1.53 (Generalized Pigeonhole Principle). Fix k,m ∈ N, sets X and Y with |X| = km + 1 and
|Y | = m, and a function f : X → Y . Show that there exists an element y ∈ Y with at least k+1 preimages.

Proof. Let X be a set with |X| = km+ 1 for some k,m ∈ N and Y be a set such that |Y | = m. Let f be a
function mapping from X to Y .

For y ∈ Y , let Py = {x ∈ X | f(x) = y} be the set of preimages for y ∈ Y . We would like to show that
|Py| ≥ k + 1. Suppose for contradiction that |Py| < k + 1 for all y ∈ Y . Since f is a well-defined function,
f does not map any x ∈ X to more than one element in Y . This implies that for every distinct y1, y2 ∈ Y ,
Py1 ∩Py2 = ∅. Further, since f is a well-defined function, every element in X is mapped to an element in Y .
So,

⋃
y∈Y Py = X. By definition, {Py}y∈Y is a partition of X. Then, it follows that

|X| =
∣∣∣ ⋃
y∈Y

Py

∣∣∣
=
∑
y∈Y

|Py| Py’s are disjoint

≤
∑
y∈Y

k |Py| < k + 1 for all y ∈ Y

= km |Y | = m

which immediately implies that |X| ≤ km. However, this is a contradiction because by assumption, |X| =
km+ 1.

Hence, our assumption that |Py| < k + 1 for all y ∈ Y is false. Therefore, there exists some y ∈ Y such that
|Py| ≥ k + 1, which is equivalent to saying that there exists an element y ∈ Y with at least k + 1 preimages
by definition.

1.5.2 Permutation and Combination

Let X = {a1, . . . , an} be a set of distinct object.

Definition 1.54 (Permutation). A permutation of length k is an X-string of length k such that there is
no repetition.

Given integers n and k with n ≥ k, we let P (n, k) denote the number of permuations of [n] of length k.

Example 1.55. Suppose X = {a, b, c, d}. abc is a permutation of length 3. ∅ is a permutation of length 0.
However, bab is not a permutation because of the repeating character b.

Remark 1.56. Because a permutation requires there be no repetition, there is no permutation of length k
for X of size n if k > n.

Definition 1.57 (Combination). Given a set of objects X, a combination of size k is a subset A ⊆ X of
size k.

Example 1.58. What are the subsets of {1, 2, 3}?

∅ = {}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}

There are 3 combinations of {1, 2, 3} of size 2.

18 CHAPTER 1. GRAPHS AND COMBINATORICS

We can use the following formulas to compute permutation and combination.

P (n, k) =
n!

(n− k)!

C(n, k) =

(
n

k

)
=

n!

(n− 1)!k!

1.5.3 Binomial Theorem

Theorem 1.59 (Binomial Theorem). For any x ∈ R, for any n ≥ 0 natural number

(1 + x)n =

n∑
k=0

(
n

k

)
xk

Proof.
LHS = (1 + x)n = (1 + x)(1 + x) · · · (1 + x)︸ ︷︷ ︸

n times

When we expand and collect the like terms, we get a polynomial of the form

n∑
k=0

ckx
k = c0 + c1x+ c2x

2 + · · ·+ cnx
n

For k, the only way to get xk in the expansion of the LHS is if for k of the n terms in the product to
contribute to to x, and the rest n− k of the terms to contribute to 1.

In total, we have
(
n
k

)
ways to get xk in the expansions. Hence, ck =

(
n
k

)
.

The bionmial theorem holds for more than one variable.

Theorem 1.60 (Binomial Theorem (two variables)). For any x, y ∈ R, n ∈ N such that n ≥ 0,

(x+ y)n =

k∑
k=0

(
n

k

)
xkyn−k

1.5.4 Bijection

Suppose we have sets A and B. f : A → B is a function.

Definition 1.61 (Injective). We say f is injective or one-to-one if ∀a1 ̸= a2 ∈ A. f(a1) ̸= f(a2).

Definition 1.62 (Surjective). We say f is surjective or onto if ∀b ∈ B. ∃a ∈ A. f(a) = b.

Definition 1.63 (Bijection). We say that f is bijective if f is both injective and surjective.

Remark 1.64. If there is a bijective mapping f : A → B, then A and B have the same size (cardinality).

This is useful because it allows us to count things using things that we already know how to count if we can
find a bijection between the two sets.

1.5. COUNTING 19

1.5.5 Induction

Theorem 1.65 (Well-Ordering Principle). Every non-empty set of positive integers (or natural numbers)
contains a least element (an element that is less than or equal to every other elements).

From the well-ordering principle, one can derive the principle of weak induction.

Principle of Weak Induction: Suppose we have a family of statements P (n) for all n ∈ N, and suppose
the following holds:

1. P (1) holds, and

2. if P (k) holds, then P (k + 1) holds.

Then, we can conclude P (n) is true for all n ∈ N.

Remark 1.66. The base case does not have to be for n = 1 if we are not proving the statement for all
n ∈ N. Say, for example, that we want to show P (n) holds for all n ∈ N such that n ≥ 5. Then, we can use
P (5) as the base case.

Further, from the principle of simple induction, one can derive the seemingly stronger but actually equivalent
principle of strong induction.

Principle of Strong Induction: Suppose we have a family of statements P (n) for all n ∈ N. Suppose the
following are true:

1. P (1) is true, and

2. if P (m) is true for all 1 ≤ m ≤ k, then P (k + 1) is true.

Then, we can conclude P (n) is true for all n ∈ N.

1.5.6 Principle of Inclusion-Exclusion

Definition 1.67. Let S be a set. Fix a collection Ai ⊆ S indexed by i ∈ {1, . . . , n}. Given I ⊆ {1, . . . , n},
we let AI =

⋂
i∈I Ai. In particular, we set A∅ = S.

We are all familiar with the addition principle: given two disjoint sets A,B such that A ∩B = ∅,

|A ∪B| = |A|+ |B|

In the case where A and B are not disjoint, we can simply remove the count for the common elements among
A and B that were double-counted.

|A ∪B| = |A|+ |B| − |A ∩B|

We further observe that four three sets A,B,C, we have

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C| − |A ∩B ∩ C|

The generalization of this is called the Inclusion-Exclusion Principle. There are multiple equivalent formu-
lations of the Inclusion-Exclusion Principle.

20 CHAPTER 1. GRAPHS AND COMBINATORICS

Theorem 1.68 (Inclusion-Exclusion Principle). Let S be a set. Let A1, . . . , An ⊆ S be subsets of S indexed
by i ∈ {1, . . . , n}. Then, the number of elements in S that is in none of Ai is

∣∣∣∣∣
n⋂

i=1

Ai

∣∣∣∣∣ =
∣∣∣∣∣S \

n⋃
i=1

Ai

∣∣∣∣∣ = ∑
I⊆[n]

(−1)|I||AI |

and equivalently, ∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ = ∑
I⊆[n]
I ̸=∅

(−1)|I|+1|AI |

If stated without using the notation introduced in Definition 1.67, the Inclusion-Exclusion Principle can be
stated as follows.

Theorem 1.69. If Ai ⊆ X for 1 ≤ i ≤ n, then

∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ =
n∑

k=1

(−1)k+1
∑

{i1,...,ik}⊆[n]

∣∣∣∣∣∣
k⋂

j=1

Aij

∣∣∣∣∣∣

and equivalently ∣∣∣∣∣
n⋂

i=1

Ai

∣∣∣∣∣ = |X|+
n∑

k=1

(−1)k
∑

{i1,...,ik}⊆[n]

∣∣∣∣∣∣
k⋂

j=1

Aij

∣∣∣∣∣∣

We give a proof of the Inclusion-Exclusion Principle using induction.

Proof.

Base Case: n = 1. A1 is the only subset of S in the collection. |⋃n
i=1 Ai| = |S| − |Ai| =

∑
I∈[1](−1)|I||AI |.

Inductive Step: Let n ∈ N be arbitrary. Assume that the principle holds for all k ≤ n. Consider a collection
of subsets A1, . . . , An+1 ⊆ S. Let Bi = Ai ∩ An+1 for i ∈ {1, . . . , n}. Let BI = An+1 ∩

⋂
i∈I Ai. Note that

B∅ = An+1.

We know by induction hypothesis that

∣∣∣∣∣S \
n⋃

i=1

Ai

∣∣∣∣∣ = ∑
I⊆[n]

(−1)|I||AI |
∣∣∣∣∣An+1 \

n⋃
i=1

Ai

∣∣∣∣∣ = ∑
I⊆[n]

(−1)|I||BI |

In other words,
∑

I⊆[n](−1)|I||AI | counts the number of elements in S that is not in A1, . . . , An. Similarly,

1.5. COUNTING 21

∑
I⊆[n](−1)|I||BI | counts the number of elements in S that satisfied only An+1. Now, consider∑

I⊆[n+1]

(−1)|I||AI | =
∑
I⊆[n]

(−1)|I||AI |+
∑
I⊆[n]

(−1)|I|+1|AI∪{n+1}|

=
∑
I⊆[n]

(−1)|I||AI | −
∑
I⊆[n]

(−1)|I||AI∪{n+1}| take out −1

=

∣∣∣∣∣S \
n⋃

i=1

Ai

∣∣∣∣∣− ∑
I⊆[n]

(−1)|I||AI∪{n+1}| by I.H.

=

∣∣∣∣∣S \
n⋃

i=1

Ai

∣∣∣∣∣− ∑
I⊆[n]

(−1)|I||BI | by definition of BI

=

∣∣∣∣∣S \
n⋃

i=1

Ai

∣∣∣∣∣−
∣∣∣∣∣An+1 \

n⋃
i=1

Ai

∣∣∣∣∣ by I.H.

=

∣∣∣∣∣S \
n+1⋃
i=1

Ai

∣∣∣∣∣

Let’s consider the following example.

Example 1.70. Count the number of integer solutions to the equation x1+x2+x3+x4 = 100 with x1, x2 ≤ 10
and xi ≥ 0 for all i ∈ {1, 2, 3, 4}.
Let S be the set of solutions with xi ≥ 0 for all i ∈ {1, 2, 3, 4}. Let A1 be the set of solutions with x1 ≥ 10 and
xi ≥ 0 for all i ∈ {1, 2, 3, 4}. Let A2 be the set of solutions with x2 ≥ 10 and xi ≥ 0 for all i ∈ {1, 2, 3, 4}.
Notice that the quantity that we want to count is equal to |S \ (A1 ∪ A2)|. If a solution in S fails any of
our conditions, it must be in either A1 or A2. We can count |S| using the stars-and-bars technique (since
we are essentially trying to partition 100 elements into 4 groups by placing 3 bars). So it follows that we
have |S| =

(
100+3

3

)
. We can do the same to count |A1| and |A2|. It follows from the Principle of Inclusion-

Exclusion that
|S \ (A1 ∪A2)| = |S| − (|A1|+ |A2|) + |A1 ∩A2|

=

(
100 + 3

3

)
−
((

90 + 3

3

)
+

(
90 + 3

3

))
−
(
80 + 3

3

)

Chapter 2

Probability

2.1 Review of Basic Probability Theory

2.1.1 Probability Space

A probability space (Ω,Pr) consists of a finite or countable set Ω called the sample space, and the
probability function Pr : Ω → R such that for all ω ∈ Ω, Pr(ω) ≥ 0 and

∑
ω∈Ω Pr(ω) = 1.

We call an element ω ∈ Ω a sample point, or outcome, or simple event. A sample space models some random
“experiment” where Ω contains all possible outcomes of the experiment, and Pr(ω) gives the probability that
we are going to get outcome ω. We always discuss probability in relation to a sample space.

If Pr(ω) = Pr(ω′) for all ω, ω′ ∈ Ω, we say that the probability is uniform over Ω.

For a set of events A ⊆ Ω, we define the probability of A to be the sum of the probability of each event in A:

Pr(A) =
∑
ω∈A

Pr(ω).

It is easy to see that for any two events A and B,

Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩B).

From this, we can derive our first probability bound.

Theorem 2.1 (Union Bound). Let A and B be two events.

Pr(A ∪B) ≤ Pr(A) + Pr(B)

2.1.2 Conditional Probability

Definition 2.2 (Conditional Probability). The probability of A conditional on B is defined as

Pr(A | B) =
Pr(A ∩B)

Pr(B)

The conditional probability Pr(A | B) is only defined when Pr(B) > 0.

Theorem 2.3 (Bayes’ rule).

Pr(A | B) =
Pr(B | A) · Pr(A)

Pr(B)

Theorem 2.4 (Law of Total Probability).

Pr(A) =
∑
n

Pr(A | Bn) · Pr(Bn)

23

24 CHAPTER 2. PROBABILITY

Definition 2.5 (Independence). Two events A and B are independent if

Pr(A ∩B) = Pr(A) · Pr(B)

If Pr(B) > 0, this implies that Pr(A | B) = Pr(A). More generally, events A1, . . . , Ak are mutually
independent if

Pr

(
k⋂

i=1

Ak

)
=

k∏
i=1

Pr(Ai)

2.1.3 Random Variable and Their Expectations

Definition 2.6 (Random Variable). Given a probability space (Ω,Pr), a random variable X is a function
X : Ω → R. Suppose that the range of X is X . The probability distribution of X is the function p : X → [0, 1]
such that

p(x) = Pr(X = x).

Definition 2.7 (Expectation). The expected value or expectation of a random variable X is defined as

E[X] =
∑
ω∈Ω

X(ω) · Pr(ω) =
∑
x∈X

xp(x).

The expectation is linear. That is, for r.vs X1, . . . , Xk defined on the same probability space,

E[X1 + · · ·+Xk] = E[X1] + · · ·+ E[Xk].

Definition 2.8 (Conditional Expectation). The conditional expectation of X with respect to event A is
defined as

E[X | A] =
∑
x∈X

x · Pr(X = x | A)

where X is the set of values taken by X.

Similarly, we have the following result

Theorem 2.9 (Law of Total Expectation).

E[E[X | Y]] = E[X].

Definition 2.10 (Variance). Given a r.v. X, the variance of X is defined as

Var(X) = E[(X − E[X])2]

Alternatively, from linearity of expectation,

Var(X) = E[(X − E[X])2]

= E[X2 − 2X E[X] + E[X]2]

= E[X2]− 2E[X]E[X] + E[X]2

= E[X2]− E[X]2

Theorem 2.11 (Law of Total Variance). Let X and Y be two r.vs and assume that the variance of X exists,
then,

Var(X) = E[Var(X | Y)] + Var(E[X | Y])

2.2. CONCENTRATION INEQUALITIES 25

Definition 2.12 (Covariance). The covariance of two random variables X and Y is

Cov(X,Y) = E[(X − E[X]) · (Y − E[Y])].

If the covariance of two r.vs is 0, we say they are uncorrelated.

Again, using linearity of expectation, we can derive the alternative expression:

Cov(X,Y) = E[XY]− E[X]E[Y]

The variance is not linear, but it does have the following properties:

Var(X + a) = Var(X)

and
Var(aX) = a2Var(X).

We can compute the variance of the sum of two r.vs as follows

Var(X + Y) = Cov(X + Y, X + Y)

= Cov(X,X) + Cov(X,Y) + Cov(Y,X) + Cov(Y, Y)

= Var(X) + Var(Y) + 2Cov(X,Y)

This derivation uses the following properties of covariance:

Cov(X,X) = Var(X) Cov(X,Y) = Cov(Y,X) Cov(aX, bY) = abCov(X,Y)

and
Cov(aX + bY, cW + dV) = acCov(X,W) + adCov(X,V) + bcCov(Y,W) + bdCov(Y, V).

2.2 Concentration Inequalities

The intuition behind all concentration inequalities is similar: we expect the behavior of a r.v. often to be
not too far off from its expected behavior.

Theorem 2.13 (Markov’s Inequality). Let X be a non-negative random variable. Then, for a > 0,

Pr(X ≥ a) ≤ E[X]

a

Proof. Let X be continuous with probability density p. The discrete case is analogous. Then,

E[X] =

∫ ∞

0

xp(x)dx =

∫ a

0

xp(x)dx+

∫ ∞

a

xp(x)dx

≥
∫ ∞

a

xp(x)dx

≥ a

∫ ∞

a

p(x)dx

= aPr(x ≥ a)

26 CHAPTER 2. PROBABILITY

Corollary 2.14. Pr(X ≥ bE[X]) ≤ 1

b

Theorem 2.15 (Chebyshev’s Inequality). Let X be a random variable with bounded variance. Then for
c > 0,

Pr(|X − E[X]| ≥ c) ≤ Var(X)

c2
.

Proof. We note that
Pr(|X − E[X]| ≥ c) = Pr(|X − E[X]|2 ≥ c2).

Define r.v. Y = |X − E[X]|2. Then, Y is clearly non-negative and E[Y] = Var(X). By Markov’s inequality,

Pr(|X − E[X]| ≥ c) = Pr(Y ≥ c2) ≤ E[Y]

c2
=

Var(X)

c2
.

Theorem 2.16 (Law of Large Numbers). Let X1, . . . , Xn be independent samples of a random variable X.
Then,

Pr

(∣∣∣∣X1 + . . .+Xn

n
− E[X]

∣∣∣∣ ≥ ϵ

)
≤ Var(X)

nϵ2
.

Proof. By Chebyshev,

Pr

(∣∣∣∣X1 + . . .+Xn

n
− E[X]

∣∣∣∣ ≥ ϵ

)
≤ Var

(
X1+...+Xn

n

)
ϵ

=
1

n2ϵ2
Var(X1 + . . .+Xn)

Because X1, . . . , Xn are independent,

Pr

(∣∣∣∣X1 + . . .+Xn

n
− E[X]

∣∣∣∣ ≥ ϵ

)
≥ 1

n2ϵ2
Var(X1 + . . .+Xn)

=
1

n2ϵ2
(nVar(X))

=
Var(X)

nϵ2
.

This is sometimes called the weak law of large numbers (WLLN). The strong law of large number states that

Pr

(
lim
n→∞

X1 + . . .+Xn

n
= E[X]

)
= 1.

However, we will focus on the weak law since it leads to other results related to tail bounds. We can use tail
bounds to analyze typical behaviors of random variables. There are some very counterintuitive properties of
high-dimensional space. We will prove some results about high-dimensional space by treating points in the
space as random variables and apply the concentration inequalities.

Theorem 2.17. Let r be a positive, even integer, then

Pr(|X| ≥ a) ≤ E[Xr]/ar

2.2. CONCENTRATION INEQUALITIES 27

Proof. direct application of Markov’s inequality.

Let xi = (yi − zi)
2 be a random variable with bounded variance. By LLN,

Pr

(∣∣∣∣x1 + . . .+ xd

d
− E[X]

∣∣∣∣ ≥ ϵ

)
≤ Var(X)

dϵ2
.

We can prove stronger bounds using stronger results. To this end, we consider the master tail bounds
theorem. It is called so because it allows us to prove other tail bounds are related results more easily such
as Chernoff bounds.

Theorem 2.18 (Master Tail Bounds Theorem). Let X = X1 + . . . + Xn where X1, . . . , Xn are mutually
independent r.vs with 0 mean and variance at most σ2. Let 0 ≤ a ≤

√
2nσ2. Assume that |E[Xs

i]| ≤ σ2s!

for s = 3, 4, . . . ,
⌊

a2

4nσ2

⌋
. Then,

Pr (|X| ≥ a) ≤ 3e
−a2

12nσ2 .

Proof. We will only sketch a proof here.

Apply Markov to xr for large and even r (we require r to be even so that xr ≥ 0). Then, by Markov

Pr(|X| ≥ a) = Pr(xr ≥ ar) ≤ E[Xr]

ar

We can then compute E[Xr] by expanding out X = X1 + . . .+Xn and using properties of expectation and
the technical assumptions introduced in the theorem. In the end, we will find that E[Xr] is bounded by

3e
−a2

12nσ2 .

An even more useful tail bound inequality is the Chernoff bound.

Theorem 2.19 (Chernoff Bounds). Let X = X1 + . . . +Xn where Xi ∼ Bernoulli and is i.i.d. Then, for
any ϵ ∈ [0, 1]

Pr(|X − E[X]| ≥ ϵE[X]) ≤ 3e−ϵ2 E[X]/12.

There are other variants of the Chernoff bounds. The bound as stated above can be proven directly from the
Master Tail Bounds Theorem, whereas the more standard proof using moment-generating functions gives a
better constant in the exponent.

Proof. Note that p = E[Xi] for all i. This is the same parameter p in the Bernoulli distribution from which
Xi is sampled from. Let Yi = Xi − E[Xi]. Then, E[Yi] = 0 and E[Y 2

i] = Var(Xi) = p(1− p).

When s ≥ 3,
|E[Y s

i]| = |E[(Xi − E[Xi])
s]| = |p(1− p)s + (1− p)(−p)s|

Hence, it follows that |E[Y s
i]| ≤ p for all s ≥ 2. We verify the assumption for the Master Tail Bounds

Theorem

• the variance Var(Yi) is bounded by σ2 = p;

• setting a = ϵnp, we have a <
√
2nσ2;

• setting s = ϵ2np/4, we have s ≥ a2/(4nσ2).

28 CHAPTER 2. PROBABILITY

Then, by the Master Tail Bounds Theorem,

Pr(|X − E[X]| ≥ ϵE[X]) = Pr(|Y1 + . . .+ Yn| ≥ a)

≤ 3e−a2/(12nσ2)

= 3e−
c2n2p2

12np

= 3e−E[X]ϵ2/12.

2.3 Moment Generating Functions

Definition 2.20 (Moment Generating Function). For a random variable X, the moment-generating
function is

MX(λ) = E[eλX].

The rth derivative of MX(λ) is called the rth moment of X.

drM

dλr
(0) = E[Xr].

The first moment is the mean; the second central moment is the variance; the third normalized central
moment is the skewness.

Having introduced the necessary definition, we are ready to state the Chernoff bound and sketch a proof.

Theorem 2.21. Let X1, . . . , Xn be n independent Bernoulli random variables. Let S = X1 + . . .+Xn, and
let µ = E[S] = np. Then, for any δ > 0,

Pr(s > (1 + δ)µ) ≤
(

eδ

(1 + δ)(1+δ)

)µ

.

Proof. For λ > 0, eλx is monotone, so

Pr(S > (1 + δ)µ) = Pr(eλS > eλ(1+δ)µ).

By Markov’s inequality,

Pr(eλS > eλ(1+δ)µ) ≤ E[eλS]
eλ(1+δ)µ

.

We consider the expansion of E[eλS]. Because the Xi’s are independent,

E[eλS] = E
[
eλ

∑n
i=1 Xi

]
= E

[
n∏

i=1

eλXi

]
=

n∏
i=1

E[eλXi].

2.3. MOMENT GENERATING FUNCTIONS 29

Since Xi is Bernoulli, the r.v. eλXi is equal to eλ with probability p and 1 with probability 1− p. Hence,

E[eλS] =
n∏

i=1

E[eλXi]

=

n∏
i=1

(eλp+ (1− p))

=

n∏
i=1

(p(eλ − 1) + 1)

<

n∏
i=1

ep(e
λ−1).

The last inequality holds because 1 + x < ex for all x > 0. So far, we have shown that

Pr(S > (1 + δ)µ) ≤ E[eλS]
eλ(1+δ)µ

and E[eλS] <
n∏

i=1

ep(e
λ−1).

It follows that

Pr(S > (1 + δ)µ) ≤ E[eλS]
eλ(1+δ)µ

< e−λ(1+δ)µ ·
n∏

i=1

ep(e
λ−1)

and the theorem follows by setting λ = ln(δ + 1) > 0.

Intuitively, the Chernoff bound tells us that if X is the sum of many i.i.d. Bernoulli trials (coin flips), it is
extremely unlikely that X will deviate from even a little bit from its expected value.

Bibliography

Master Tail Bounds theorem and the proof of Chernoff bound using it are results from the book Foundations
of Data Science, [2].

Part II

Information and Compression

31

Chapter 3

Measure of Information and Complexity

The field of information theory was first formulated by Claude Shannon in 1948. It aims to quantify how
different an observed distribution of states is from an expected distribution. For example, a relevant case
where information theory could be helpful in bioinformatics is when we want to quantify how different the
amino acids are distributed in a biological system compared to a stochastic process.

3.1 Entropy

Suppose we have a set of possible events whose probabilities of occurrence are p1, p2, · · · , pn. These proba-
bilities are known but that is all we know concerning which event will occur. Can we find a measure of how
much “choice” is involved in the selection of the event or of how uncertain we are of the outcome? If there
is such a measure, say H(p1, · · · , pn), it is reasonable to require of it the following properties:

1. H should be continuous in the pi

2. If all the pi are equal, pi = 1/n, then H should be a monotonic increasing function of n. With equally
likely events there is more choice, or uncertainty, when there are more possible events.

3. If a choice be broken down into two successive choices, the original H should be the weighted sum of
the individual values of H.

Entropy should be a measure of randomness, uncertainty, or complexity of a random source. It is usually
considered in relation to some random variable that models a data source such as letters in a DNA string.

Definition 3.1 (Self-Information). Given an event ω with probability p, the information content or self-
information is

I(ω) = − log Pr(ω) = − log p.

For a random variable X with probability mass function pX , the self-information of the event X = x is

IX(x) = − log pX(x) = log

(
1

pX(x)

)
.

Theorem 3.2 (Shannon, 1948). The only H satisfying the three assumptions above is one of the form

H = −K

n∑
i=1

pi log pi

where K is some positive constant.

Alternatively, it can be written as an expectation.

Definition 3.3 (Entropy). Let X be a random variable with range X and distribution p : X → [0, 1] such
that p(x) = Pr(X = x). Then,

H(X) = −
∑
xi∈X

Pr(xi) log (Pr(xi)) = E[IX(X)] = E
xi∈X

(− log Pr(xi)).

33

34 CHAPTER 3. MEASURE OF INFORMATION AND COMPLEXITY

It follows from the definition of entropy H that,

• H = 0 if and only if all pi, except one are zero, and the one remaining has p = 1. This is because if
there is no uncertainty, the entropy is zero.

• For a given n, H is maximal if all pi are equal. This means that the outcomes are uniformly distributed.
In this case, H = log n.

As an example, consider the entropy of equiprobable nucleotides where pA = pC = pG = pT = 0.25.

Hnuc
max = −

∑
i∈{A,C,G,T}

pi log2 pi = −4× 1

4
log2

1

4
= 2

We can define entropy of multiple random variables similarly.

Definition 3.4 (Entropy (multiple r.v.)). Let X1, . . . , Xm be m random variables. Entropy is defined by
their joint probability distribution pX1,...,Xm as

H(X1, . . . , Xm) = −
∑

x1∈X1

· · ·
∑

xm∈Xm

pX1,...,Xm
(x1, . . . , xm) · log(pX1,...,Xm

(x1, . . . , xm)).

We define conditional entropy based on the conditional probability of the random variables.

H(X | Y) = −
∑

(x,y)∈X×Y

pX,Y (x, y) log

(
pX,Y (x, y)

pY (y)

)
where pX,Y (x, y) = Pr[X = x, Y = y] and pY (y) = Pr[Y = y].

3.2 Entropy of Biological Sequences

Let Σ be a finite alphabet. In the context of biological sequence, |Σ| = 4 for DNA and RNA sequences and
20 for amino acid sequences. Then, from the previous section, we know that the entropy (uncertainty) is

H = −
|Σ|∑
i=1

pi log(pi)

bits per symbol where pi is the probability that the symbol Σ[i] occurs.

Now, if we fix our attention to a specific position j in the sequence, we can calculate the entropy at the given
position as

H(j) = −
∑
i∈Σ

f(i, j) log(f(i, j))

where f(i, j) is the frequency that the symbol Σ[i] appears at the jth position in aligned sequences.

We define the information at position j of an alignment to be the decrease in uncertainty when the site is
aligned.

Rseq(j) = H −H(j).

Then, the information of the entire sequence can be calculated by summing over the site-specific information
over all sites of a sequence.

Rseq =
∑
j

Rseq(j).

3.2. ENTROPY OF BIOLOGICAL SEQUENCES 35

3.2.1 Sequence Logo

The site-specific information content can be used to create a plot known as the sequence logo. Sequence
logos plot features of aligned sets of each sequence. The horizontal column represents the positions in an
alignment, and vertical corresponds to the information for each residue observed at that position, represented
using letter corresponding to the amino acid and height proportional to the observed frequency in that
position. If a residue is conserved, we should see one or few specific residues dominate that position.

Figure 3.1: Sequence logo showing that the start codon ATG is highly conserved.

3.2.2 Kullback-Leibler Divergence

Kullback and Leibler used Shannon’s concept of entropy to compute a measure of relative entropy, thus
allowing the comparison of the complexity between two sequences. KL divergence uses the frequencies of
symbols or words (i.e. k-mers) and takes the sum of their entropies.

Definition 3.5 (Kullback-Leibler Divergence). Let P and Q be two discrete distributions defined on the
same sample space, say X . The KL divergence or relative entropy from Q to P is defined as

DKL(P∥Q) =
∑
x∈X

P (x) log
P (x)

Q(x)
.

We often model the distribution using the observed frequency of each letter or word. As an example, let’s
compute the empirical KL divergence of between sequence S = ATGTGTG and T = CATGTG. First, we compute
the frequency of each base in each sequence.

XXXXXXXXXXSequence
Base

A C G T

S 1 0 3 3
T 1 1 2 2

XXXXXXXXXXSequence
Base

A C G T

S 0.14 0 0.43 0.43
T 0.17 0.17 0.33 0.33

36 CHAPTER 3. MEASURE OF INFORMATION AND COMPLEXITY

Then, we can calculate the KL divergence as follows.

DKL(S∥T) =
∑

b∈{A,C,G,T}

px(b) log

(
px(b)

py(b)

)

= 0.14 · log
(
0.14

0.17

)
+ 0 + 0.43 · log

(
0.43

0.33

)
+ 0.43 · log

(
0.43

0.33

)
= 0.24.

3.3 Kolmogorov Complexity

We now shift our focus to other measures of complexity and will come back to entropy and information theory
later when we discuss encoding methods for compression. Kolmogorov complexity is an abstract measure
of incompressibility. In layman’s term, Kolmogorov complexity of a string is the length of a program that
generates this string. It uses complexity and computability as a proxy to measuring complexity of strings.

Consider
x = 0101010101010101

and
y = 110001010110010

Intuitively, y appears to have more information than x, which is simply repeated 01. The idea here is that
the more we can compress a string, the less information it contains.

More formally, we define the Kolmogorov complexity of a string as follows.

Definition 3.6 (Shortest Description). If x ∈ {0, 1}∗, then the shortest description x, denoted d(x) is
the lexicographically minimal string ⟨M,w⟩ such that M(w) is an algorithm that halts with only x as output.

Definition 3.7 (Kolmogorov Complexity). The Kolmogorov complexity of x, denoted K(x) is |d(x)|.

Immediately from the definition, we have the following results.

Theorem 3.8. There is a constant c such that for all x ∈ {0, 1}∗,

K(x) ≤ |x|+ c

The amount of information in x is not much more than |x|. The Kolmogorov complexity of a string is at
most a fixed constant more than its length.

Proof. Define M

M on input w, halts. On any string x, M(x) halts with x on its tape.

K(x) ≤ |⟨M,x⟩| ≤ 2|⟨M⟩|+ |x|+ 1 ≤ |x|+ c

So we can let c be the length of the algorithm that computes the identity function.

Theorem 3.9. There exists a constant c such that for all x ∈ {0, 1}∗,

K(xx) ≤ K(x) + c

3.3. KOLMOGOROV COMPLEXITY 37

This says if a string is repetitive, such string has no more information than x.

Proof. Consider the algorithm M defined as follows

M = “on input ⟨N,w⟩, where N is an algorithm and w is a string
1. Run N on w until it halts and produces an output string s

2. Output the string ss ”

Let ⟨M,w⟩ be the shortest description of x, then ⟨N, ⟨M,w⟩⟩ is a description of xx.

K(xx) ≤ |⟨N, ⟨M,w⟩⟩| ≤ 2|⟨N⟩|+K(x) + 1 ≤ K(x) + c

So letting c = 2|⟨N⟩|+ 1, the theorem holds.

Corollary 3.10. There is a constant s such that for all n ≥ 2 and x ∈ {0, 1}∗,

K(xn) ≤ K(x) + c log n

In particular, K((01)n) ∈ O(log n).

Proof. Let
N = “on input ⟨n, ⟨M,w⟩⟩

run M(w) and print x for n times”

If ⟨M,w⟩ is a shortest description of x, then,

K(xn) ≤ K(⟨N, ⟨n, ⟨M,w⟩⟩⟩)
≤ 2|⟨N⟩|+ 2 ⌈log n⌉+ |⟨M,w⟩|+ 2

= K(x) +O(log n)

3.3.1 Invariance Theorem

The Kolmogorov complexity of a string is independent of the model (as long as we restrict ourselves to classical
computational models). The model does not matter. It does not matter what language we use to implement
the algorithm considered in the definition of Kolmogorov complexity. If we use another programming lanuage,
we will not get significantly shorter description. Intuitively, we can always write a interpreter to translate
from one language to another, and the size of the compiler is constant.

Theorem 3.11 (Invariance Theorem). For every interpreter p, there is a constant c such that for all
x ∈ {0, 1}∗,

K(x) ≤ Kp(x) + c

This theorem implies that we only change the Kolmogorov complexity of x by a constant c by using a different
programming language.

We omit the proof of the invariance theorem, but for those who are interested, the proof can usually be
found in any computation complexity text.

However, Kolmogorov complexity is less useful in practice due to its incomputability. That is, the Kol-
mogorov complexity of a given string cannot be computed under a reasonable model of computation (e.g.
Turing machine). This is why we will consider another more practical and efficiently computable measure of
complexity.

38 CHAPTER 3. MEASURE OF INFORMATION AND COMPLEXITY

3.4 Lempel-Ziv Complexity

Definition 3.12 (Reproducibility). Let S,Q,R be sequences defined over an alphabet Σ. An extension
R = SQ of S is reproducible from S, denoted S → R, if there exists an integer p < |S| such that
Q[k] = R[p+ k − 1] for k = 1, . . . , |Q|.

Consider the sequences AACGT and AACGTCGTCG. The second sequence is reproducible from the first one with
p = 3. In other words, R is reproducible from S if R can be obtained by copying elements from the pth
position in S to the end of S. As each copy extends the length of the new sequence beyond |S|, the number
of elements copied can be greater than |S| − p + 1. Thus, this is a simple copying procedure of S starting
from position p, which can carry over to the added part, Q.

Definition 3.13 (Producibility). A sequence S is producible from its prefix S[1 . . . j], denoted S[1, j] ⇒ S,
if S[1 . . . j] → S[1 . . . |S| − 1] (S[1 . . . |S| − 1] is reproducible from S[1 . . . j]).

For example, AACGT A C can be produced from its own prefix with p = 2. Note the |S| − 1 in the definition
of production. Production allows for an extra symbol (that doesn’t have to be part of the prefix) at the end
of the copying process which is not permitted in reproduction. We call this a novel letter production.
Therefore, an extension which is reproducible is always producible but the reverse may not always be true.
As an example, note that AACGT AC C is producible from its own prefix AACGT even though the last C is not
obtainable from the prefix AACGT starting at p = 2.

Any sequence S can be constructed using a production process where at the ith step, S[1 . . . hi−1] ⇒
S[1 . . . hi]; for the base case, ϵ = S[1 . . . 0] ⇒ S[1 . . . 1]. Consider an m-step production of the string S. We
define the history of S, H(S) as follows

H(S) = S[1 . . . h1] · S[h1 + 1 . . . h2] · · ·S[hm−1 + 1 . . . hm].

The ith group of the history Hi(S) = S[hi−1 + 1, hi] is called the ith component of H(S).

For example, let S = AACGTACC. Below are all valid production histories of S.

A · A · C · G · T · A · C · C; A · AC · G · T · A · C; A · AC · G · T · ACC.

In the first production history, every letter is newly generated at each step. In the second production history,
the A in the second component (AC) is copied from the first component. In the last production history, both
the second and the last component contains letters copied from a prefix (A for the second component and AC
for the last component).

As we mentioned earlier, every reproducible string is producible but not vice versa.

Definition 3.14. Let S be a string and H(S) be its history. If S[1 . . . hi] is not reproducible from S[1 . . . hi−1],
we call Hi(S) exhaustive. A history is called exhaustive if each of its components, except maybe the last
one, is exhaustive.

In other words, for Hi(S) to be exhaustive, the ith step of the production must be a production only and not
a reproduction. That is, S[1 . . . hi] cannot be constructed using the only copying process and the last letter
is introduced using the novel letter production rule. Again, consider S = AACGTACC and its three production
histories.

An important result from Lempel and Ziv’s 1976 paper is that every string has a unique exhaustive history.

Lemma 3.15 (Lempel and Ziv, 1976). Every string S has a unique exhaustive history E(S).

3.4. LEMPEL-ZIV COMPLEXITY 39

A · A · C · G · T · A · C · C; A · AC · G · T · A · C; A · AC · G · T · ACC.

Figure 3.2: The last history is exhaustive because each component has a letter introduced using the novel
letter production. The curves on the top of each history represents letters introduced using the copying
process as well the source letter. The arrow at the bottom indicates letters introduced using novel letter
production.

3.4.1 Complexity of Production history

Definition 3.16 (Production History Complexity). Let S be a string with some production history H(S).
The production history complexity of S with respect to H(S) is the number of components in the history
H(S) of S, denoted cH(S).

Definition 3.17 (LZ Complexity). The Lempel-Ziv (LZ) complexity of S is defined to be

c(S) = min
H∈HS

{cH(S)}

where HS is the set of all valid production histories of S.

Having defined the relevant terminology, we now present perhaps the most celebrated results in the paper
by Lempel and Ziv.

Theorem 3.18 (Lempel and Ziv, 1976). c(S) = cE(S) where cE(S) is the number of components in the
exhaustive history E(S) of S.

This result is intuitive in view of the innovative nature of an exhaustive component. For, in any given state
of a production process, the next production step is longest when the resulting component is exhaustive.

Proof. Let HS = {h1, h2, . . . , hm} be the set of right indices of the components in some production history
H(S) where m = cH(S) and 1 = h1 < h2 < · · · < hm = |S|. HS defines a partition of S. Similar,
let ES = {e1, e2, . . . , ek} be defined similarly for the exhaustive history E(S). Similarly, k = cE(S) and
1 = e1 < e2 < · · · < ek = |S|.
Let η be a mapping from ES to HS , defined by

η(ei) = max{h ∈ HS | h ≤ ei}, i = 1, 2, . . . , k.

Clearly, η(e1) = h1 = 1 and η(ek) = hm = |S|. If k > 2, consider any i such that 2 ≤ i ≤ k − 1 and let
η(ei) = hj for some j. By definition, j < m and ei < hj+1. Since hj+1 is reached in a single production step
from hj and ei is the furthest position reachable in one step from ei−1, it follows that ei−1 < hj .

Hence, for each i such that 2 ≤ i ≤ k− 1, we have ei−1 < η(ei) ≤ ei so η(ei) is indeed a one-to-one mapping
from ES onto some subset of HS . Since E(S) is unique and H(S) is chosen to be an arbitrary production
history, |E(S)| ≤ |H(S)| for all production history H(S).

We also present an upper bound on the LZ-complexity of any sequence with an alphabet size |Σ| = σ.

Theorem 3.19. For every S ∈ Σn where |Σ| = σ,

c(S) <
n

(1− ϵn) logσ(n)

40 CHAPTER 3. MEASURE OF INFORMATION AND COMPLEXITY

where
ϵn = 2 · 1 + logσ logσ(σn)

logσ n
.

We omit the proof of this theorem since it is slightly too technical, but the idea behind the proof is as follows.

Proof sketch. The idea is to first bound the maximum possible number of distinct words N that a sequence of
length n over the alphabet Σ can be parsed (partitioned) into. Consider the sequence formed by all distinct
words of length one, followed by all distinct words of length two, up to all distinct words of length k. The
length of such sequence is nk =

∑k
i=0 iσ

i, and the number of distinct words Nk is equal to
∑k

i=0 a
i. We can

simplify these two summations using geometric series. This gives us

c(S) ≤ Nk + 1 <
nk

k − 1
.

Now consider strings of arbitrary length n. Any positive integer n can be expressed as n = nk+∆k for some
k and 0 ≤ ∆k < (k + 1)σk+1. The increase in the number of distinct words due to the increase in length by
∆k is at most ∆k/(k + 1), giving us for any string of arbitrary length n,

c(S) <
nk

k − 1
+

∆k

k + 1
<

nk +∆k

k − 1
=

n

k − 1
.

Further, for each n,
k < logσ(n) < k + 1 + 2 logσ(k + 1).

And we get k − 1 > logσ(n) − ϵn logσ(n) from subtracting 2 + 2 logσ(k + 1) from both sides of the above
inequality logσ(n) < k + 1 + 2 logσ(k + 1).

3.4.2 Additional Properties of LZ Complexity

In this subsection, we will discuss some additional properties of LZ complexity. We will present results
without proof, but we encourage interested readers to read Lempel and Ziv’s original paper for a more
rigorous presentation of the results with proofs.

Theorem 3.20 (Almost all sequences of sufficiently large length are complex). For every positive ϵ, and
alphabet size |Σ| = σ,

lim
n→∞

Pr

(
c(S) <

n(1− ϵ)

logσ n
| |S| = n

)
= 0.

Theorem 3.21 (Subadditivity). c(QS) ≤ c(Q) + c(S).

Proof. Let E(Q) and E(S) be exhaustive histories of Q and E, respectively. Then, H(QS) = E(Q) · E(S)
is indeed a history of QS. Then, by Theorem 3.18,

c(QS) ≤ cH(QS) = cE(Q) + cE(S) = c(Q) + c(S).

This property is very useful because it allows us to easily define a distance function based on the difference
in LZ complexity of two given sequences. We will come back to this idea in the Part IV when we discuss
alignment-free sequence comparisons. For a sneak peek, consider the following function.

d(S,Q) =
c(SQ)−min{c(S), c(Q)}

max{c(S), c(Q)} .

3.4. LEMPEL-ZIV COMPLEXITY 41

It can be shown that d is a distance function. That is, it satisfies (1) identity; (2) symmetry; and (3) triangle
inequality. It also turns out to be a good measure of evolutionary distance for genomic sequences and can
be used to construct phylogenetic trees.

In a sense, LZ complexity is a more concrete notion of complexity compared to say Kolmogorov complexity.
Kolmogorov complexity does not provide an explicit construction of the minimum-length description and
the Kolmogorov complexity itself may not even be computable, whereas LZ complexity is not noly easily
computable, but also has a more constructive definition. The Lempel-Ziv complexity of a string can be
computed in O(n) time using the following algorithm. Without loss of generality, suppose that the input to
the following procedure is a binary string.

LZ-Complexity(S)
1 p, u, v = 0, 1, 1
2 v -max = v
3 cS = 1
4 while u+ v ≤ |S|
5 if S[p+ w] == S[u+ v]
6 v = v + 1
7 else
8 v -max = max{v, v -max}
9 p = p+ 1

10 if i == u
11 cS = cS + 1
12 p, u, v = 0, u+ v -max , 1
13 v -max = v
14 else v = 1
15 if v ̸= 1
16 cS = cS + 1
17 return cS

The algorithm keeps track of three pointers, p, u, and v. p is the p-pointer in the definition of reproducibility
– the starting position of a reproduction. u is the length of the current prefix that is used to reproduce new
letters in the current component. v is the length of the current component and v -max is the final length
of the current component. We iteratively check each possible positions for p to find the max length of each
component. After the max component is found, we reset p and check the next component. Whenever we
finish a new component, we update cS .

This greedy algorithm correctly computes the LZ complexity in linear time because u + v is monotonically
increasing by at least one each iteration so the loop runs exactly |S| iterations.

Bibliography

The desired property of an entropy measure is taken directly from Shannon’s 1948 paper [23]. Kullback-
Leibler divergence is introduced in the paper [16]. Kolmogorov complexity is often introduced in an in-
troductory course on computation complexity theory. A good reference is Introduction to the Theory of
Computation by Sipser [24]. Lempel-Ziv complexity was introduced in the 1967 paper by Lempel and Ziv
[17]. It is widely used in many compression algorithms.

Chapter 4

Entropy Coding

In this chapter, we will use the concepts discussed in the previous chapter to come up with concise encoding
of data. This is the foundation of many compression algorithms and will also help us with designing and
analyzing succinct data structures, which we will discuss in more details in the next part.

We will focus on the problem of finding the shortest code for elements from a (potentially large) universe.

Problem 4.1 (Shortest Code Word). Let U be a universe. Find an encoding f that outputs the shortest
code that uniquely identifies every element in U . In other words, f is injective.

4.1 Worst-Case Entropy

Definition 4.2 (Worst-Case Entropy). Let U be our universe. We define the worst-case entropy of U as

Hwc(U) = log2 |U |. (4.1)

Now suppose we were to come up with a coding scheme that uniquely identify each element in the universe
U . If we require the codes to all have the same length, thhen the length of the code is at least log2 |U | and
the theoretical optimum is ⌈log2 |U |⌉. If codes are allowed to have various lengths, the length of the longest
code must be at least log2 |U |. For variable-length encoding, we can modify Problem 4.1 so that it seeks to
minimize the expected code length. The expected code length is defined as follows.

ℓ =
∑
u∈U

Pr(u) · ℓ(u).

Let’s look at some examples of worst-case entropy.

Example 4.3. A coin has worst-case entropy of 1 bit because the only two possible states are head and tail.
Meanwhile, a die has worst-case entropy of log2 6 ≤ 3 bits because there are 6 possible states.

If our universe U contains all length-n strings over the alphabet Σ where |Σ| = σ, then

Hwc(U) = log2 σ
n = n log2 σ.

Equation 4.1 is called the worst-case entropy because it is equal to the Shannon entropy when all outcomes
in the sample space are equally probable. Recall that the Shannon entropy of a random variable X over the
sample space Ω is −∑ω∈Ω Pr(ω) log(Pr(ω)). When every outcome is equally probable,

H(X) =
∑
ω∈Ω

1

|Ω| log2 |Ω| = log2 |Ω| = Hwc(Ω).

43

44 CHAPTER 4. ENTROPY CODING

4.2 Zero-Order Empirical Entropy

In practice, we often do not have knowledge of the random variable that emits the data of which we want to
measure the entropy. In this case, we define a random variable that models a memoryless source, “trained”
by the frequency of occurrence of the observed (empirical) data.

Definition 4.4 (Zero-Order Empirical Entropy). Suppose we have a memoryless binary source that emits
a binary string B. We define the zero-order empirical entropy as

H0(B) = H(X) (4.2)

where X ∼ Bern(m/n). By definition of the Bernoulli distribution, if we let m be the number of 1’s and n
to be the length of B,

H0(B) = H(X) =
m

n
log2

n

m
+

n−m

n
log2

n

n−m
.

4.3 Symbol Codes

Having introduced the necessary definitions, we will know look at how to utilize the notion of entropy and
empirical entropy in designing and analyzing coding schemes.

Definition 4.5 (Symbol Code). A symbol code (variable-length code) is a function C : Σ → A∗ where Σ
is the source alphabet and A is the code alphabet. The output of C is called a codeword. The extension of
C is the function C∗ : Σ∗ → A∗ such that

∀n ≥ 0, ∀x1, . . . , xn ∈ Σ, C∗(x1 · · ·xn) = C(x1) · · ·C(xn).

Morse code is an example of a symbol code.

Example 4.6 (Morse Code). Morse code is a symbol code defined for the source alphabet {0, 1, . . . , 9} ∪
{A, B, . . . , Z} and code alphabet {•,−,⊔} where ⊔ represents a pause or empty space.

Let’s consider some other example.

Example 4.7. Let Σ = {a, g, c, t} and A = {0, 10, 110, 111}. Let C be defined as follows.

C(a) = 0 C(g) = 10 C(c) = 110 C(t) = 111.

So C∗(aacg) = C(a) · C(a) · C(c) · C(g) = 0011010.

Example 4.8 (An ambiguous code). Let C be defined as follows.

C(a) = 0 C(g) = 1 C(c) = 01 C(t) = 10.

However, notice that C∗(ag) = 01 but C∗(c) = 01 as well. Therefore, this code is ambiguous because 01 can
be interpreted in two different ways.

What exactly is it about our last example that made it ambiguous? The coding function itself is still injective,
but the sequence of codewords generated is not uniquely decodable.

Definition 4.9 (Unique Decodability). C is uniquely decodable if C∗ is surjective.

4.3. SYMBOL CODES 45

If we compare the last example with previous examples of uniquely decodable codes, we can notice that the
only property about the code appears to be that in the last example, some codeword is a prefix of other
codewords. For example, the codeword for a is a prefix of the codeword for c; and the codeword for b is a
prefix of the codeword for d. This makes it impossible to differentiate between ab and c or ba and d. On
the other hand, all the uniquely decodable codes that we have looked at so far share the same property that
no codeword is a prefix of another codeword. We call this type of codes prefix-free codes.

4.3.1 Prefix-Free Code and Huffman Coding

Definition 4.10 (Prefix-Free Code). C is a prefix-free code if no codeword is a prefix of another codeword.

Prefix-free codes are sometimes also referred to as prefix codes or instantaneous codes.

Proposition 4.11. If C is prefix-free, then C is uniquely decodable.

A simple way to construct a prefix code is to use Huffman’s greedy algorithm. Huffman coding is a prefix
code where more frequent source code has shorter codeword. Huffman’s algorithm utilizes a labeled binary
tree where the leaves are characters in the source alphabet. All left edges (edge between a parent and its
left child) are labeled 0 while all right edges are labeled 1. Each internal node is labeled with the sum of the
frequencies of the leaves in its subtree.

a:45 55

25 30

c:12 b:13 14 d:16

f:5 e:9

100
0 1

0 1

0 1 0 1

0 1

Figure 4.1: A Huffman tree for the alphabet {a, b, c, d, e, f} with frequency 45, 13, 12, 16, 9, 5, respectively.

The codeword for a given character in the source alphabet is the concatenation of labels on the root to leaf
path. For example, the codeword for f in the above example is 1100.

Decoding is also easy with a Huffman tree. We parse a code by starting from the root and reading code
characters while following the edge labels until we reach a leave, after which we start over and start processing
the next codeword. For example, given a code 001011101, we start processing by reading the first character
in the code, 0. We immediately encounters a leaf, giving us a 01011101. We repeat this process for the
next code character 0, resulting in a a 1011101. Next, start from 1 and continue to process code characters
until we reaches a leaf. In this case, we read three characters 101 and gets a a b 1101. Finally, start from
1 and repeat the same process, which gives us a a b e as our final result.

The construction of a Huffman tree uses a greedy strategy. We start from a set of disjoint nodes and join
root nodes (nodes with no parents) iteratively by their frequencies, starting from the nodes with the lowest
frequency, until we get a full binary tree.

46 CHAPTER 4. ENTROPY CODING

Huffman-Encode(S)
1 Q = Priority-Queue(S)
2 for i = 1 to |S| − 1
3 z = Create-Node()
4 z.left = Extract-Min(Q)
5 z.right = Extract-Min(Q)
6 z.freq = z.left .freq + z.right .freq
7 Insert(Q, z)
8 return Extract-Min(Q)

4.3.2 Kraft-McMillan Inequality

We have now seen a way to construct a prefix-free code, but what is the minimum possible length of the
codewords output by a prefix-free coding scheme? Kraft-McMillan inequality gives a necessary and sufficient
condition for the existence of a prefix-free code for a given set of codeword length.

Definition 4.12. A B-ary code is a code C : Σ → A∗ such that |A| = B ≥ 1.

We now state the theorem.

Theorem 4.13 (McMillan’s theorem). For any uniquely decodable B-ary code C,∑
x∈Σ

1

Bℓ(x)
≤ 1

where ℓ(x) = |C(x)|.

Theorem 4.14 (Kraft’s theorem). If ℓ : Σ → {0, 1, . . . , } satisfies∑
x∈Σ

1

Bℓ(x)
≤ 1

then there exists a B-ary uniquely decodable prefix-free code C such that |C(x)| = ℓ(x) for all x ∈ Σ.

These two theorems combined tell us that there is an instantaneous binary code with lengths ℓ1, . . . , ℓn such
that

∑n
i=1 1/Bℓi ≤ 1 if and only if there is a uniquely decodable code with these lengths.

Proof of McMillan’s Inequality. In the following proofs, we use n to denote the size of the source alphabet
|Σ|. Let C be a uniquely decodable B-ary code. Without loss of generality, let ℓ1 ≤ · · · ≤ ℓn be the lengths
of the codewords, sorted in non-decreasing order of their lengths. Note ℓn = maxi{ℓi}. Let

r =

n∑
i=1

1

Bℓi
. (4.3)

For any positive integer n,

rk =

(
n∑

i=1

1

Bℓi

)k

=
∑

xi1
,...,xik

∈Σ

1

Bℓi1
· · · 1

Bℓik
. (4.4)

4.3. SYMBOL CODES 47

The summation on the RHS is over all combinations of source alphabet symbols xi1 · · ·xik ∈ Σk. Define
j = ℓi1 + · · ·+ ℓik . Let Nj,k be the number of sequences of k codewords with total length j. Then, clearly,
since C is uniquely decodable (and thus is injective),

Nj,k =

∣∣∣∣∣
{
xi1 · · ·xik ∈ Σk :

k∑
t=1

ℓit = j

}∣∣∣∣∣ ≤ Bj . (4.5)

We can then rewrite Equation 4.4 as

rk =
∑

xi1 ,...,xik
∈Σ

1

B
∑k

t=1 ℓit
=

nℓn∑
j=1

Nj,k

2j
(4.6)

by splitting the summation based on all possible j =
∑k

t=1 ℓit . By Inequality 4.5,

rk =

kℓn∑
j=1

Nj,k

2j
≤

kℓn∑
j=1

2j

2j
= kℓn. (4.7)

This implies that r ≤ 1 because otherwise if r > 1, rk will dominate over kℓn, creating a contradiction to
the inequality rk ≤ kℓn. Therefore, r =

∑n
i=1

1
Bℓi

≤ 1 so the McMillan inequality holds.

We also sketch an algorithmic proof of Kraft’s theorem. We will show how to construct the prefix-free code
satisfying the properties of the consequence of Kraft’s theorem and prove that the algorithm is correct.

Proof of Kraft’s Theorem. Assume that Kraft’s inequality holds:

n∑
i=1

1

Bℓi
≤ 1. (4.8)

We would like to construct a prefix-free code C with codewords of lengths exactly ℓ1, . . . , ℓn. Without
loss of generality, order the lengths so that ℓ1 ≤ · · · ≤ ℓn. Like we did when constructing Huffman code,
we consider a binary tree that represents the code. The codewords correspond to leaves of the tree and
each branch corresponds to adding another code symbol. See Figure 4.1 for an example. The tree is full,
meaning that each node has either 0 or 2 children. We can extend the tree into a perfect binary tree (every
internal node has exactly two children) by extending the tree to the depth of the longest codeword. After
the extension, each codeword that was previously a leaf either remains a leaf or becomes an internal node.
If a codeword becomes an internal node, let the subtree rooted at this internal node represent the codeword.
See Figure 4.2 to see an example coding tree and its extension. More generally, for B-ary code, the tree is
B-ary, but for the sake of our argument, we assume without loss generality that B = 2.

The shorter the codeword, the larger the subtree in the extended tree. For a binary code, the fraction of
the leaves belonging to a codeword of length ℓ in the extended coding tree is 1/2ℓ. For example, in the
extended tree shown in Figure 4.2, the each codeword of length 3 takes up 1 out of the 8 leaves, whereas
each codeword of length 2 takes up 2 out of 8 leaves because the subtree for codewords of length 2 is rooted
at the second to last level.

The idea is to create a one-to-one mapping between the codewords in the extended tree and the corresponding
codeword lengths. To achieve this, we repeat the following steps for i = 1, . . . , n, from shortest to longest:

1. Pick a node at depth ℓi that is not a subtree previously used, and let the code for codeword i be the one
at that node.

48 CHAPTER 4. ENTROPY CODING

ϵ

0

1

10

11

100

101

ϵ

0

1

10

11

100

101

00

01

000

001

010

011

110

111

1/2 leaves covered

1/8 leaves covered

1/4 leaves covered

Figure 4.2: A coding tree and its extension. The codewords in the extended tree is indicated by boxes.

2. Mark all nodes in the subtree rooted at this node as being used so that they are not considered in the
subsequent iterations.

We claim that at the beginning of each iteration, there will always be an unused node. There are 2ℓb nodes
at depth ℓb because the tree is perfect. When we pick a node at depth ℓa, the number of nodes that become
unavailable at depth ℓb is 2ℓb−ℓa . When we pick a node at some depth ℓj , after having picked earlier nodes
at depth ℓi where i < j and ℓi ≤ ℓj , the number of nodes left to choose from at depth ℓj is

2ℓj −
j−1∑
i=1

2ℓj−ℓi = 2ℓj

(
1−

j−1∑
i=1

1

2ℓi

)
.

By assumption,
∑n

i=1
1
2ℓi

≤ 1 so
∑j−1

i=1
1
2ℓi

<
∑n

i=1
1
2ℓi

≤ 1, and it follows that

2ℓj −
j−1∑
i=1

2ℓj−ℓi > 0.

Therefore, there will always be a node available to be chosen as the codeword for each length ℓi. By induction
on the number of iterations, there is a codeword for ℓi for all i = 1, . . . , n. By excluding all nodes in a subtree
when the root of the subtree is selected, we ensure that our code is prefix-free. The code constructed as such
is indeed prefix-free and has codewords of every lengths in ℓ1, . . . , ℓn.

4.4 Lower Bounds

In this last section of the chapter, we present some lower bound results regarding symbol codes, linking data
compression to entropy and complexity. The idea behind the lower bound results is that each symbol xi ∈ Σ
of the source alphabet contains − log2 pi bits of information, so the encoding of this symbol should have at
least that many bits or otherwise we will “lose” information during compression. We will now formalize this
intuition and prove a theorem regarding the lower bound on the expected codeword length.

4.4. LOWER BOUNDS 49

Lemma 4.15. For any two discrete probability distributions p and q over the source alphabet |Σ|,

−
|Σ|∑
i=1

pi log(pi) ≤ −
|Σ|∑
i=1

pi log(qi).

Proof. For all x > 0, lnx ≤ x− 1 so log2 x ≤ (x− 1)/ ln 2. Subtract the RHS from LHS and consider

|Σ|∑
i=1

pi

[
log2

(
1

pi

)
− log2

(
1

qi

)]
=

|Σ|∑
i=1

pi log2

(
pi
qi

)
.

By our observation that log2 x ≤ (x− 1)/ ln 2,

|Σ|∑
i=1

pi log2

(
pi
qi

)
≤ 1

ln 2

|Σ|∑
i=1

pi

(
qi
pi

− 1

)
=

1

ln 2

 |Σ|∑
i=1

pi −
|Σ|∑
i=1

qi

 = 0.

The last equality follows because p and q are probability distributions. So it follows that RHS − LHS ≥ 0
so LHS ≤ RHS.

Using this lemma, we can prove the main theorem of this section.

Theorem 4.16. Let X be a random source with a finite source alphabet. Any uniquely decodable binary
code for X must have expected length of at least H(X).

Proof. Let n be the source alphabet size so the codeword lengths are ℓ1, . . . , ℓn. Let r =
∑n

i=1 2
−ℓi and

qi = 2−ℓi/r. q1, . . . , qn forms a probability distribution. This is the distribution of the codeword lengths.
Then,

H(X) = −
n∑

i=1

pi log2 pi ≤ −
n∑

i=1

pi log2 qi =

n∑
i=1

pi log2(2
ℓi · r) =

n∑
i=1

pi(ℓi + log2 r).

Since the code is uniquely decodable, r ≤ 1 by Kraft-McMillan’s inequality. Thus, log2 r ≤ 0. Hence,

ℓ =

n∑
i=1

piℓi ≥
n∑

i=1

pi(ℓi + log2 r) ≥ H(X).

4.4.1 Shannon-Fano Codes

Shannon-Fano codes are constructed so that the codeword for symbol i with emission probability pi has
length

ℓi = ⌈log2 1/pi⌉ .
Kraft’s inequality tells us such code exists because

|Σ|∑
i=1

1

2ℓi
≤

|Σ|∑
i=1

1

2log2(1/pi)
=

|Σ|∑
i=1

pi = 1.

Theorem 4.17. The expected length of a Shannon-Fano code for a source X with symbol distribution p is
1 +H(X).

50 CHAPTER 4. ENTROPY CODING

Proof.
n∑

i=1

piℓi =

n∑
i=1

pi ⌈log2(1/pi)⌉

<

n∑
i=1

p1(1 + log2(1/pi))

=

n∑
i=1

pi +

n∑
i=1

pi log2(1/pi)

= 1 +H(X).

This corollary immediately follows from the theorem.

Corollary 4.18. For any source X, any uniquely decodable code C has expected length ℓ such that

H(X) ≤ ℓ ≤ H(X) + 1.

Bibliography

For a survery on coding algorithms including Shannon-Fano code, see [13]. Kraft-McMillan’s inequality are
described separately in Kraft’s PhD thesis and a published paper by McMillan [15] [20].

Part III

Index Data Structures

51

Chapter 5

Suffix Tree

5.1 Suffix Tries

Let us recall the definition of a suffix.

Definition 5.1 (Suffix). For any string S, S[i . . . j] is the substring starting at position i and ending at
position j; S[1 . . . i] is the prefix of S ending at i; and S[j . . . |S|] is the suffix of S starting at position j. A
proper substring, prefix, or suffix is a substring, prefix, or suffix that is neither the entire string S nor the
empty string.

Then, we define a trie and a suffix trie as follows.

Definition 5.2 (Suffix Trie). A trie is the smallest tree such that each edge is labeled with a character from
the alphabet Σ, each node has at most one outgoing edge labeled with c for each c ∈ Σ, and each node has a
key that is the concatenation of the edge labels along the path from the root to that node. A suffix trie is a
trie where each root-to-leaf path represents a suffix.

a $b

a b $

b

b

ba a

a

a

a

a

a

$

$

$

$

a $b

a b $

b

b

ba a

a

a

a

a

a

$

$

$

$

P=abaa

P=bab

Figure 5.1: Suffix trie for T = abaaba. On the right: the search path for P = abaa and P = bab. When
searching for a pattern that is not in T , we “fall off” the trie.

In a regular tree (e.g. binary search tree), the key is stored at each node. In a trie, the keys are implicitly
represented by the edge labels along the path. Figure 5.1 shows a suffix trie constructed for T = abaaba.

It is important to add the terminator character $ at the end of the string. If we remove the terminator $, it
is not hard to see the result trie may no longer be a valid suffix trie. We assume that $ is lexicographically
smaller than all characters in Σ.

53

54 CHAPTER 5. SUFFIX TREE

m+ 1

≤ m

$

Figure 5.2: Max width and height of a suffix trie. The path from the root to the deepest leaf represents the
longest suffix (the whole string plus the terminator).

5.1.1 Search in Suffix Trie

Search for Pattern: It is easy to search for a pattern P given a suffix trie. We can start from the root
and follow the edges labeled with the characters in P until we either finish reading the pattern and
find a match, or “fall off” the trie, in which case we can return that a match is not found.

Search-Trie(P, T)
1 cur = T.root
2 for c in P
3 if c ̸∈ cur .edges
4 return false
5 else cur = cur .edges[c]
6 return cur ̸= null

Assume that at each node, we maintain a hash table for each outgoing edges. Then, the algorithms runs in
expected time Θ(|P |).
Search for Suffix : Similarly, if we want to see if a given pattern P is a suffix of T , we can run the same
algorithm and checks if the node at the end of the path has an outgoing edge labeled $.

Search for Number of Occurrences: If we are interested in the number a pattern P occurs as a substring in
T , we can run Search-Trie. Once we arrive at the end of our search path, we run a depth-first search
from the node at the end of the search path and count the number of leaf nodes reachable from that node.
Since a trie is a tree, DFS runs in O(|V |) time. In this case, it takes O(|P | + |T |) time to find the number
of occurrences of a given pattern.

Search for Longest Repeated Substring: Find the deepest (internal) node with more than one
children.

5.1.2 Space Complexity of Suffix Trie

The simplest way to construct a suffix tree is to first construct a suffix trie and convert it to a suffix tree by
repeatedly coalescing the paths. This takes O(n2) time and space. It takes O(n2) space because we need to
store the intermediate suffix trie.

5.2. UKKONEN’S LINEAR-TIME CONSTRUCTION 55

bx bxb+b

Figure 5.3: Type 1 insertion for suffix bx of S = axabx.

xabx

x

abxb

+b

b

Figure 5.4: Type 2 insertion for suffix x of S = axabx.

5.2 Ukkonen’s Linear-Time Construction

5.2.1 Types of Extensions

Suppose that we have S[j . . . i] = β be a suffix of S[1 . . . i]. In some iteration j, the algorithm finds the end
of β and extends the path by adding S[i+1] to the path. This ensures that the suffix S[j . . . i+1] is included
in the new tree. Observe that there are three types of insertions:

Type 1. In the current tree, path β leads to a leaf. In this case, S[i + 1] is added to the end of the label
on that edge.

Type 2. There is no path from the end of β that starts with character S[i + 1], but at least one labeled path
continues from the end of β. In this case, a new leaf edge starting from the end of β is created and
labeled S[i+ 1], which leads to a new leaf node with number j.

Type 3. Some path from the end of β starts with character S[i+ 1]. In this case, β · S[i+ 1] is already in the
implicit suffix tree. So we do nothing.

5.2.2 Suffix Links

Definition 5.3 (Suffix Link). Let xα be an arbitrary string, where x ∈ Σ is a single character and α ∈ Σ∗

is a (possibly empty) substring. For an internal node v with root-to-node path label xα, if there is another
node s(v) with root-to-node path label α, then we create a pointer from v to s(v), called a suffix link.

The reason we have suffix link is because we want to access the insertion point (end of a suffix) efficiently.
Suppose we insert a new character to the sequence xα. Once we inserted the new character to the suffix xα,
we also need to insert the character to the end of α. Without suffix link, we would have to traverse back
to the root and search for the insertion point all over again. The use of suffix link is especially useful for
jumping from one suffix to the next during extension.

Moreover, the suffix links induce a subtree called the suffix link tree. More formally, given a text T

56 CHAPTER 5. SUFFIX TREE

ab

ba
x

v
s(v)

b

Figure 5.5: A suffix link from v (representing xab) to s(v) (representing ab). The other two suffix links are
also shown. Note that if a node’s path label has no proper suffix, we create a link to the root.

#

Figure 5.6: A suffix tree and its corresponding suffix link tree for T = AGAGCGAGAGCGCGC.

5.2. UKKONEN’S LINEAR-TIME CONSTRUCTION 57

xg ′
=
1

abxbg ′
=
3

b
g
′ =

1

g = 2
γ = xb

x

abx
g ′
=
4

g = 1

γ = x

Figure 5.7: Top: Case 1 where g ≥ g′, skip to the next node; Bottom: Case 2 where g < g′, go the the g-th
character on the current edge.

represented by a suffix tree (V,E) with suffix links, let ℓ(v) denote the label on the path from the root to v.
Then, L = {(v, a) | v ∈ V, s(v) ∈ V, ℓ(v) = xℓ(s(v)), x ∈ Σ} be the set of all suffix links, and we define the
tree SLT(T) = (V,L) labeled by ℓ as the suffix link tree.

5.2.3 Count and Skip

After reaching s(v) via a suffix link, we still need to travel down the path labeled γ in order to add a new
character at the end of γ, either by branching off or creating a new leaf node. However, this walk along
the γ path takes O(|γ|) if implemented directly. An alternative to this would be to store the number of
characters of on each edge and skip nodes wheneve we can.

Let g denote the length of γ, the next suffix to which we want to append the new character. We start the
search for the insertion point starting from s(v).

Recall that no two edges coming out of s(v) can have labels starting with the same character. We can then
use one comparison to determine the edge that we need to follow. In particular, let h = 1 initially and
before each iteration, compare the hth character of γ with the first character of every edge coming out of the
current node. Let g′ be the number of characters on the edge that we have just identified. Then, consider
the following two cases:

1. g ≥ g′: Skip to the node at the end of the edge. Set g = g − g′, h = h+ g′, and repeat.

58 CHAPTER 5. SUFFIX TREE

2. g < g′: Skip to the gth character on the edge and stop.

5.2.4 Edge Label Compression

Another issue with our high-level “algorithm” for Ukkonen’s algorithm is that every edge is explicitly labeled
with the suffix they represent. A label of an edge can be as large as Θ(m), and there can be at most Θ(m)
edges, making the total space required for a suffix tree Θ(m2) in this case. This makes it impossible to build
such a tree in O(m) time. Fortunately, this issue can be solved using a simple trick: instead of storing the
strings explicitly, we can store a pair of indicies representing the starting and ending position of the
substring represented by each edge. That way, each edge can be maintained using only Θ(logm) space.

In the word RAM model1, we assume that every word of size logm bits can be read and written efficiently
in constant time. Hence, it is more plausible to build a suffix tree with compressed edge labels in linear time.

5.2.5 Key Observations

No More Insertions After Type 3

In any given phase i+ 1, if there is a Type 3 extension j (the new suffix S[j . . . i+ 1] is already in the tree),
then any further extensions in the current phase will also be of Type 3. When there is a Type 3 extension,
the path labeled S[j . . . i] in the current tree must have already contained S[i + 1]. Then clearly, so does
S[j′ . . . i] for all j < j′ ≤ i+ 1 because they are all suffixes of S[j . . . i].

Once a Leaf, Always a Leaf

At some point in the algorithm, if a leaf j is created for the suffix starting at position j, then the leaf will
remain a leaf throughout the algorithm. This is because the algorithm never extends a leaf. If a path leads
to a leaf, it will be a Type 1 insertion, in which case we extend the edge label without explicitly adding new
nodes.

Bibliography

Ukkonen’s linear time construction algorithm was presented in [25]. The presentation of this chapter is
largely based on the book Algorithms on Strings, Trees, and Sequences by Gusfield [9].

1In complexity theory, we have focused on Turing machine as our preferred model of computation. However, in analysis
of algorithms, we usually use the word RAM model (often without explicitly stating it) as it is a more realistic model of how
modern computers work.

Chapter 6

Suffix Array

Suffix array is another important data structure for string matching. It stores the positions of all suffixes of
a string T sorted in lexicographic order. More formally,

Definition 6.1 (Suffix Array). The suffix array SAT of a text T = t1t2 . . . tn is a permutation of [1, . . . , n]
such that SAT [i] = j if and only if T [j . . . n] has position i in the list of all suffixes of T taken in lexicographic
order.

Before we dive into the construction and applications of suffix arrays, we will first look at some techniques
for sorting strings that will be useful for coming up with suffix array construction algorithms.

6.1 String Sorting

6.1.1 Sorting Strings of Fixed Length

Recall the counting sort algorithm. Let A be a sequence of integers ranging from 1 to k. Counting sort sorts
the list by first building a vector count of size n where count [i] stores the number of entries of A that is i,
and then printing the sorted list by printing count [i] copies of i for i = 1, . . . , k.

Counting-Sort(A,B, k)

1 count = empty array of length k
2 offset = empty array of length k
3 offset [1] = 1
4 for i = 1 to k
5 count [i] = 0
6 for j = 1 to |A|
7 count [A[j]] = count [A[j]] + 1
8 for i = 1 to k
9 offset [i] = offset [i− 1] + count [i− 1]

10 for j = 1 to |A|
11 B[offset [A[j]]] = A[j]
12 offset [A[j]] = offset [A[j]]− 1

In this pseudocode, at the end of the loop on Line 6-7, offset [i] stores the position of the next i in the sorted
order when we move from the front to the end of the array. offset is sometimes referred to as a block pointer
array. Alternatively, we can implement without the block pointer array by modifying C so that C[i] stores
the number of elements less than or equal to i, which tells us the position of the next i in sorted order as
we move from the end to the front of the array. Notice that counting sort beats the well-known Ω(n log n)
lower bound for sorting because it is not a comparison-based sorting algorithm.

Assume now that A is an array of key-value pairs (A[i].p, A[i].v). Further, assume that A is already sorted
by the value v of each entry. We run counting sort for another round on the primary key p. Repeating this

59

60 CHAPTER 6. SUFFIX ARRAY

inductively for every digit of a number from the least significant bit to the most significant bit (or in our
case, every letter of a string), we will have ourselves radix sort – an algorithm for sorting list of arbitrary
numbers or strings of fixed length.

326

453

608

835

751

435

704

690

690

751

453

704

835

435

326

608

704

608

326

835

435

751

453

690

326

435

453

608

690

704

751

835

Sort Sort Sort

cat

him

ham

bat

him

ham

cat

bat

ham

cat

bat

him

bat

cat

ham

him

Sort Sort Sort

Figure 6.1: Example of radix sort. We repeat counting sort using every digit as sorting key, from least to
most significant bit.

Radix-Sort(A,B, k, d)

1 for i = 1 to d
2 sort A using Counting-Sort(A,B, k) with ith bit as primary key

Clearly, we can sort an array of n strings of fixed length d and alphabet size σ in O(d(σ + n)) time. The
correctness is also obvious: if two strings differ on the first character, counting sort using a primary key will
put them in the correct relative order; on the other hand, if two strings agree on the first character, they
stay together in proper relative order due to stability of counting sort.

6.1.2 Sorting Strings of Variable Length

We can easily modify radix sort to work with strings with variable-length strings by adding left paddings to
the string. However, this can be inefficient because it uses Ω(nm) time where m = max{|A[i]| | i ∈ {1, . . . , n}}
is the length of the longest string even if the length of distinct prefix is much shorter. Instead of sorting on
the least significant bit/letter, we can follow a similar paradigm but sort using the most significant bit/letter
so that we don’t need to add padding to the string and the algorithm will simply ignore a string if it reaches
the end of that string. The algorithm is called MSD radix sort.

MSD radix sort can be implemented in a divide-and-conquer fashion. For each position, the MSD radix sort
partitions the list based on the current letter and performs radix sort within each partition. We repeat this
recursively for each position as necessary, until each string in the original array is in its own partition.

MSD-Radix-Sort(A, p)

1 sorted = {s ∈ A | |s| = p− 1}
2 A = A \ sorted
3 B = Counting-Sort(A) using letter at position p as primary key
4 A = {A1, . . . , Ak} = partition B based on letter at position p
5 for i = 1 to k
6 Ai = MSD-Radix-Sort(Ai, p+ 1)
7 return Concatenate(sorted , A1, A2, . . . , Ak)

6.1. STRING SORTING 61

During the first call, sorted is empty, and A is sorted by the letter at position 1 (from the left) and partitioned
based on the letter at position 1. We then recurse on each partition. In all subsequent recursive call to
MSD-Radix-Sort(Ai, p + 1), all elements in Ai share the same prefix of length p, and this prefix itself, if
present in Ai, has the lowest lexicographic ordering within Ai. We exclude the prefix from Ai because its
relative position within Ai is determined. We then call Radix-Sort to sort Ai by its (p + 1)th letter, or
equivalently, by the prefix of length p+1. We continue to recursively call MSD-Radix-Sort with increasing
prefix length. Upon returning from the recursive calls, the procedure returns the concatenation of sorted
and all the subpartitions. Note that sorted always goes first because it contains the proper prefix to all the
remaining elements in the partition Ai. See figure below for an example.

za

z

ab

bbc

abc

abb

bac

abz

ab

abc

abb

abz

bbc

bac
za

z

z

za

bac

bbc

ab

abc

abb

abz

z

za

bac

bbc

ab

abb

abc

abz

z

za

bac

bbc

ab

abb

abc

abz

p = 1 p = 2 p = 3 p = 4

Figure 6.2: Example run of recursive MSD radix sort. Strings that are colored red are in sorted and will
not be further sorted or partitioned. Strings in sorted will be prepended to the beginning of each sorted
partition because it contains the proper prefix of strings in that partition.

This recursive implementation of MSD radix sort runs in O(N +σm) time where N =
∑

s∈A |s|, σ is the size
of the alphabet, and m is the length of the longest string in A. An issue with this recursive implementation is
the large overhead associated with having a lot of small partitions, and this can cause bad memory locality.
We now present an iterative implementation that runs in O(N + σ) time with a smaller memory overhead.
The idea of this iterative approach is to use the block pointer array introduced when we discussed counting
sort as well as the notion of partition refinement.

Let m be the longest string in the input array A. Let Ap be the set defined as {A[k][1 . . . p] | k ∈ {1, . . . , n}}
for p = 1, . . . ,m. We define A[k][1 . . . p] to be A[k] if p > |A[k]|. Every prefix P ∈ Ap maps to a contiguous
interval in the sorted list A∗ that contains all strings that start with P . For each prefix P , we denote the
interval induced by the prefix in the sorted list IP , and we denote the start and end index of this interval in
A∗ with IP .start and IP .end . Further, we can partition A∗ with

Ip = {IP | P ∈ Ap}.
Note that IP ·a ⊆ IP for all a ∈ Σ. The partition induced by p+1 is finer than the partition induced by p, so
we call Ip+1 a refinement of Ip. The idea of the algorithm is to transform A to A∗ by iteratively assigning
each string to a finer partition with increasing p until every string is assigned its own partition.

The algorithm maintains a list of L of triplets (pos, char , idx) where pos ∈ {1, . . . ,m}, idx ∈ {1, . . . , n}, and
char = A[idx][pos]. We sort L using pos as primary key and char as secondary key. Partition the sorted L
into {L1, . . . , Lm} based on pos. By the way we sorted L, each Li is futher partitioned by the secondary key
char . Furthermore, the algorithm keeps four arrays Q,S, T , and B.

• Q stores the current position inside an interval: Q[IP .start] = Q[IP ·a.start]
• S stores the current size of each interval: S[IP .start] = |IP |
• T stores the current character corresponding to each interval: C[IP .start] = a
• B stores the offset of each interval in the final sorted order.

We now present a pseudocode for this iterative implementation.

62 CHAPTER 6. SUFFIX ARRAY

MSD-Radix-Sort(A,n,m)

1 L = []
2 for i = 1 to n
3 p = 1 to m
4 if |A[i]| ≤ p
5 L.Append((pos = p, char = A[i][p], idx = i))
6 sort L using Counting-Sort with pos as primary key and idx as seconday key
7 L = {L1, . . . , Lm} = Partition(L, key = pos)
8 for k = 1 to |L1|
9 B[k] = |{h : S[h][1] < S[k][1]}|+ 1

10 for p = 2 to m
11 for k = 1 to |Lp|
12 T = S[Lp[k].idx][1 . . . p− 1]
13 IT .start = B[Lp[k].idx]
14 Q[IT .start] = 0
15 for k = 1 to |Lp|
16 T = S[Lp[k].idx][1 . . . p− 1]
17 if Q[IT .start] == 0
18 Q[IT .start] = IT .start
19 C[IT .start] = Lp[k].char
20 for k = 1 to |Lp|
21 T = S[Lp[k].idx][1 . . . p]
22 if C[IT .start] == Lp[k].char
23 B[Lp[k].idx] = Q[IT .start]
24 S[IT .start] = S[IT .start] + 1
25 else
26 Q[IT .start] = Q[IT .start] + S[IT .start]
27 S[IT .start] = 0
28 C[IT .start] = Lp[k].char
29 B[Lp[k].idx] = Q[IT .start]
30 for i = 1 to n
31 A∗[B[i]] = A[i]
32 return A∗

For correctness, we note that at the beginning of each iteration of the loop on Line 10, B[k] contains the
starting index of the interval IS[k][1...p−1] ∈ Ip−1 in S∗. Every interval of Ip is completely contained within
every interval of Ip−1. Existence of interval IT ∈ Ip−1 implies the existence of an interval IT ·a ∈ Ip where
IT ·a.start = IT .start and a ∈ Σ is the lexicographically smallest character at position p that is preceeded by
T . Therefore, it is correct to set IT .start to B[Lp[k].idx] on Line 13. We initially set all Q values to 0 and
we only update them for the starting positions. We also only update C only for each starting position once.
It is set to the lexicographically smallest character following any occurrence of T as a prefix. This ensures
us to detect any possible refinements within each partition IT where C[IT .start] ̸= Lp[k].char . When that
happens, we create a new partition and update the offset of the new partition in B. The algorithm will
terminate when every distinct string is assigned its own partition. The offset at which each refined interval
is given by B. Finally, we can construct a sorted list by assigning elements to its corresponding interval
and at the given offset. The pseudocode as given above does not handle the case where there are duplicate
elements (Line 31 will attempt to assign them to the same position), but it can be easily modified to break
ties arbitrarily in case of duplicates.

The algorithm runs in O(N + σ) time because there is only one round of counting sort when we sort the
triplets in L. As for space complexity, L,Q, S,C, and B all contributes to the space complexity, but since

6.1. STRING SORTING 63

sorting is done in place, there is no additional overhead other than creating the result array. The space
complexity is also O(N + σ).

AAA

AAA

AAA
CAA

CAA

CAA
CAC

CAC

CAC

CC

GAT

T
CGA

CGT

G
CG

CTG

CTT

A∗

p = 3

IAAA

ICAA

ICAC

I3

CACCTG

CAACGT

CACCG

CAAG

AAAT

CAACGA

CACCTT

AAACC

AAAGAT

1

2

3

4

5

6

7

8

9

(3, A, 2)
(3, A, 4)
(3, A, 5)
(3, A, 6)
(3, A, 8)
(3, A, 9)

(3, C, 1)
(3, C, 3)
(3, C, 7)

L3

start

end

Figure 6.3: From left to right: (a) The input array A; (b) A partition I3 of A∗; (c) The list of triplets L3; L
is sorted using counting sort and partitioned into L1, . . . , Lm.

6.1.3 Suffix Sorting Using Prefix Doubling

In this subsection, we will introduce the first suffix array construction algorithm that makes use of the linear
time sorting techniques introduced in the last two subsections. It is a conceptually simple algorithm that
achieves O(n log n) time for a string of length n.

Let T ℓ
i be the substring T [i . . .min{i+ ℓ, n}], that is, T ℓ

i is the substring starting at i and of length ℓ except
when the i + ℓ > n, in which case, it is just the suffix starting at i. T ℓ

i is the prefix of the suffix Ti of
length ℓ, or the suffix Ti itself if |Ti| < ℓ. The idea of the prefix doubling algorithm is to sort the sets
T ℓ = {T ℓ

i | i ∈ {1, . . . , n}} for every increasing value of ℓ. The set T ℓ includes a prefix of length ℓ of every
suffix Ti of T . To achieve O(n log n) runtime, we first sort T 1, which is equivalent to sorting each individual
characters. As we have seen earlier, this can be done in O(n) time. Then, for ℓ = 1, 2, 4, 8, . . ., use the sorted
set T ℓ to sort the set T 2ℓ in O(n) time. After O(log n) iterations, ℓ > n and T ℓ = T and at this point we
would have sorted all suffixes.

To see how to use the sorting of T ℓ to sort T 2ℓ, we introduce the notion of order preserving names. For
i ∈ {1, . . . , n}, let N ℓ

i be an integer in the range {1, . . . , n} such that for all i, j ∈ {1, . . . , n},

N ℓ
i ≤ N ℓ

j iff T ℓ
i ≤ T ℓ

j .

Then, for ℓ > n, N ℓ[i] = SA−1[i] where SA−1 is the inverse suffix array. A simple choice of N is the rank

N ℓ
i = |{j ∈ {1, . . . , n} | T ℓ

j < T ℓ
i }|.

For the pseudocode below, note that we begin by sorting L, which is just an array of all characters in the
string T . We then go through the sorted L and compute the rank of each character and store them in R.
At the end of the first iteration of the outer while loop, R[i] contains the relative rank of T 1

i . Continuing
inductively, in subsequent iterations, we use a pair of ranks (R[i], R[i+ ℓ]) to represent T ℓ

i . Sorting the pairs
is equivalent to sorting T ℓ

i because rank is an order preserving name for the prefixes, and at the end of each
iteration of the while loop, R[i] contains the starting position of the interval of string T [i . . . i + 2p] in the
suffix array. Each iteration runs in O(n) time and there are O(log n) iterations so the algorithm runs in
O(n log n) time.

64 CHAPTER 6. SUFFIX ARRAY

Prefix-Doubling-Sort(T = t1t2 · · · tn)
1 R = [0, . . .] (array of length 2n)
2 L = (p = t1, s = t1, v = 1), (t2, t2, 2), . . . , (tn, tn, n)
3 p = 0
4 while 2p < n
5 L′ = Counting-Sort(L, primary = p, secondary = s)
6 for k = 1 to |L|
7 if L′[k].p == L′[k − 1].p and L′[k].s == L′[k − 1].s
8 R[L′[k].v] = R[L′[k − 1].v]
9 else

10 R[L′[k].v] = R[L′[k − 1].v] + 1
11 L = (R[1], R[1 + 2p], 1), (R[2], R[2 + 2p]), . . . , (R[n], R[n+ 2p])
12 p = p+ 1
13 for i = 1 to n
14 SAT [R[k]] = k

R1 L

b

a

n

a

n

a

$

4

1

0

5

1

5

1

T 1

b

a

n

a

n

a

$

R2 L

(4,1)4

0

5

2

5

1

T 2

ba

an

na

an

na

a$

$

(1,5)

(5,1)

(1,5)

(5,1)

(1,0)

(0,0)

2

R4 L

(4,5)4

0

6

2

5

1

T 4

bana

(2,5)

(5,5)

(2,1)

(5,0)

(1,0)

(0,0)

3 anan

nana

ana$

na$

a$

$

R8 L

(4,5)4

0

6

2

5

1

T 8

banana$

(3,1)

(6,0)

(2,0)

(5,0)

(1,0)

(0,0)

3 anana$

nana$

ana$

na$

a$

$

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Figure 6.4: Example run of the prefix doubling algorithm. Initially, L contains individual letters from T 1.
In the subsequent iterations, L is updated to a list of triplets containing the relative rank (R[i], R[i + ℓ])
where p is the rank of T ℓ

i and R[i+ ℓ] is the rank of T ℓ
i+ℓ (the prefix of the suffix that is ℓ letters apart from

i). The rank tuple is used as a surrogate of the prefix of length 2ℓ of the suffix Ti. We iteratively sort L
and update R. In the end, we have an invserse suffix array, which can be easily turned into a suffix array.
R is zero filled to avoid out-of-range errors and ensure that suffixes ending with the terminator symbol $ is
sorted properly.

6.2 Naive Construction From Suffix Tree

Given a suffix tree, a suffix array can be trivially constructed through a lexicographic depth first search
(that is, at each internal node, decide which path to recurse on based on the alphabetical order of the first
character of each path label).

6.3. A DIVIDE-AND-CONQUER APPROACH 65

As we have seen, a suffix tree can be constructed in O(n) time. It follows that a suffix array can also be
constructed in O(n) time using this method. However, a major issue with this approach is that we must
build an intermediate suffix tree, which may require significantly more memory, and this defeats the purpose
of having a suffix array in the first place, which is to have a more compact representation of the suffixes of
a string.

6.3 A Divide-and-Conquer Approach

The next natural approach one might consider when presented with a problem like constructing a suffix array
is divide and conquer. We are all familiar with merge sort, which runs in O(n log n) time. Constructing a
suffix array similarly involves sorting the suffixes.

Let T be the text for which we want to construct a suffix array. Consider the following divide-and-conquer
approach:

1. Divide the suffix positions into A ⊂ [0 . . . n] and A = [0 . . . n] \A
2. Construct a suffix array for TA (suffixes that start at positions in A) recursively
3. Construct a suffix array for TA based on the suffix array for TA

4. Merge the two suffix arrays

The most straightforward way to divide is to divide the positions by parity (even/odd). This gives an
algorithm whose runtime is given by the recurrence T (n) = T (⌈n/2⌉) + Tmerge(n).

Everything seems good so far, but there are two important problems: (1) how do we construct the second
suffix array non-recursively, and (2) how to merge in linear time? For a long time, finding a way to merge
two suffix arrays in linear time remained an open question. The most obvious way to merge takes O(n2)
time. Researchers came up with clever tricks but still only got an O(n log n) time bound. Because of that,
until the early 2000s, the best known algorithm for constructing a suffix array only ran in O(n log n) time.

In 2003, Juha Kärkkäinen and Peter Sanders published their seminal paper (along with some other researchers
who independently published similar results around the same time), which proposed one of the first linear
time algorithms for constructing a suffix array. It uses the same divide-and-conquer framework, with a little
twist.

6.4 Kärkkäinen-Sanders Algorithm

Kärkkäinen and Sanders’ algorithm uses the same divide-and-conquer approach, but instead of dividing the
positions into even and odd positions like previous researchers have done, they divided the positions i’s into
those with i mod 3 ̸= 0 and i mod 3 = 0. This, along with a neat trick during merging, is enough to give us
an O(n) time algorithm for construct a suffix array.

Let’s first recall the general framework for constructing suffix array using divide-and-conquer

Kärkkäinen-Sanders
1 construct suffix array for suffixes starting at positions i mod 3 ̸= 0

recursively // T (2/3n)
2 construct suffix array for suffixes starting at positions i mod 3 = 0

using results from step 1 // O(n)
3 merge the two suffix arrays // O(n)

66 CHAPTER 6. SUFFIX ARRAY

We will see how to perform each step within the given time. We call the suffixes starting at positions
i mod 3 ̸= 0 the sample suffixes, and the suffixes starting at positions i mod 3 = 0 the non-sample
suffixes.

6.4.1 Sorting The Sample Suffixes, Recursively

Given a string T of length n, we define T [j] for all j > n to be equal to $, so T [j] = $ for all positions beyond
n. This is just to avoid having to deal with the edge cases.

Let t0 be the set of triples (not suffixes) starting at position i mod 3 = 0, so t0 = {T [i . . . i+ 2] | i mod 3 =
0, i ≤ n}. Similarly, let t1 and t2 be the sets of triples starting at position i mod 3 = 1 and 2, respectively.
For example, suppose T = dadbcddadbcd$ with the delimiter $ in the end, we will have

t1 = {dad, bcd, dad, bcd, $$$}

and
t2 = {adb, cdd, adb, cd$}

To sort the suffixes starting at positions i mod 3 ̸= 0, we first sort the triples in t1 ∪ t2. This can be done
in Θ(n) time using radix sort. For x ∈ t1 ∪ t2, we define the rank rank(x) to be the order of the triple
x in the sorted list of t1 ∪ t2. If two triples have the same order in the sorted list, they will have the same
rank. Further, for a set of triples X, we define Rank(X) to be the list of ranks for each triple in the sorted
order. That is, the ith element of Rank(X) will be rank(X[i]). Using the same example as above where
T = dadbcddadbcd$, we have

pos = 13 2 8 4 10 11 5 1 7
Sorted(t1,2) = $$$ adb adb bcd bcd cd$ cdd dad dad
Rank(t1,2) = 1 2 2 3 3 4 5 6 6

We also record pos, the starting position of each of the triple in the original string.

Now, let us go back to the original set of triples, t1 and t2. We create a new string t′ equals to t1 · t2 (t1
concatenated with t2) with each triple mapped to its rank.

pos = 1 4 7 10 13 2 5 8 11
t1 · t2 = dad bcd dad bcd $$$ adb cdd adb cd$
t′ = 6 3 6 3 1 2 5 2 4

Next, we recursively find the suffix array for t′. We claim that the suffix array for t′ specifies the suffix
array for S restricted to the suffixes starting at positions i mod 3 ̸= 0.

Wait! But Why?

Claim. Suffix array for t′ specifies the suffix array for S restricted to the suffixes starting at positions
i mod 3 ̸= 0

To see why this is true, we first prove this lemma.

Lemma 6.2. Let t′i and t′j be two suffixes of t′ starting at position i and j, respectively. If s′i ≺lex s′j (if
s′i is lexicographically less than s′j), then the suffix of the original string T starting at position pos[i] is also
lexicographically smaller than the suffix of T starting at position pos[j].

Proof. Recall that t′ can be divided into two parts. The first half contains the ranks of triples whose first
character starts at position i mod 3 = 1. The second half contains the ranks of triples whose first character

6.4. KÄRKKÄINEN-SANDERS ALGORITHM 67

starts at position i mod 3 = 2. To prove the lemma, we consider the following cases regarding the positions
of i and j in t′.

Case 1: Both i and j are in the first half. Then, pos[i] = pos[j] = 1 mod 3. We first observe that the
comparison of the two suffixes starting at i and j will not go beyond the boundary between the first and
the second half. More formally, let k be the position such that pos[k] mod 3 = 1 but pos[k + 1] mod 3 = 2.

i
j

k

t′

Then, during the comparison of the two suffixes of t′ starting at i and j, at most k characters are compared.
This is because the triple at position pos[k] will contain the unique null terminator that is lexicographically
smaller than any character in the alphabet, thus giving the triple at pos[k] a unique rank.

Moreover, each symbol in t′ represents the rank of a triple starting at that position in T . By assumption,
the suffix of t′ starting at i is lexicographically smaller than the suffix of t′ starting at j. Then, there must
exists some c such that t′[i + c] < t′[j + c]. This implies that the triple starting at position pos[j + c] that
is lexicographically larger than the triple starting at position pos[i + c] because t′ represents the ranks of
the triples. The presence of this lexicographically larger triple makes the suffix of the original string at
pos[i] lexicographically smaller than the suffix at pos[j].

Case 2: Both i and j are in the second half. This case follows from a similar argument as Case 1.

i
j

k

t′

cd$$$$

Case 3: i is in the first half and j is in the second half. As in the first two cases, the comparison will never
cross the boundary. This, again, is due to the distinct null terminator symbol. In particular, the triple
starting at pos[k] (recall that k is the boundary between the two parts) contains at least one more/fewer null
terminator symbol compared to the triple at pos[|t′|]. Hence, the triple at pos[k] will have a unique rank,
which helps us break the tie after the comparison at position k. We can always determine the lexicographic
order of the two suffixes without crossing the boundary.

Now, going back to t′, if we have the suffix of t′ starting at i being lexicographically smaller than the suffix
of t′ starting at j, we know that there must be some c such that t′[i + c] < t′[j + c], which implies the
rank of some triple at pos[i + c] is lexicographically smaller than that at pos[j + c]. Since we never cross
the boundary when comparing the suffixes of t′ starting at i and j, we are always comparing the rank of a
contiguous and non-overlapping substring of T starting at pos[i] with the rank of some other contiguous and
non-overlapping substring of T at pos[j] without ever going backward in the comparison (because we don’t
cross the boundary). Then, it follows that the lexicographic ordering of the ranks in t′ implies the ordering
in T .

Case 4: i is in the second half and j is in the first half. This follows from a similar argument as Case 3.

In all cases, the implication holds, so the lemma holds.

68 CHAPTER 6. SUFFIX ARRAY

One important takeaway from the proof of this lemma is that the null terminator symbol $ is a tie-breaker,
giving us unique ranks for triples at the end of the first and second half so that we never cross the boundary
between the two halves. This unique rank, in turn, allows us to use the string of ranks to implicitly sort the
suffixes in the original string T .

Using our previous example with

i 1 2 3 4 5 6 7 8 9

pos = 1 4 7 10 13 2 5 8 11
t1 · t2 = dad bcd dad bcd $$$ adb cdd adb cd$
t′ = 6 3 6 3 1 2 5 2 4

we have
SA for t′ = 5 8 6 4 2 9 7 3 1

SA12 for T = 13 8 2 10 4 11 5 7 1

The ith entry in the SA for T is SA12(T)[i] = pos[SA(T ′)[i]]. Here, SA12(T) refers to the suffix array for
the original string T but only considering the suffixes at positions 1 or 2 mod 3.

6.4.2 Sorting the Non-Sample Suffixes

There is an easy way to sort the non-sample suffixes. Those are the suffixes that start at positions i mod 3 = 0.
Again, we begin by considering the triples starting at these positions. Each of such positions is followed
by two positions with i mod 3 ̸= 0. Ordering of the triples starting at one and two positions after those
with i mod 3 = 0 have already been determined recursively as discussed in the previous subsection. We can
then use the information we know about the sample suffixes to sort the non-sample suffixes in linear time,
non-recursively.

To this end, we construct a list t′′ that contains all characters at positions i mod 3 = 0 with each character
followed by the rank of the suffixes starting at position immediately after i (which can be determined from
SA[t′] that we have constructed in the previous step).

Slightly more formally, the ith element of t′′ will be

t′′[i] = T [3i] · SA12(T)[3i+ 1]

In our example, T = dadbcddadbcd$ and

i 1 2 3 4 5 6 7 8 9

SA for t′ = 5 8 6 4 2 9 7 3 1
SA12 for T = 13 8 2 10 4 11 5 7 1

so
triple = dbc dda dbc d$$
t′′ = d5 d8 d4 d1
pos = 3 6 9 12

We sort t′′ using radix sort in Θ(n) time. For our example, this gives us

t′′ = d1 d4 d5 d8
pos = 12 9 3 6

The corresponding positions in the sorted t′′ is the suffix array for the suffixes starting at i mod 3 = 0, so
we have SA3(T) as well.

The correctness of this step is trivial from the correctness of radix sort and the fact that the entries in SA12

are unique (so there won’t be tie).

6.4. KÄRKKÄINEN-SANDERS ALGORITHM 69

6.4.3 Merging the Two Suffix Arrays

The final punchline. We will merge SA12(T) and SA3(T) into one suffix array in linear time.

Recall that in the O(n2) algorithm for constructing a suffix array, the merging is done in O(n2) time using
the naive method. The naive method keeps two pointers to each of the restricted suffix arrays SA12 and
SA3. It then compare the suffixes explicitly in worst-case O(n) time. We do this for all the O(n) pairs of
positions, giving us an O(n2) time algorithm.

1 i, j = 1, 1
2 while i ≤ |SA12(T)| and j ≤ |SA3(T)|
3 compare suffixes T [SA12(T)[i] . . .] and T [SA12(T)[j] . . .]
4 update i, j accordingly

However, with the suffixes arrays SA12 and SA3, we can actually do the comparison in constant time. For
each arbitrary pair of positions i, j, we only need at most 3 explicit character comparisons before we reach
a position i′, j′ such that i′ = j′ mod 3, at which point the lexicographic order of the two suffixes can be
determined using an O(1) lookup in the appropriate restricted suffix array.

For a more detailed procedure for merging, consider the following cases:

Case 1: Compare two suffixes starting at i and j where i mod 3 = 2 and j mod 3 = 0. If the encounter
a character such that T [i] ̸= T [j], then we are done. Otherwise, continue comparing T [i] with T [j] and
updating i and j. After at most 2 comparisons, i mod 3 = 1 and j mod 3 = 2. We can determine the
ordering of the two suffixes by comparing the locations of i and j in SA12 in O(1) time.

Case 2: Compare two suffixes starting at i and j where i mod 3 = 1 and j mod 3 = 0. If we encounter a
character such that T [i] ̸= T [j], then we are done. Otherwise, the problem reduces to Case 1, and we can
determine the lexicographic ordering of the suffixes starting at i and j with at most 3 explicit comparisons.

Case 3: i = j mod 3. This case is trivial through a constant-time lookup in SA12 if i mod 3 = j mod 3 ̸= 0
or in SA3 if i mod 3 = j mod 3 = 0.

In all three cases, we can determine the lexicographic ordering of the two suffixes within O(1) comparisons.
We repeat this for all |T | positions, giving us an O(n) time algorithm for merging.

6.4.4 Wrapping It Up

And here we have it, the linear-time algorithm for constructing a suffix array. At first glance, it appears
to be quite a sophisticated algorithm, but the ideas behind it are actually quite fundamental. It based on
the same divide-and-conquer approach that previous O(n2) and O(n log n) time algorithms have used, but
with a few ingenious improvements that allow us to do the merging in O(n) time. Note that the linear-time
merging is not possible if we divide the suffixes up into positions 0 or 1 mod 2 since we are not guaranteed
to be at a position i = j mod 2 after just a constant number of comparisons.

As we mentioned at the beginning, this algorithm is due to Kärkkäinen and Sanders. It is often referred to
as the Kärkkäinen-Sanders (KS) algorithm or the DC3 algorithm since it is a divide-and-conquer
algorithm that divides the positions based on their values modulo 3.

To wrap this section up, let us prove that the KS algorithm indeed runs in linear time.

Theorem 6.3. The suffix array for text T of length n can be computed in time O(n).

70 CHAPTER 6. SUFFIX ARRAY

Proof. We use the Kärkkäinen-Sanders’ algorithm. The correctness of the algorithm is argued as we introduce
the algorithm. Now, we consider the runtime of the algorithm.

Sorting of the triples takes O(n) time using radix sort, and so does the computation of the SA for the non-
sample suffixes at position i mod 3 = 0. At each level of the recursion, the suffix array that we recursively
construct is of size ⌈2/3n⌉. Finally, merging takes O(n) time. Hence, the overall runtime is given by the
recurrence

T (n) = T (⌈2/3n⌉) + 3O(n)

= T (⌈2/3n⌉) +O(n)

≤ n

∞∑
i=0

(
2

3

)i

∈ O(n)

The same recurrence can also be solved using the Master’s theorem.

Bibliography

Counting sort is a folklore linear time sorting algorithm, but the presentation is a combination of materials
from CLRS and the course String Processing Algorithms at the University of Helsinki [6]. Kärkkäinen-
Sanders’s algorithm was introduced in [12]. Another similar algorithm was discovered by Kim et al. around
the same time [14]. The presentation of Kärkkäinen-Sanders’s algorithm is based on the book Genome-Scale
Algorithm Design [18].

Chapter 7

Burrows-Wheeler Transform and FM Index

7.1 Burrows-Wheeler Transform

Burrows-Wheeler transform is an algorithm initially designed by Michael Burrows and David Wheeler for
document compression. Using Burrows-Wheeler transform, we can design space-efficient and versatile index
data structure for counting and finding patterns in large strings. In this chapter, we will formally define
Burrows-Wheeler transform, both in its original cyclic rotation definition and an alternative definition based
on suffix array. After that, we will discuss the construction of index data structures using Burrows-Wheeler
transform such as FM index and the powerful bidirectional BWT index.

7.1.1 Cyclic Rotation

The Burrows-Wheeler transform is defined in terms of cyclic shifts of a string T = t1 · · · tn, Assume that we
build the n cyclic shifts of T in a matrix

t1 t2 · · · tn−1 tn
t2 t3 · · · tn t1
t3 t4 · · · t1 t2
...

. . .
...

tn t1 · · · tn−2 tn−1

We can then sort the rows of the matrix in lexicographic order to obtain the Burrows-Wheeler matrix. The
Burrows-Wheeler transform BWT(T) is defined to be the last column of the BTW matrix. To ensure every
row is unique in the BWT matrix, we add a terminator symbol $ to the end of the T . We name the first
column F and the last column L. F contains characters of T in sorted order. L contains the BWT of T .

$ a b a a b a
a $ a b a a b
a a b a $ a b
a b a $ a b a
a b a a b a $
b a $ a b a a
b a a b a $ a

ab a ab a $
T All rotations

Sort

ab b a $ a a
BWT(T)

Last column

Burrows-Wheeler
Matrix

Figure 7.1: Burrows-Wheeler Transform as cyclic rotation.

BWT is useful for compression because the characters of a BWT are sorted by their right-context. This
provides additional structure to the BWT, making is useful for run-length encoding compression. The
procedure for compressing a string using BWT is as follows:

1. Compute BWT(T)

71

72 CHAPTER 7. BURROWS-WHEELER TRANSFORM AND FM INDEX

2. Partition BWT(T) by k-context (rotational context)
3. Compute H0 encoding on partitions

This procedure can be repeated by increasing k to create higher-order empirical entropy encoder.

7.1.2 BWT and Suffix Array

Given a string T , consider its BWT matrix and the suffixes corresponding to its suffix array. If we look at
them side-by-side closely, we will notice that the BWT matrix bears a resemblance to the suffix array. In
particular, the columns of the sorted rotations share the same sorted order as the suffixes. The ith suffix in
sorted order is a prefix of the ith rotation in sorted order.

$ a b a a b a
a $ a b a a b
a a b a $ a b
a b a $ a b a
a b a a b a $
b a $ a b a a
b a a b a $ a

6 $
5 a $
2 a ab a $
3 a b a $
0 a b a ab a $
4 b a $
1 b a ab a $

BWM(T) SA(T)

a b a a b a $T =

Figure 7.2: Relationship between the BWT (highlighted red) and the suffix array of the string T . The ith
character of BWT(T) is the character before the starting position of the ith suffix in the sorted order.

Thus, we have this following definition of BWT of T :

BWT(T)[i] =

{
T [SAT [i]− 1] if SAT [i] > 0

$ if SAT [i] = 0.

This also gives us a way to efficiently compute the BWT using the linear-time SA construction algorithm
without explicitly constructing the BWT matrix.

7.1.3 Inverse BWT and LF-Mapping

A transformation like BWT would be rather useless if we cannot invert it as we would often like to recover
the original string from a compressed one, or extract useful information from an index. Luckily, the BWT
matrix has a property known as LF mapping that will help us derive a way to invert the BWT. Recall that
we call the first column of the BWT matrix F and the last column L, so an LF mapping is just a mapping
from L to F .

Consider the text T . For clearity, we assign each character t in T a rank that is equal to the number t
occurred previously in T .

T = a0 b0 a1 a2 b1 a3 $

7.1. BURROWS-WHEELER TRANSFORM 73

$ a0 b0 a1 a2 b1 a3
a3 $ a0 b0 a1 a2 b1

a1 a2 b1 a3 $ a0 b0

a2 b1 a3 $ a0 b0 a1
a0 b0 a1 a2 b1 a3 $
b1 a3 $ a0 b0 a1 a2
b0 a1 a2 b1 a3 $ a0

F L
$ a0 b0 a1 a2 b1 a3
a3 $ a0 b0 a1 a2 b1

a1 a2 b1 a3 $ a0 b0

a2 b1 a3 $ a0 b0 a1
a0 b0 a1 a2 b1 a3 $
b1 a3 $ a0 b0 a1 a2
b0 a1 a2 b1 a3 $ a0

F L

Figure 7.3: The BWT matrix for T = a0 b0 a1 a2 b1 a3 $ with ranks shown as subscripts. Note that in the
first column F and last column L, the relative order of the rank for each character is preserved.

We now look at the BWT matrix with ranks. As we can see in the figure, the first column F is all characters
of T sorted in lexicographic order. Because of this, same character appears in the same chunk, that is, F is
partitioned based on characters. Notably, the relative order of the ranks for each character is preserved as
we go from F to L. In Figure 7.3, the relative order of the a’s in F is a3, a1, a2, a0, and the realtive order
is the same in L. We call this the LF mapping property:

The ith occurrence of a character c in L and the ith occurrence of c in F correspond to the same
occurrence of c in T .

Intuitively, the LF mapping property holds because for each c, the occurrences of c in F are sorted by its right-
context; similarly, occurrences of c in L is sorted by their right rotational context. Moreover, we remark that
the “rank” that we assign to each character is completely arbitrary. We can assign the characters arbitrary
ranks and the LF mapping property would still hold. Thus, instead of defining rank to be the number of
occurrences of a character preceeding the current occurrence, we can define a “pseudo-rank ” so that the
ranks are in ascending order as we traverse down the F and L columns.

$ a3 b1 a1 a2 b0 a0
a0 $ a3 b1 a1 a2 b0

a1 a2 b0 a3 $ a3 b1

a2 b0 a0 $ a3 b1 a1
a3 b1 a1 a2 b0 a0 $
b0 a0 $ a3 b1 a1 a2
b1 a1 a2 b0 a0 $ a3

F L

Ascending pseudorank

Figure 7.4: The BWT marix with ranks replaced by a pseudorank.

Now, F has a very predictable structure: a $, followed by blocks of characters in lexicographic order where
the characters in each block has ascending pseudorank. Following this, we can design an algorithm that
computes F given L. The algorithm simply runs radix sort on L using the character as primary key and the
rank as secondary key. The resulting sorted list is F .

Why is it useful to have F as well as L? It is useful to reconstruct the original text T because the character
in each row of L appears immediately before the corresponding character in F in the text T . This property
follows from the fact that the column F is the right 1-context of L. With this insight, we can design an
algorithm that recovers the original text T from F and L.

74 CHAPTER 7. BURROWS-WHEELER TRANSFORM AND FM INDEX

Inverse-BWT(F,L)

1 i = 0
2 T = $
3 while L[i] ̸= $
4 c = L[i]
5 T = c · T
6 i = F [c][rank(i)]
7 return T

The function rank computes the rank of each character. rank(i) is the (pseudo)rank of the ith character
in L. It can be easily computed by keeping a running counter of occurrence of each character in L. As we
traverse through L and F , we concatenate each character that we encounter in L to the front of our running
result. After this, we jump to the next position in F , which is given by the character c and the offset given
by the current rank of c. F is partitioned based on the character, that is, F = {Fx | x ∈ F} where Fx is a
block of letter x ∈ Σ ordered in ascending rank, so F [c][rank(i)] returns a pointer to the character c with
rank given by rank(i).

F L
a0
b0

b1

a1
$
a2
a3

$
a0
a1
a2
a3
b0

b1

F L
a0
b0

b1

a1
$
a2
a3

$
a0
a1
a2
a3
b0

b1

F L
a0
b0

b1

a1
$
a2
a3

$
a0
a1
a2
a3
b0

b1

F L
a0
b0

b1

a1
$
a2
a3

$
a0
a1
a2
a3
b0

b1

F L
a0
b0

b1

a1
$
a2
a3

$
a0
a1
a2
a3
b0

b1

F L
a0
b0

b1

a1
$
a2
a3

$
a0
a1
a2
a3
b0

b1

F L
a0
b0

b1

a1
$
a2
a3

$
a0
a1
a2
a3
b0

b1

a3 b1 a1 a2 b0 a0 $T:

Figure 7.5: A visualization of the algorithm Inverse-BWT as it traverses between L and F to recover the
original text T .

7.2 FM Index

FM index is a compressive self-index. It compresses the data and indexes it at the same time. As we have
seen earlier in the chapter, we can apply empirical entropy encoders like Huffman to compress the BWT.
In this section, we will focus on how to construct a space-efficient index data structure using the Burrows-
Wheeler transform. Recall when we discussed LF-mapping, we made use of the concept of a rank. We did
not provide an efficient implementation of the function rank which computes the rank of a character at a
given position in the BWT. We suggested an implementation that simply counts the number of occurrence
of a given letter by traversing L. However, this is inefficient in practice. We need a quicker way to compute
rank.

7.2. FM INDEX 75

7.2.1 Rank-Select-Access Query

This subsection is devoted to succinct data structures to answer the following types of queries:

1. Rank(A, c, i): Compute the rank of character c at position i of the vector A. That is, the number of
occurrences of c up to position i in the vector A.

Rank(A, c, i) = |{i′ | 1 ≤ i′ ≤ i, A[i′] = c}|

2. Select(A, c, i): Return a pointer to the ith occurrence of c in A.

3. Access(A, i): Return a pointer to the character at position i in A.

We will first look at a data structure for solving Rank and Select queries on bit vectors. In the following
subsection, we will introduce wavelet tree, which combines the idea from bit vector rank-select and the idea
of recursive decomposition of the alphabet.

Jacobson’s Rank

Consider a bit vector A. We divide A into chunks each of lg2 n bits long. There are n
lg2 n

such chunks. For
each chunk, we store the cumulative rank up to that chunk (the number of 1-bits from the beginning of the
bit vector to the start of the chunk). The space required to store all the cumulative rank is O(lg n · n

lg2 n
) ∈

O(n
lgn) ∈ o(n).

We further divide each chunk into 2 lg n subchunks, each of 1
2 lg n bits. For each subchunk, we store a relative

cumulative rank that is the number of 1’s from the beginning of the chunk to the start of the subchunk.
This takes in total O(n · lg lgn

lgn) ∈ o(n) bits.

Finally, we store a lookup table that allows us to answer query within the subchunk. The lookup table stores
all possible bit vectors of the length of the subchunk, as well as the rank at each possible position. For
example, if the subchunk size is 3 bits. Then, we construct the lookup table as follows.

````````````bitvector
position 0 1 2

000 0 0 0
001 0 0 1
010 0 1 1
011 0 1 2
100 1 0 0
101 1 1 2
110 1 2 2
111 1 2 3

Each subchunk represents a bit vector of length 1
2 lg n. There are 2

1
2 lgn possible bit vectors of length

1
2 lg n. For each bit vector, there are 1

2 lg n possible offsets within the bit vector. Finally, each entry in
the lookup table takes lg( 12 lg n) bits to store. This gives us a total size of O(21/2 lgn · 1

2 lg n · lg( 12 lg n)) =
O(

√
n lg n lg lg n) ∈ o(n) bits. In total, our data structure takes o(n) bits and answering the rank query can

be done in O(1) time by adding up the results in the three-level index.

Rank(A, 1, i) = first

[
i

⌈lg2 n⌉

]
+ second

[
i

⌈ 1
2 lg n⌉

]
+ third [ci][(i mod ⌈1/2 lg n⌉)− 1]

where ci represent the bit vector A[k · (i/k) + 1 . . . (i/k + 1)− 1] for k = ⌈ 1
2 lg n⌉.



76 CHAPTER 7. BURROWS-WHEELER TRANSFORM AND FM INDEX

Clark’s Select

Next, we look at how to implement select using sublinear space and constant time. The algorithm will
roughly follow this outline:

1 locate the chunk the ith 1-bit is in
2 if chunk is sparse
3 look up answer in sparse offset table
4 elseif chunk is dense
5 look up chunk offset
6 locate the subchunk it is in
7 look up relative offset
8 if subchunk is sparse
9 look up answer in sparse subchunk table

10 return results from Line 4 + Line 6 + Line 9
11 elseif subchunk is dense
12 look up answer in dense lookup table
13 return results from Line 4 + Line 6 + Line 12

We first divide the bit vector into chunks so that each chunk contains lg2 n 1-bits. Note this is different than
how we divide the chunks in Jacobson’s select. The chunk here may have different sizes, but they all have
the same number of 1-bits in them. Since each chunk has different size, we need a lookup table to locate
the start of each chunk. This takes O( n

lg2 n
lg n) = O( n

lgn ) ∈ o(n) because in the worst case, every bit in the
vector can be a 1-bit.

Once we arrive at a chunk, we need to handle two cases. We say a chunk is sparse if it has length of at
least lg4 n bits. Otherwise, we say the chunk is dense. Intuitively, a chunk is sparse if the fraction of 1-bits
is less than square root of the total number of bits in that chunk. If the chunk is sparse, it turns out we
can simply store the answer to the select query. We have chosen the cut-off for sparsity so that the chunk
is sparse enough that the results of select query can fit in o(n) bit of memory. There can be at most n

lg4 n

sparse chunks in total. It takes lg n bits to store a single answer, and there are lg2 n 1-bits per chunk whose
answers need to be stored, giving us a total of O( n

lg4 n
· lg n lg2 n) = O( n

lgn ) = o(n) bits to store the select
query results to all bits inside sparse chunks.

In the case where the chunk is dense, we need some additional structures to support constant-time query
without exceeding the space bound of o(n). Recall that a chunk is dense if the length is < lg4 n. We can
split a dense chunk into subchunks so that each subchunk contains

√
lg n 1-bits. Similar to the chunks,

we need to store a relative offset to the start of each subchunk within a given chunk. Each relative rank
takes O(lg lg4 n) = O(lg lg n) bits to store. Overall, since there can be at most n√

lgn
subchunks, it takes

O(n lg lgn√
lgn

) ∈ o(n) bits to store all the relative ranks. We say a subchunk is sparse if its length is ≥ 1
2 lg n. In

the case that a subchunk is sparse, we can store the realtive offset for every 1-bit in that subchunk. It takes
O( n

1
2 lgn

· lg lg n) = O(n lg lgn√
lgn

) = o(n). If the subchunk is dense, then it is short enough that we can store

the answer for all possible chunks just like the lookup table in Jacbson’s rank. There are 2
1
2 lgn possible

bitvectors of length less than 1
2 lg n. Each subchunk can contain up to

√
lg n 1-bits and it takes lg lg n bits

to store an answer for each one of them. This takes in total O(
√
n lg n lg lg n) ∈ o(n) bits.

Overall, each step of the select query is a constant time operation, and each data structure we keep to answer
the select query can be stored in o(n) bits and there are only constant many such data structures (1 chunk
offset table, 1 sparse chunk lookup table, 1 subchunk relative offset table, 1 sparse subchunk lookup table,
1 dense subchunk lookup table), so the overall space usage is still in o(n).



7.2. FM INDEX 77

7.2.2 Wavelet Tree

Wavelet tree builds upon the results from our constant-time and sublinear space rank-select data structures
and support fast rank-select-access query for a string with arbitrarily large alphabet Σ where σ = |Σ|.
Consider a perfectly balanced binary tree where each node corresponds to a subset of the alphabet Σ.
The children of each node partition the node subset into two. A bit vector Bv at node v indicates which
children each sequence position belongs. Each children handles the subsequence of the parent’s sequence
corresponding to its alphabet subset. The root of the tree handles the sequence T [1 . . . n]. The leaves each
represent a single character of the alphabet and is not stored explicitly.

More concretely, suppose Σ = {A, C, G, T}. We first divide the alphabet into to subsets {A, C} and {G, T}. In
the bit vector at the root, we store 0 at position i if T [i] ∈ {A, C} and 1 if T [i] = {G, T}. The left child of
the root represents the subset {A, C} and the right child represents {G, T}. At the left child, we further split
{A, C} into {A} and {C}. And similarly, at the right child, we split {G, T} into {G} and {T}. Note at the child
node, we don’t store the bit vector corresponding to the entire string, but only parts of the parent string
with characters in the child’s alphabet subset. So in our example, we only store the fraction of the string
that has A and C in the left child of the root.

0 1 1 0 1 0 1 1 0 0 0 1 1 1 0 1 0 1 0 1 0 1 1 0

A G T C G A T T A C C G T G C G A G C T C T G A

0 1 0 0 1 1 1 0 1 1 0 0 1 0 1 1 0 1 0 0 0 1 1 0

A C A A C C C A C C A G T G T T G T G G G T T G

0 1

A C G T

Σ = {A, C, G, T}

Σ = {A, C} Σ = {G, T}

0 1 0 1

Figure 7.6: Example of a wavelet tree representing the string T = AGTCGATTACCGTGCGAGCTCTGA. We divide
the alphabet as described in the example.

We want to implement three operations: Access, Rank, and Select. As we have seen, rank-select-access
queries can all be done on a bit vector in O(1) time, so all of the algorithms below run in O(log σ) time.

A wavelet tree can be constructed in O(n log σ) time and takes n log σ(1 + o(1)) bits of space.

Access(T, i)
1 N = T.root
2 while N is not a leaf
3 B = N.bitvector
4 b = B.Access(i)
5 N = N.child [b]
6 i = B.Rank(b, i)
7 return N

Rank(T, c, i)
1 N = T.root
2 while N is not a leaf
3 B = N.bitvector
4 Σ = N.alphabet
5 if Σ.IndexOf(c) ≤ |Σ|/2
6 b = 0
7 else
8 b = 1
9 N = N.child [b]

10 i = B.Rank(b, i)
11 return i

Select(T, c, i)
1 N = T.leaf (c)
2 while N is not a leaf
3 N = N.parent()
4 B = N.bitvector
5 Σ = N.alphabet
6 if Σ.IndexOf(c) ≤ |Σ|/2
7 b = 0
8 else
9 b = 1

10 i = B.Select(b, i)
11 return i



78 CHAPTER 7. BURROWS-WHEELER TRANSFORM AND FM INDEX

7.2.3 Efficient LF Mapping

The main reason that we went on a detour about succinct data structures is so that we can to rank-select
queries more efficiently on a BWT. It will be crucial to speeding up operations on our FM index.

An FM index for a text T consists of the BWT of T BWT(T ) stored in a wavelet tree; and an integer array
C which we call the skip-amount array. C[c] stores the number of characters alphabetically smaller than c
in T . Now, given a c at position i in L, we can compute the corresponding c in F using

BWT(T ).Rank(c, i) + C[c].

This is correct because C[c] gives us the offset where the c-block starts in F , and the rank query gives us
the relative offset within the c-block because the L column and the F column have the same relative order
of ranks. This means we can now compute the inverse BWT in O(n lg σ) time.

7.2.4 Count

To implement Count which outputs the number of occurrences of a given pattern P , we first make some
important observations. We first note that every substring is a prefix of some suffix. Rows with the same
prefix are consecutive in the BWT matrix, and characters in the last column (L) are those preceeding the
prefixes in T . The idea of our counting algorithm is to start with the shortest suffix and try to match the
pattern to successively longer suffixes.

We start from the last character pm of the pattern and find a prefix of suffix that starts with pm. Given
a prefix of a suffix, we can peek at the previous character immediately preceeding the start of the prefix
by looking at the corresponding character in the L column. We then perform an LF mapping to go to the
previous character that matches with pm−1. We slowly narrow our range, specified by the pointers sp and
ep until we either reach the end of the pattern or when the size of our search range becomes 0.

Count(L,C, T, P )

// Precondition: L is a BWT of T stored in a wavelet tree;
// C is the skip-amount array; T is null-terminated with a $
// P is the pattern that we are counting

1 i = |P |
2 (sp, ep) = (1, n)
3 while sp ≤ ep and i > 1
4 c = P [i]
5 sp = C[c] + L.Rank(c, sp − 1)
6 ep = C[c] + L.Rank(c, ep)
7 i = i− 1
8 if ep < sp
9 return 0

10 else
11 return ep − sp + 1

See Figure 7.7 for an example of a run of Count. Count runs in O(m lg σ) time where m = |P |.



7.2. FM INDEX 79

$ a b a a b
a0 $ a b a a
a1 a b a $ a
a2 b a $ a b
a3 b a a b a
b0 a $ a b a
b1 a a b a $

F L

P = abaaba

sp

ep

a0
b0

b1

a1
$
a2
a3

Rank(a, sp)

Rank(a, ep)

$ a b a a b a0
a0 $ a b a a b0

a1 a b a $ a b1

a2 b a $ a b a1
a3 b a a b a $
b0 a $ a b a a2
b1 a a b a $ a3

F L

P = aba

Rank(b, sp)
Rank(b, ep)

sp

ep

$ a b a a b a0
a0 $ a b a a b0

a1 a b a $ a b1

a2 b a $ a b a1
a3 b a a b a $
b0 a $ a b a a2
b1 a a b a $ a3

F L

P = abaaba

Rank(a, sp)
Rank(a, ep)

sp

ep

$ a b a a b a0
a0 $ a b a a b0

a1 a b a $ a b1

a2 b a $ a b a1
a3 b a a b a $
b0 a $ a b a a2
b1 a a b a $ a3

F L

P = aba

sp

ep

Figure 7.7: Count ran on T = abaaba and P = aba.

7.2.5 Locate

For Locate, the goal is to find all offsets where a given pattern P occurs as a substring of T . It is easy to
implement Locate with the help of a suffix array because we can simply search through the suffix array and
return the offsets at which P occurs as a prefix of the suffix. But a suffix array would be too big to store
and it defeats the purpose of an FM index.

We instead stores a sample suffix array or succinct suffix array. Let r be the sample rate. Specifically, we
keep the value of the suffix array at i if SA[i] = rk for 0 ≤ k ≤ n

r where n is the length of the string. In
addition to the sample suffix array, we store a bit vector B such that B[i] = 1 iff SA[i] = rk, that is, if the
position i in the suffix array is sampled.

If B[i] = 1, we can access SA[i] by doing a rank query on the bit vector. So SA[i] = SSA[B.Rank(1, i)].
Otherwise, if B[i] = 0, we can set an auxillary variable j to i, and then iteratively update j to LF(j) until
B[j] = 1. We count the number of LF mappings required to get a 1-bit in the bit vector. Let d be the count.
Then, SA[i] = SA[j] + d = SSA[B.Rank(1, j)] + d. In the pseudocode below, let (L,C) be the FM index for
the text T where L is the BWT and C is the skip-amount array.

SA(i, SSA, B, L)

1 if B[i] == 1
2 return SSA[B.Rank(1, i)]
3 else
4 j = i
5 d = 0
6 while B[j] == 0
7 j = C[L[j]] + L.Rank(L[j], j)
8 d = d+ 1
9 return SSA[B.Rank(1, j)] + d

Computing the value at i of the suffix array using a sample suffix array takes O(r lg σ) time where r is
the sample rate since each of the d ≤ r steps requires one rank query which is done in O(lg σ) time on
a wavelet tree. By setting r = lg1+ϵ n/ lg σ, we can fit the entire sample suffix array in o(n lg σ) bits and
the computation of suffix array entries takes O(lg1+ϵ n) time. Having implemented this, we can implement
Locate quite easily without much space overhead.



80 CHAPTER 7. BURROWS-WHEELER TRANSFORM AND FM INDEX

7.3 Bidirectional BWT Index

Given a null-terminated string T and its reversal TR, let I(W,T ) be the function that returns the interval
in BWT(T ) of the suffixes of T that is prefixed by string W . The interval I(W,T ) in the suffix array of
T contain all the starting positions of W in T . We consider a data structure that supports the following
operations:

1. Is-Left-Maximal(i, j): returns 1 iff substring BWT(T )[i . . . j] contains at least two distinct characters

2. Is-Right-Maximal(i, j): returns 1 iff substring BWT(TR)[i . . . j] contains at least distinct characters

3. Enumerate-Left(i, j): returns all distinct characters that appear in BWT(T )[i . . . j]

4. Enumerate-Right(i, j): returns all distinct characters that appear in BWT(TR)[i . . . j]

5. Extend-Left(c, I(W,T ), I(WR, TR)): returns the pair (I(cW, T ), I(WRcTR))

6. Extend-Right: returns the pair (I(Wc, T ), I(cWRTR))

Figure 7.8: Example of a bidirectional BWT index for T = AGAGCGAGAGCGCGC. The squares represent the
interval pairs (I(W,T ), I(WR, TR)).

Although we will not give the algorithm here, we note that a bidirectional BWT index allows for the traversal



7.3. BIDIRECTIONAL BWT INDEX 81

of all nodes of the suffix tree in O(n log σ) time and O(σ log2 n) space. We only discuss the high level idea of a
bidirectional BWT and will mainly use it as a blackbox for implementing other algorithms in the subsequent
chapters.

Theorem 7.1 (Belazzougui et al., 2019). We can find all intervals of the suffix array of T that corresponds
to internal nodes of the suffix tree of T , as well as the length of the label of such nodes in O(n log σ) time
and O(σ log2 n) space.

Theorem 7.2 (Belazzougui et al., 2019). Given a string T ∈ [1 . . . σ]n, there is a representation of the
bidirectional BWT index of T that uses 2n lg σ(1 + o(1)) bits of space and supports all operations except
Enumerate-Left and Enumerate-Left in O(log σ) time. Enumerate-Left and Enumerate-Left
can be supported in O(d log(σ/d)) time where d is the output size.

Bibliography

Burrows-Wheeler transform is due to Burrows and Wheeler [4]. It was originally introduced as a compression
algorithm. FM index is developed by Ferragina and Manzini [7]. It is further improved to use wavelet tree.
Jacobson’s rank and Clark’s select discussed in this chapter are from two PhD theses [10] [5]. Wavelet tree
itself was developed by Grossi et al. [8]. Finally, bidirectional BWT index was developed by Belazzougui et
al. [1]. The overall presentation of this chapter is based on Ben Langmead’s lecture slides.





Part IV

Data in High-Dimensional Space

83





Chapter 8

Geometry of High-Dimensional Objects

Everything we looked at seems quite far removed from the biological application that we are interested. In
this chapter and the subsequent chapters, we will slowly piece together the mathematical concepts and see
how they affect and inspire the development of algorithms in computational biology.

For Part IV, we will look at is the dimensionality of the data that we will be dealing with. A lot of biological
data originates from genome sequencing. Sequencing is the process in which biological sample (in this case,
DNA or RNA) is read into a human readable string. There are a lot of intermediate steps involved between
putting a sample into the sequencer and getting a string output, and we will cover some of the algorithmic
aspects of this process in subsequent chapters. In this part, we will focus more on the dimensionality of our
output. With the development of next-generation Sequencing (NGS) technologies, especially PacBio HiFi
and Oxford Nanopore sequencing, we are now able to obtain raw sequencing reads of greater length. This
also presents the problem of how to analyze long sequencing reads and even genomic data in general. In this
chapter, we will be looking at some of the properties of data in high-dimensional space and how this may
limit our ability to analyze these data.

8.1 Most Volume of High-dimensional Objects is Near the Surface

Most volume of high-dimensional objects is near the surface. As an example, we consider the unit ball.

( )

−1 1

ϵ ϵ

ϵ

ϵ

2ϵ
2
= ϵ

2πϵ
π

= 2ϵ
4πϵ
4
3
π
= 3ϵ

Figure 8.1: From left to right: 1D ball (interval); 2D ball (circle); 3D ball (sphere) and the corresponding
approximate fraction of the volume ϵ distance away from the surface.

Theorem 8.1. More rigorously, consider any object A ⊂ Rd. Shrink A by a factor of ϵ to produce

(1− ϵ)A = {(1− ϵ)x | x ∈ A}

Then,
V ((1− ϵ)A) = (1− ϵ)dV (A)

Proof. Partition A into infinitestimal hypercubes. Then, (1 − ϵ)A is the union of the set of set of cubes

85



86 CHAPTER 8. GEOMETRY OF HIGH-DIMENSIONAL OBJECTS

obtained by shrinking the cubes by a factor of (1− ϵ). Shrinking the side-lengths by (1− ϵ) implies that the
volume of each hypercube is shrunk by (1− ϵ)d.

Note that 1− x ≤ e−x, so for any A ⊂ Rd,

V ((1− ϵ)A)

V (A)
= (1− ϵ)d ≤ e−ϵd → 0

as d → ∞. Thus, most volume is not in (1− ϵ)A.

Going back to the unit ball Bd ⊆ Rd, we have

V ((1− ϵ)Bd)

V (Bd)
≤ e−ϵd

so
V (Bd \ (1− ϵ)Bd) ≥ (1− e−ϵd)V (Bd).

Let ϵ = 1/d. Then,
V (Bd \ (1− 1/d)Bd) ≥ (1− e−1)V (Bd) ≈ 0.632V (Bd)

Most volume is contained in an annulus of width 1/d near the boundary. In other words, if ϵ = 1/d, over
half of the points in the hypersphere Bd is contained in the ϵ-annulus.

8.2 Most Points in a Unit Ball Are Nearly Orthogonal

Let us first define rigorously what it means for points to be “neraly orthogonal”. Recall the dot product

a · b =

d∑
i=1

aibi = ∥a∥∥b∥ cos θab.

So a · b is small (without having ∥a∥ and ∥b∥ being too small) implies a and b are “nearly orthogonal”.

WLOG, fix e1, the first unit vector, as “North”. Then, e1 · x = x1. Then, by showing most points are near
the equator, we can prove that most points are nearly orthogonal. Since the north pole is arbitrarily chosen,
the result holds for any pair of points.

More formally, we show that most of the volume of the unit ball have |x1| ≤ O(1/
√
d).

( )

− 1 1

Figure 8.2: Most volume of a high-dimensional hypersphere is near the equator

Theorem 8.2. For c ≥ 1 and d ≥ 3, at least

1− 2

c
e−

c2

2

fraction of the volume of Bd has |x1| ≤ c√
d−1

for x ∈ Bd.



8.2. MOST POINTS IN A UNIT BALL ARE NEARLY ORTHOGONAL 87

Proof. By symmetry, we only consider the top hemisphere of the unit hypersphere. Let

A = {x ∈ Bd | x1 ≥ c√
d− 1

}

and let
H = {x ∈ Bd | x1 ≥ 0}

be the upper hemisphere. Note that the volume of A, V (A), can be expressed as an integral

V (A) =

∫ 1

c√
d−1

(1− x2
1)

d−1
2︸ ︷︷ ︸

scale down

V (Bd−1)dx1︸ ︷︷ ︸
vol of unit radius
ball of dim d − 1

Pictorially,

Since 1− x ≤ e−x and x1

√
d−1
c ≥ 1 in A,∫ 1

c√
d−1

(1− x2
1)

d−1
2 V (Bd−1)dx1 ≤

∫ ∞

c√
d−1

e−
d−1
2 x2

1V (Bd−1)dx1

≤
∫ ∞

c√
d−1

x1

√
d− 1

c
· e− d−1

2 x2
1 · V (Bd−1)dx1

= V (Bd−1) ·
√
d− 1

c

∫ ∞

c√
d−1

x1e
− d−1

2 x2
1dx1

= V (Bd−1) ·
√
d− 1

c
·
[
− 1

d− 1
e−

d−1
2 x2

1

]∞
c√
d−1

=
V (Bd−1)

c
√
d− 1

e−
c2

2 .

This gives us an upper bound on the volume of A. Next, we derive a lower bound on V (H) using the fact
(1− x)a > 1− ax for a ≥ 1.

V (H) ≥ V ({x ∈ H | x1 ≤ 1√
d− 1

})

≥ V (Bd−1) ·
(
1− 1

d− 1

) d−1
2

· 1√
d− 1︸ ︷︷ ︸

vol of cylinder

≥ V (Bd−1)

2
√
d− 1



88 CHAPTER 8. GEOMETRY OF HIGH-DIMENSIONAL OBJECTS

Then,
V (A)

V (H)
≤ 2

c
e−

c2

2 .

The theorem tells us most points in a high-dimensional sphere is near the equator, which is orthogonal to
the arbitrarily chosen north pole. It follows that most pair of points are orthogonal.

Theorem 8.3. Consider drawing n points x1, . . . ,xn ∈ Bd uniformly at random. Then, with probability
1−O

(
1
n

)
,

1. ∥xi∥ ≥ 1− 2 lnn
8 for all i, and

2. ∥xi · xj∥ ≤
√
6 lnn√
d−1

for all i ̸= j.

This theorem further formalizes the notion that most points are near the surface and most pairs of points
are nearly orthogonal in a high-dimensional hypersphere.

Proof.

(1): For any fixed i,
Pr(∥xi∥ < 1− ϵ) ≤ e−ϵd

by Theorem 8.1. Then,

Pr

(
∥xi∥ < 1− 2 lnn

d

)
≤ e−2 lnn =

1

n2
.

By the union bound,

Pr

(
∃i, ∥xi∥ < 1− 2 lnn

d

)
≤ n · Pr

(
∥xi∥ < 1− 2 lnn

d

)
=

1

n
.

(2): By Theorem 8.2, for fixed i,

Pr

(
∥xi · e1∥ >

c√
d− 1

)
≤ 2

c
e−

c2

2

This implies that

Pr

(
∥xi · e1∥ >

√
6 lnn√
d− 1

)
≤ 2√

6 lnn
e−3 lnn =

2√
6 lnn

· 1

n3
∈ O

(
1

n3

)
.



8.2. MOST POINTS IN A UNIT BALL ARE NEARLY ORTHOGONAL 89

Note that this holds for any arbitrary North e1. There are
(
n
2

)
pairs i and j, so for each pair, we define

xj/∥xj∥ as the North. By union bound for all i ̸= j, the dot product condition fails with probability at most
O
((

n
2

)
n−3

)
= O(1/n).

Why does this matter? It turns out because most pairs of points are orthogonal, the volume of the unit
sphere approaches 0 as the dimension goes to infinity. Because of this, it is hard to sample points randomly
from a unit sphere. This result is formalized in the following corollary.

Corollary 8.4.
lim
d→∞

V (Bd) = 0

This should not be obvious, at least in low dimensions. In 1D, the volume is 2; in 2D, the volume is π; and
in 3D, the volume is 4

3π. This result can be shown directly from computing the volume (by integrating in
polar coordinate), which gives us

Vd(r) =


1 n = 0

2r n = 1
2π
n r2 · Vd−2(r)

and taking the limit as d → ∞ gives us Vd → 0. However, this can also be proved as a corollary of Theorem
8.2.

Proof. Let c = 2
√
ln d. By Theorem 8.2, at least a

1− 1√
ln d

e−2 ln d = 1− 1

d2
√
ln d

fraction of the volume has |x1| ≤ 2
√
ln d√
d−1

. This implies that for x ∈ Bd randomly drawn,

Pr

(
|x1| >

2
√
ln d√

d− 1

)
<

1

d2
√
ln d

<
1

d2
.

Let C be a box/hypercube with side length 4
√
ln d√
d−1

centered at the origin. This is a box covering the equator.
If z ∈ C ∩Bd, then

|zi| ≤
2
√
d√

d− 1

for all i ∈ {1, . . . , d}. By the union bound,

Pr

(
∀i, |xi| >

2
√
ln d√

d− 1

)
<

1

d
≤ 1

2

for d ≥ 2. Hence,

V (C ∩Bd) ≥
1

2
V (Bd),

but V (C) =
(

4
√
ln d√
d−1

)d
=
(

16 ln d
d−1

)d/2
→ 0 as d → ∞. This implies at least half the volume of the unit ball

Bd approaches 0 as d → ∞. It follows that V (Bd) → 0 as d → ∞.



90 CHAPTER 8. GEOMETRY OF HIGH-DIMENSIONAL OBJECTS

As we alluded to earlier, this fact actually makes it hard to sample directions uniformly from a ball. Sampling
from a cube and then projecting the points to the ball inscribed within does not work because when projected
to the ball, the resulting sampling would be biased towards the corners of the cube and thus not uniform.

And this not only affects random sampling. It also affects us when we want to separate or classify points
in high-dimensional space, a common task in computational biology. Due to the previous results, one
need exponentially (to the dimension) many points before getting one point that has a close neighbor in
high-dimensional space. This means methods like k-nearest neighbor may fail to classify data points in high-
dimensional space correctly, and canonical distance measure may fail to give us a reasonable approximation
to the similarity or dissimilarity between two data points – both crucial to applications involving biological
data. In the next chapter, we will start by looking at some biological applications involving points in high
dimensional space.

Bibliography

Contents of this chapter roughly follows the second chapter of the book Foundations of Data Science [2].



Chapter 9

Comparing Data in High Dimension

In this chapter, we will consider the problem of comparing data in high dimensions. As we have seen in the
previous chapter, as the dimension increases, it will become harder to separate or classify points in high-
dimensional space. We will discuss two main topics in this chapter: dimensionality reduction, and a practical
application in bioinformatics where we compare sequences without aligning them. Alignment-free sequence
comparison is often used as an alternative to alignment-based comparison using dynamic programming.

9.1 Johnson-Lindenstrauss Lemma and Random Projection

9.1.1 Gaussian Annulus Theorem

Recall that most points in a d-dimensional hyperball are tightly concentrated near the surface. The question
now is whether we can make similar conclusions about spherical Gaussians. Now, consider a d-dimensional
vector x = (x1, . . . , xd) where each xi ∼ N (0, 1) i.i.d. x is a spherical Gaussian random variable centered
at the origin with unit variance in every direction.

Gaussian do not have a boundary like hyperballs, but we have

E(∥x∥2) =
d∑

i=1

E(x2
i ) = dE(x2

1) = d[E(x2
1)− E(x1)

2] = d.

We call
√
d the radius of the spherical Gaussian. The Gaussian Annulus Theorem states that the points

distributed according to spherical Gaussian are tightly concentrated in a thin annulus of with O(1) at radius√
d just like points in hyperballs.

Theorem 9.1 (Gaussian Annulus Theorem). Let x = (x1, . . . , xd) where xi ∼ N (0, 1) i.i.d. Let r = ∥x∥.
Then for all β ≤

√
d, there exists some constant c, such that

Pr(|r −
√
d| ≥ β) ≤ 3e−cβ2

.

Proof. If |r −
√
d| ≥ β, then |r2 − d| ≥ β(r +

√
d) ≥ β

√
d. Thus, Pr(|r −

√
d| ≥ β) ≤ Pr(|r2 − d| ≥ β

√
d).

Note
r2 − d = (x2

1 + x2
2 + x3

3 + · · ·+ x2
d)− d = (x2

1 − 1) + · · ·+ (x2
d − 1).

Let yi = x2
i − 1. Then, E[yi] = E[x2

i ] − 1 = 0. To apply the Master Tail Bound theorem, we first compute
the moments of the variable yi. Since for |xi| ≤ 1, |yi|s ≤ 1 and for |xi| ≥ 1, |yi|s ≤ |xi|2s, then

|E[ysi ]| ≤ E[|yi|s] ≤ E(1 + x2s
i ) = 1 + E[x2s

i ]

which is equal to the even moments of Gaussian. Thus, by the Gamma integral,

E[ysi ] ≤ 1 +

√
2

π

∫ ∞

0

x2se−
x2

2 dx ≤ 2ss!.

It follows that Var(yi) = E[y2i ] − E[yi]2 = E[y2i ] ≤ 22 · 2 = 8. Unfortunately, we do not have |E[ysi ]| ≤ 8s!
as required by the Master Tail Bound Theorem. To fix this, we let wi = yi/2. Then, Var(wi) ≤ 2 and

91



92 CHAPTER 9. COMPARING DATA IN HIGH DIMENSION

|E[ws
i ]| ≤ 2s!. We can now bound the probability that |w1 + · · ·+ wd| ≥ β

√
d

2 using the Master Tail Bound
Theorem. Applying Theorem 2.18 with σ2 = 2 and n = d, we have

Pr(|r −
√
d| ≥ β) ≤ Pr

(
|w1 + · · ·+ wd| ≥

β
√
d

2

)
≤ 3e−

β2d
48·d·2 = 3e

−β2

96 .

The theorem holds by taking c = 1
96 .

9.1.2 Random Projection

Random projection tackles the problem of finding nearest neighbor of a given point v. More formally, given
x1, . . . ,xn ∈ Rd and v ∈ Rd, we would like to find argmaxi∥xi − v∥. The naive approach is to compare the
distance between v and every one of the n points. This takes O(n) comparisons and each comparison takes
O(d) time to compute ∥xi−v∥, giving us an overall runtime of O(dn). This is acceptable for low dimensional
data, but it can be infeasible for high dimensional data. There are many different ways to solve this problem,
including some techniques that we will cover in the next part on randomization. In this chapter, we will talk
about a technique that makes use of properties of random Gaussians.

Definition 9.2 (Random Projection). Pick k Gaussian vectors u1, . . . ,uk in Rd with unit-variance coordi-
nates. For any vector v, define the projection f(v) by

f(v) = (u1 · v, u2 · v, . . . , uk · v).

Alternatively, one can think of f(v) as the product of the vector v and a random matrix where each entry is
i.i.d. Gaussian. That is, f(v) = Av where aij ∼ N (0, 1) i.i.d.

Theorem 9.3 (Random Projection Theorem). Let v be a fixed vector in Rd and let f be a projection function
as defined in Definition 9.2. There exists constant c > 0 such that for ϵ ∈ (0, 1),

Pr
(∣∣∣∥f(v)∥ − √

k∥v∥
∣∣∣ ≥ ϵ

√
k∥v∥

)
≤ 3e−ckϵ2 .

Proof. Without loss of generality, assume ∥v∥ = 1; if not, we can rescale the inequality by a factor of ∥v∥.
The sum of independent Gaussians is still Gaussian where the expectation and variance are the sums of the
individual expectations and variances. Thus

E[ui · v] = 0 Var(ui · v) = Var

 d∑
j=1

uijvj

 =

d∑
j=1

v2jVar(uij) =

d∑
j=1

v2j = 1.

Let w = (u1 ·v, u2 ·v, . . . ,uk ·v) is a k-dimensional spherical Gaussian with unit variance in each coordinate.
Then, the theorem follows from the Gaussian Annulus Theorem.

The random projection theorem establishes that the probability of the length of the projection of a single
vector differing significantly from its expected value is exponentially small in k, which is the dimension of
the target space.

Next, we will prove the famous Johnson-Lindenstrauss Lemma, which says for a pair of n vectors, the pairwise
distance is also preserved by this dimensionality reduction using random projection. It is an immediate
consequence of the random projection theorem.



9.2. ALIGNMENT-FREE SEQUENCE COMPARISON 93

Lemma 9.4 (Johnson-Lindenstrauss Lemma). For any 0 < ϵ < 1 and any integer n, let k ≥ 3
cϵ2 lnn with c

as in Theorem 9.1. For any set of n points in Rd, the random projection f : Rd → Rk has the property that
for all pair of points vi and vj, with probability of at least 1− 3

2n ,

(1− ϵ)
√
k∥vi − vj∥ ≤ ∥f(vi)− f(vj)∥ ≤ (1 + ϵ)

√
k∥vi − vj∥.

Proof. By the random projection theorem, for any fixed vi and vj ,

Pr
(∣∣∣∥f(v)∥ − √

k∥v∥
∣∣∣ ≥ ϵ

√
k∥v∥

)
≤ 3e−ckϵ2 ≤ 3

n3

for k ≥ 3 lnn
cϵ2 . Since there are

(
n
2

)
< n2/2 pairs of points, by the union bound, the probability that any pair

has a large pairwise distance is bounded upper bounded by 3
2n .

Note that the Johnson-Lindenstrauss lemma holds for every pair of points in the set. Further, the number
dimensions in the projection only needs to be logarithmically on n. Since k is often much less than d, it
shows that random projection is a valid method for dimensionality reduction.

9.2 Alignment-Free Sequence Comparison

There are some immediate applications of random projection, including nearest neighbor search – the problem
of finding the closest point to a given query point. Naive methods often suffer from the curse of dimensionality
as we proved in the previous chapter. We can map the high dimensional data points to a lower dimension.
We will discuss more on this topic in Chapter 12 where we cover locality sensitive hashing. In this section, we
will discuss alignment-free sequence comparison, which is a technique used to compare biological sequences
without explicitly aligning them.

Alignment-free comparison usually relies on the use of composition vectors. We represent the sequences
S and T as vectors s and t. The vectors encode some substructures of a specific type (e.g. k-mers), and
values assigned to each entry of s and t usually correspond to the frequency of a given structure. Because
of this, s and t are often called composition vectors. In addition to a composition vector, we also need a
distance metric to score the similarity and dissimilarity between vectors. In this section, we will cover the
construction of the composition vector, different choice of distance metric, and finally, we will briefly touch
upon the algorithms and data structures for computing the distance without explicitly constructing the
composition vectors in cases where explicitly constructing the vectors might be computationally prohibitive.

The frequencies encoded in a composition vector captures genome-wide compositional biases and thus allows
one to estimate similarity between two evolutionary distant species, a task not suitable for alignment based
methods due to the large dissimilarity.

9.2.1 Distance Metric

Let S and T be two strings over the alphabet Σ = {1, . . . , σ}. A substring W ∈ {1, . . . , σ}k of a fixed length
k > 0 is called a k-mer.

We denote by fS(W ) the frequence (number of occurrences) of string W in S and pS(W ) be the empirical
probability of W occurring in S. pS(W ) is normalized so that it satisfies the property of being a probability
distribution.

pS(W ) =
fS(W )

|S| − k + 1
.



94 CHAPTER 9. COMPARING DATA IN HIGH DIMENSION

The distance that we want to compute given s and t is the cosine similarity. We are using the term distance
very loosely here since the functions we discuss may or may not be an actual distance function in Rn.

Definition 9.5. Given s and t, we define the cosine similarity to be

κ(s, t) =

∑
W

sW tW√√√√(∑
W

s2W

)(∑
W

t2W

) . (9.1)

Figure 9.1: The k-mer kernel for k = 2. The distance is given by the Euclidean (ℓ2) distance between s and
t.

The cosine difference can be converted into another alternative measure of dissimilarity.

d(s, t) =
1− κ(st)

2
.

Note that d is not a true distance function because it does not satisfy the Cauchy-Schwarz inequality. Recall
the definition of the p-norm and ∞-norm.

∥s− t∥p =

(∑
W

|sW − tW |p
)1/p

,

∥s− t∥∞ = max
W

{|sW − tW }.

Cosine similarity is closely related to the Euclidean (ℓ2) distance as it can be computed by dividing the dot
product of two vectors by their Euclidean norm. Thus, we will consider instead the problem of creating a low-
dimensional embedding that preserves the Euclidean distance between vectors using the random projection
method introduced earlier.



9.2. ALIGNMENT-FREE SEQUENCE COMPARISON 95

9.2.2 Closest Pair of Sequences Using Random Projection

One can easily compute the Euclidean distance between two vectors in O(d) time. However, this can often be
time consuming for high-dimensional vectors. If one directly convert the sequence into a vector and attempt
to compute the norm of such vector, it will take time proportional to the length of the sequence. One simple
way to solve this problem is to use composition vectors. Composition vectors provides a low-dimensional
summary of the substructures in the sequence. However, the shortcoming of using composition vectors is that
it does not account for the relative orders of the substructures (k-mers, for example), nor does it consider
structural differences caused by large indels. In this subsection, we cover an alternative way to reduce the
dimension of sequences using random projection and see how this method can be used to find the closest
pair of sequences given a set of sequences.

Consider the following algorithm. In the pseudocode, we use position(s) to denote the encoding of the
position of a substring s relative to a set of strings C. More concretely, let position(s) output a tuple
(i, j) where i is the index of the substring s in some c ∈ C, and j is the index of c relative to the set C.
position(s).src denotes the index of the sequence c ∈ C from which the substring s is obtained. m is the
number of random projections to perform, and d is the maximum number of substitutions allowed. The
algorithm outputs a set of all pairs of ungapped k-mers with at most d substitutions.

Closest-Pair-Sequence(C, ℓ, d,m, k)

1 A = ∅
2 repeat m times
3 f = Random-Positions(ℓ, k)
4 Φ = 0
5 for c ∈ C
6 for 1 ≤ j ≤ |c| − ℓ+ 1
7 s = c[j . . . j + ℓ− 1]
8 Φ = Φ ∪ {(f(s), position(s))}
9 C = {C1, C2, . . .} = Partition(Φ)

10 for Cq ∈ C
11 for (f(si), position(si)), (f(sj), position(sj)) ∈ Cq × Cq

12 if position(si).src ̸= position(sj).src and Count-Substitutions(si, sj) ≤ d
13 A = A ∪ {(position(si), position(sj))}
14 return A

The subroutine Random-Position(ℓ, k) samples k elements from {1, . . . , ℓ} uniformly with replacement.
Partition(Φ) partitions Φ into classes with the same projection value. That is, it partitions Φ into C =
{C1, . . .} where ∀(f(s1), p1), (f(s2), p2) ∈ Ci × Ci, f(s1) = f(s2).

We first analyze the runtime of this algorithm. For a set of N sequences each of max length n, creating the
tuples takes O(knN) time and partitioning also takes O(knN) using hash table or radix sort. For checking
the number of substitutions, it takes at most

∑
q O(|Cq|2) steps. In the subsequent analysis, we will show

how to obtain a bound on m and k so that the algorithm is guaranteed to return the correct result with high
probability. A concrete choice of m and k will also gives us a bound on the runtime for checking substitution.

Let s1, s2 be two sequences that differ in only d positions. A single randomly chosen projection sampling k
positions from ℓ positions will project s1 and s2 to the same result with probability at least (1−d/ℓ)k. Hence,
the probability that s1 and s2 are never projected together with m independent projections is bounded by[

1−
(
1− d

ℓ

)k
]m

.



96 CHAPTER 9. COMPARING DATA IN HIGH DIMENSION

This gives us a bound on the probability of a false negative (a pair of actually close sequences not included
in the result). To achieve a false negative probability of at most θ, we take

m ≥ log θ

log
(
1−

(
1− d

ℓ

)k) .
Next, for false positive, we assume a i.i.d. background sequence model. The probability that two independent
random ℓ-mers differ by exactly t substitutions is give by the binomial distribution.

β1−ϕ,ℓ(t) =

(
ℓ

t

)
(1− ϕ)tϕℓ−t

where ϕ is the probability that two bases match. We take ϕ = 0.25 for an equal distribution of bases in
DNA sequence but the value can be modified for biased genomic sequences. The chance that two not related
ℓ-mers projecting to the same value in a single projection is (1− t/ℓ)k. Summing over all t > d, we have

FP =

ℓ∑
t=d+1

β1−ϕ,ℓ(t)

(
1− t

ℓ

)k

.

For m reptitions, the overall false positive probability is m·FP . With this bound on false positive probability,
we can also bound the runtime for checking each pair of sequences in Cq × Cq. The checking steps takes
O(m · FP ·N2n2).

9.2.3 String Kernel Methods

The algorithm we discussed in the previous subsection, while has a nice theoretical guarantee, does not run
particularly fast and is not much better asymptotically than performing pairwise alignment for every pair of
sequences.

Now that we have explored the methods for creating a low-dimensional embedding of the sequences, we
consider a slightly different and more challenging problem – computing the distance between strings without
explicitly constructing the composition vectors. This is called a string kernel method.

Definition 9.6 (String Kernel). Given two strings S and T , a string kernel is a function that simulta-
neously converts S and T into vectors s, t ∈ Rn for some n > 0 and computes a similarity or distance
measure between s and t without building and storing s and t directly.

We highlight that part of the definition that says “without building and storing s and t directly”. Often time,
it would be too costly to store and perform computation on such big vectors. Plus, we will encounter issues
discussed in the previous chapter when dealing with vectors in high-dimensional space. In other words, the
string kernel must be able to compute the similarity score without ever constructing the vectors.

The algorithms and kernels discussed in this chapter work even for non-standard norms:

N =
⊕
W

g1(sW , sT ) (9.2)

DS =
⊗
W

g2(sW ) (9.3)

DT =
⊙
W

g3(tW ) (9.4)

where
⊕

,
⊗

,
⊙

are associative and communtative operators and g1, g2, g3 are arbitrary functions.



9.2. ALIGNMENT-FREE SEQUENCE COMPARISON 97

Substring and k-mer Kernels

The simplest way to represent a string as a composition vector is to count the frequency of all its distinct
substrings of a fixed length (k-mers).

Definition 9.7 (k-mer Spectrum and Complexity). Given a string S ∈ {1, . . . , σ}+ and length k > 0, let
vector sk be such that sk[w] = fS(W ) for every W ∈ {1, . . . , σ}k. The k-mer complexity C(S, k) is the
number of non-zero entries of sk.

The k-mer kernel is then the function that computes Equation 9.5 evaluated on sk and tk. If we remove
the constraint that all substrings must be of the same length k > 0, we get the substring kernel.

Consider a suffix tree of string S and recall that every substring is a prefix of a suffix. It follows that each
k-mer (substring of length k) in S corresponds to some node v in the suffix tree such that the root-to-node
label length ℓ(v) = k. We can then compute the k-mer complexity as follows.

1. Initialize the count C(S, k) to |S|+ 1− k. This is the number of leaves that correspond to suffixes of S
of length at least k.

2. For each node v of the suffix tree, let ℓ(v) be the label on the path from root to v. If |ℓ(v)| < k, do
nothing. Otherwise, we increment C(S, k) by 1 and decrement it by the number of children of v. This
is correct because if |ℓ(v)| ≥ k, its children must have root-to-node label of length strictly greater than
k so they cannot be a k-mer locus. We add 1 because v itself could potentially be a k-mer locus.

This is called the telescoping technique. We claim that at the end of this algorithm, C(S, k) is equal to the
number of unique k-mers in S. To see why, we need to show that it does not overcount nor undercount.
Every node v that is at depth at least k and that is not a locus of a k-mer is both added to C(S, k) when
we visit them, and removed from C(S, k) when we visit its parent. If its parent is visited, that means all its
children cannot be a k-mer locus. All leaves at depth at least k is added at initialization, but subtracted if
when its parent is visited. To show it also does not undercount, we note that every k-mer locus v is added
to the count but never subtracted because its parent will have |ℓ(v.parent)| < k.

This can be computed efficiently using bidirectional BWT introduced in Chapter 7. In particular, Theorem
7.1 tells us that we can traverse the vertices of a suffix tree efficiently, and Theorem 7.2 tells us that
Enumerate-Right can be implemented correctly, which can be used to calculate |ℓ(v)| for every vertex v.

The cosine similarity between two k-mer spectra can also be calculated similarly using a telescoping technique
like this.

9.2.4 Compression Distance

Finally, we briefly discuss another alternative method for comparing sequences without alignment. This does
not suffer as much from the usual curse of dimensionality because it does not use a Euclidean metric but
instead relies on information theory.

Recall the LZ complexity, defined in Chapter 3. We defined the normal compression distance with respect
to LZ compression as

d(S,Q) =
c(SQ)−min{c(S), c(Q)}

max{c(S), c(Q)} .

The can be generalized to every compressor satisfying a set of properties.

Definition 9.8 (Normal Compressor). A compressor is normal if it satisfies the following properties for all
strings S, T , and U , up to an additive factor of O(log n) term, where n is the input size in bits:



98 CHAPTER 9. COMPARING DATA IN HIGH DIMENSION

• idempotency: C(SS) = C(S)
• monotonicity: C(ST ) ≥ C(S)
• symmetry: C(ST ) = C(TS)
• distributivity: C(ST ) + C(U) ≤ C(SU) + C(TU)
• subadditivity: C(ST ) ≤ C(S) + C(T )

For completeness, we prove that the normal compression distance is a distance metric (i.e. satisfies non-
negativity, identity, symmetry, and the triangle inequality).

Theorem 9.9. The normal compression distance is a distance metric.

Proof. Assume C is a normal compressor.

Then, d(S, T ) ≥ 0 by the monotonicity and symmetry of C. d(S, S) = 0 by the idempotency of C. d(S, T ) =
d(T, S) by the symmetry of C.

It remains to show that d satisfies the triangle inequality. Without loss of generality, suppose that C(S) ≤
C(T ) ≤ C(U). From symmetry, we know that it suffices to prove the triangle inequality for d(S, T ), d(T,U)
and d(S,U). That is, we prove that d(S, T ) + d(T,U) ≤ d(S,U). By distributivity of C, we have

C(ST ) + C(U) ≤ C(SU) + C(TU)

and by symmetry
C(ST ) + C(U) ≤ C(SU) + C(UT ).

Subtracting C(S) from both sides of the inequality gives us

C(ST )− C(S) ≤ C(SU)− C(S) + C(UT )− C(U).

Dividing both sides by C(T ) we have

C(ST )− C(S)

C(T )
≤ C(SU)− C(S) + C(UT )− C(U)

C(T )
.

By subadditivity, the LHS of this inequality is at most 1. If the RHS is at most one, then adding any positive
number to both the numerator and denominator can only increase the ratio. If the RHS is greater than
one, then adding a positive number to the numerator and denominator decreases the ratio, but the ratio is
still greater than one. But the LHS is still at most one. Thus, by adding a positive number to both the
numerator and denominator of the fraction on the RHS, the RHS remains greater than or equal to the LHS.
It follows that by adding a δ such that δ = C(U)− C(T ), we have

C(ST )− C(S)

C(T )
≤ C(SU)− C(S)

C(U)
+

C(UT )− C(T )

C(U)
.

Bibliography

Proof and presentation of Johnson-Lindenstrauss lemma and the Gaussian annulus theorem roughly follows
the second chapter of the book Foundations of Data Science [2]. The idea of using of random projection for
sequence comparison is based on the PhD thesis by Jeremy Buhler [3]. Rest of the discussion on alignment-
free sequence comparison is based on [18].



Part V

Randomness and Randomization

99





Chapter 10

Markov Chain and Random Process

Markov chain is a useful tool for modeling random processes such as random walks. More specifically, Markov
chains are often used to model situations where all the information of the system necessary to predict the
future can be encoded in the current state. In this chapter, we will look at two important applications of
Markov chains. The first application is the Markov Chain Monte Carlo (MCMC) method, widely used to
sample a large space according to some probability distribution p. This is extremely useful when the sample
space is very large. We can design a Markov chain where the states corresponds to the elements of the space
and a useful property of Markov chain guarantee that by designing the Markov chain in a certain way, we
will eventually converge to a stationary distribution.

The other application is Hidden Markov Models (HMMs), where we fit a Markov chain to model a random
processes with unobservable states. This is used to solve the segmentation problem where we we would like
to find a segmentation of the sequence S using information from other sequences with known segmentation.

10.1 Definitions

Definition 10.1 (Markov Chain). A Markov chain is a random process generating a sequence of states
S = s1s2 · · · sn such that the probability of emitting each state si ∈ Ω is fixed and depends only on the previous
states. This is called the transition probability, and we denote it Pr(si | si−1). This property is referred
to as memorylessness.

A Markov chain can be described equivalently as a finite-state machine or direct graph.

Definition 10.2 (Markov Chain). Consider the graph G = (Ω, E) where each edge (x, y) ∈ E has weight
Px,y. P is a matrix where all entries are non-negative and the sum of entries in every row equals 1. P is
called the transition matrix. A Markov chain is a random walk on the graph (X0, X1, . . .) defined by
X0 = x0 with

Pr(Xt = y | Xt−1 = x,Xt−2 = xt−2, . . . , X0 = x0) = Pr(Xt = y | Xt−1 = x) = Px,y.

The vertex set Ω is called the state space and the vertices are called states.

More generally, the starting state does not have to be fixed, and can be random and given by a vector p,
with entries indexed by Ω where Pr(X0 = x) = px. Further, if we remove the memorylessness requirement,
we obtain a Markov chain with finite memory where

Pr(Xt = y | Xt−1 = x,Xt−2 = xt−2, . . . , X0 = x0) = Pr(Xt = y | Xt−1 = x, . . . ,Xt−m = xt−m)

with t > m. m is the the memory span of the Markov chain and is called the order of the Markov chain.

10.1.1 Fundamental Theorem of Markov Chain

For each time step t, let us define a row vector p(t) with non-negative entries summing up to 1 and p(t)x =
Pr(Xt = x). Then, by definition of a transition matrix,

p(t+ 1) = p(t)P

101



102 CHAPTER 10. MARKOV CHAIN AND RANDOM PROCESS

and for t > 0
p(t) = p(0)P t.

The goal of this section is to prove the Fundamental Theorem of Markov Chain that asserts a Markov chain
satisfying a certain property that is truely memoryless has a stationary distribution as t → ∞. We first
formalize the two properties that will be important to proving the fundamental theorem.

Definition 10.3 (Irreducibility). A Markov chain with transition matrix P is called irreducible if for all
states x, y ∈ Ω, there exists a t such that Pr(Xt = y | X0 = x) = (P t)x,y > 0. Equivalently, the directed
graph G represented by P is strongly connected.

Theorem 10.4 (Aperiodicity). A Markov chain with transition matrix P is called aperiodic if for all states
x ∈ Ω, we have that the greatest common divisor of the set {t ≥ 1 | Pr(Xt = x | X0 = x) = (P t)x,x > 0} is
equal to 1. That is, for any state v ∈ Ω, gcd{|c| | c ∈ Cv} = 1 where Cv is the set of all directed cycles that
contains v. Equivalently, the undirected graph represented by P is bipartite.

There are some graph properties that provide some sufficient condition for an aperiodic Markov chain.

Proposition 10.5. Suppose that P represents an irreducible Markov chain with a graph G with has at least
one self-loop. Then, the Markov chain is aperiodic.

Proposition 10.6. Suppose that the graph G represented by P is symmetric (i.e. if (x, y) ∈ E, then
(y, x) ∈ E). Then, if G is also connected and contains an odd cycle, then the Markov chain is aperiodic.

In addition to these two proposition, there is another important property of irreducible and aperiodic Markov
chain that will be used in the proof of the fundamental theorem of Markov chain.

Lemma 10.7. If X is a irreducible and aperiodic Markov chain with transition matrix P , then there exists
a positive integer t0 such that for all t ≥ t0 and all x, y ∈ Ω, (P t)x,y > 0.

Proof. For the proof of this lemma, we invoke the following result from elementary number theory.

Let {c1, c2, . . . , cN} be a group of positive integers whose gcd is 1. Then, there exists a positive
integer t0 such that all integers t ≥ t0 can be written as t =

∑N
i=1 aisi for some nonnegative

integers ai.

We omit the proof of this result but it can be proved using Bézout’s identity and induction on N . Continuing
with the proof of the lemma, we note that irreducibility implies ∀x, y ∈ Ω,∃t ∈ N, (P t)x,y > 0. Fix some
x ∈ Ω. Suppose that there are N cycles of lengths c1, c2, . . . , cN starting and ending at state x. By definition
of aperiodicity,

gcd(c1, . . . , cN ) = 1.

By the earlier result from number theory, there exists a positive integer t0(x) such that for all t ≥ t0(x),
t =

∑N
i=1 aici for nonnegative ai’s. Thus, for all t ≥ t0(x), there is a cycle of length t from x to x obtained

by traversing the ith cycle of length ai times.

Now, by taking t′0 = maxx∈Ω{t0(x)}, we have for all t ≥ t0 and x ∈ Ω, (P t)x,x > 0. It remains to be shown
that there exists t0 such that for all t ≥ t0 and x, y ∈ Ω, (P t)x,y > 0. Again, by irreducibility, for every
x, y ∈ Ω, there exists tx,y such that (P tx,y )x,y > 0. Fix a pair of x, y ∈ Ω and take tx,y. We claim that there
is a path of length t′0 + tx,y from x to y by traversing a thourgh cycle of length t′0 along the path from x to
y. By construction of t′0, for every x, y ∈ Ω, there exists tx,y such that for all t ≥ t′0 + tx,y, (P t′0+tx,y )x,y > 0.

The lemma holds by taking t0 = t′0 +maxx,y∈Ω{tx,y} because t0 ≥ t′0 + tx,y for all x, y ∈ Ω.

We now prove the Fundamental Theorem of Markov Chain.



10.2. FUNDAMENTAL THEOREM OF MARKOV CHAIN 103

10.2 Fundamental Theorem of Markov Chain

Definition 10.8 (Stationary Distribution). A probability distribution π is stationary for a Markov chain
with transition matrix P if πP = π. In other words, π is stationary if, when the distribution of X0 is given
by Pr(X0 = x) = πx, then the distribution of X1 is also given by Pr(X1 = x) = πx.

Theorem 10.9 (Fundamental Theorem of Markov Chain). For every irreducible and aperiodic Markov
chain with transition matrix P , there exists a unique stationary distribution π. Moreover, for all x, y ∈ Ω,
(P t)x,y → πy as t → ∞. Equivalently, for every starting state X0 = x, Pr(Xt = y | X0 = x) → πy as
t → ∞.

10.2.1 Existence of Stationary Distribution

We show that for every finite Markov chain P , there exists some row vector π such that πP = π. This is
equivalent to (πP )⊤ = P⊤π⊤ = π⊤ so 1 is an eigenvalue of P⊤ with non-negative eigenvector π⊤. We will
prove this using a theorem from linear algebra known the Perron-Frobenius Theorem.

Theorem 10.10 (Perron-Frobenius Theorem). Each nonnegative matrix A has a nonnegative real eigen-
vector x with eigenvalue λ = max{|λi|}, where {λ1, . . . , λn} are eigenvalues of A.

Since P is a transition matrix, we have P · 1 = 1 by definition. Thus, P has an eigenvalue 1. Since every
eigenvalue of P is no large than the row sum which is 1, 1 is the largest eigenvalue. Further, we notice that
det(P⊤ − λI) has the same solution as det(P − λI). Thus, the maximum eigenvalue of P⊤ is also 1. By
Perron-Frobenius theorem, there exists a nonnegative eigenvector π such that

P⊤π = π ⇐⇒ π⊤P = π⊤.

It follows that the normalized vector π/∥π∥ is a stationary distribution of P .

10.2.2 Total Variation Distance

For the proof of the fundamental theorem, we use the total variation distance to show that the distribution
converges to the stationary distribution π. We prove convergence by showing that the total variation distance
approaches zero.

Definition 10.11 (Total Variation Distance). The total variation distance between two distributions µ
and ν on a countable state space is

dTV =
1

2

∑
x∈Ω

|µ(x)− ν(x)|.

Visually, the total variation distance is half of the area enclosed by the two curves of the probability distri-
bution functions.

The following lemma provide an equivalent characterization of the total variation distance that will be more
useful in our later proofs.

Lemma 10.12. Let µ and ν be two probability over a finite sample space Ω. Then,

dTV(µ, ν) = max
S⊆Ω

∣∣∣∣ PrX∼µ
(X ∈ S)− Pr

Y∼ν
(Y ∈ S)

∣∣∣∣ .
For notation simplicity, we will write PrX∼µ(X ∈ S) and PrY∼ν(Y ∈ S) as µ(S) =

∑
s∈S µ(s) and ν(S) =∑

s∈S ν(s).



104 CHAPTER 10. MARKOV CHAIN AND RANDOM PROCESS

µ

ν

Figure 10.1: The area between the graph of the two distribution µ and ν.

Proof. Let A be the subset of those elements x in Ω for which µ(x) ≥ ν(x). Then,

dTM =
1

2

∑
x∈Ω

|µ(x)− ν(x)|

=
1

2

∑
x∈A

(µ(x)− ν(x)) +
∑

x∈Ω\A

(ν(x)− µ(x))


=

1

2
(µ(A)− ν(A) + ν(Ω \A)− µ(Ω \A))

= µ(A)− ν(A)

= max
S⊆Ω

|µ(S)− ν(S)|.

The second to last inequality holds because µ(A)+µ(Ω\A) = 1 = ν(A)+ν(Ω\A), which implies µ(A)−ν(A) =
ν(Ω \A)− µ(Ω \A).

10.2.3 Coupling

Another important concept that will be needed for the proof of the fundamental theorem and the bound
on mixing time is the notion of coupling. The coupling of two distributions is simply a joint distribution of
them.

Definition 10.13 (Coupling). Let µ and ν be two distributions on the same space Ω. Let ω be a distribution
over the space Ω× Ω If (X,Y ) ∼ ω with X ∼ µ and Y ∼ ν, then ω is called a coupling of µ and ν.

For an example of couplings, consider the scenario where we have two coins: one is fair and the other one
is loaded so that Pr(H) = 1

3 and Pr(T ) = 2
3 . The following two tables define two different couplings of the

distribution of the coins.
XXXXXXXXXXcoin 1

coin 2 Head Tail Pr(coin 1)

Head 1/3 1/6 1/2
Tail 0 1/2 1/2

Pr(coin 2) 1/3 2/3

XXXXXXXXXXcoin 1
coin 2 Head Tail Pr(coin 1)

Head 1/6 1/3 1/2
Tail 1/6 1/3 1/2

Pr(coin 2) 1/3 2/3

The table defines a joint distribition and the sum of a certain row or column equal to the corresponding
marginal probability. Among all the possible couplings, sometimes we are interested in the one who is “mostly
coupled". We will formalize the notion of an “optimal” coupling in the subsequent subsections.



10.2. FUNDAMENTAL THEOREM OF MARKOV CHAIN 105

Lemma 10.14 (Coupling Lemma). Let µ and ν be two distributions on a sample space Ω. Then, for any
coupling ω of µ and ν,

Pr
(X,Y )∼ω

(X ̸= Y ) ≥ dTV(µ, ν).

Moreover, there exists a coupling ω∗ of µ and ν such that the inequality is tight. That is,

Pr
(X,Y )∼ω∗

(X ̸= Y ) = dTV(µ, ν).

Proof. Clearly,
Pr

(X,Y )∼ω
(X = Y ) =

∑
x∈Ω

Pr(X = Y = t) ≤
∑
x∈Ω

min{µ(x), ν(x)}.

Thus,
Pr

(X,Y )∼ω
(X ̸= Y ) ≥ 1−

∑
x∈Ω

min{µ(x), ν(x)}

=
∑
x∈Ω

(µ(x)−min{µ(x), ν(x)})

= max
S⊆Ω

{µ(S)− ν(S)}

= dTV(µ, ν).

For the optimal coupling, we construct ω∗ such that for each (x, y) ∈ Ω× Ω,

ω∗ =


min{µ(x), ν(y)} if x = y

max{µ(x)− ν(x), 0} ·max{ν(y)− µ(y), 0}
dTM(µ,ν)

otherwise.

We leave verifying that ω∗ is a coupling as an exercise to the reader. It suffices to show that for (X,Y ) ∼
ω∗,the marginal for X and Y are indeed µ and ν, respectively. Finally, if we let Ω+ = {x ∈ Ω | µ(x) ≥ ν(x)}
and Ω− = Ω \ Ω+ = {x ∈ Ω | µ(x) < ν(x)}, then

Pr
(X,Y )∼ω∗

(X = Y ) =
∑
x∈Ω

ω∗(x, x)

=
∑
x∈Ω

min{µ(x), ν(x)}

=
∑
x∈Ω+

ν(x) +
∑

x∈Ω−

µ(x)

= ν(Ω+)− µ(Ω−)

= 1− (µ(Ω+)− ν(Ω+))

= 1− dTV(µ, ν).

So, Pr(X,Y )∼ω∗(X ̸= Y ) = dTV(µ, ν), as desired.

10.2.4 Proof of the Fundamental Theorem of Markov Chain

We are finally ready to prove the fundamental theorem of Markov chain. The proof consists of three main
parts:

1. Show that there exists a stationary distribution. This is done in Subsection 10.2.1;



106 CHAPTER 10. MARKOV CHAIN AND RANDOM PROCESS

2. Use Step 1 and aperiodicity to show that limt→∞(P t)x,y = π for all x, y ∈ Ω. We do this by showing that
for any two x, y ∈ Ω, dTV(px(t), py(t)) → 0 as t → ∞ and dTV(px(t), π) → 0 as well;

3. Use Step 1 and 2 to show the uniqueness of the stationary distribution π constructed in the proof of
Lemma 10.14.

Recall that we denote Pr(Xt = x) as px(t). This notation is introduced in the first paragraph of Subsection
10.1.1.

Proof (convergence). Define ∆(t) = maxx∈Ω dTV(px(t)− π). We will show that limt→∞ ∆(t) = 0. First, fix
two arbitrary elements x, y ∈ Ω. We argue that px(t) and py(t) converge to the same distribution that is the
stationary distribution π.

Let Xt and Yt be two copies of the same Markov chain such that initially, X0 = x is independent and
Y0 ∼ π is distributed according to the stationary distribution π, and Xt and Yt stay independent, and evolve
according to the Markov chain, until the first time T where XT = YT . Then, for any t ≥ T , Xt and Yt stick
together. This is a coupling of X and Y . Formally, (Xt, Yt)t is a Markov chain on Ω× Ω with a transition
probability given by

Q((x1, y1), (x2, y2)) =


P (x1, x2) · P (y1, y2) if x1 ̸= y1

P (x1, x2) if x1 = y1 and x2 = y2

0 if x1 = y1 and x2 ̸= y2.

µ0 µ1 π π
≀ ≀ ≀ ≀
X0 → X2 → · · · XT → XT+1 → · · ·
Y0 → Y2 → · · · YT → YT+1 → · · ·
≀ ≀ ≀ ≀
π π π π

Let T = min{t : Xt = Yt} be a random variable for the earliest time Xt and Yt meet. By the coupling
lemma, for all t,

dTV(px(t), py(t)) ≤ Pr(Xt ̸= Yt) = Pr(T > t).

By Lemma 10.7, there exists some time step τ such that, for every two elements z1, z2 ∈ Ω, (P τ )z1,z2 > 0.
Let C = minz1,z2∈Ω{(P τ )z1,z2} > 0, and it follows that (P τ )x1,z · (P τ )y1,z ≥ C2 for every x1, y1, z ∈ Ω. This
tells us that after τ time steps, Xt and Yt will meet with probability of at least C2. Thus, using Xt and Yt

to denote the state of the Markov chain at step t, we have

Pr(Xkτ ̸= Ykτ ) ≤ (1− C2)k,

which approaches 0 as t = kτ → ∞. Therefore, dTV(px(t), px(t)) → 0 as t → ∞.

Proof (uniqueness). Suppose for contradiction that there exists some other stationary distribution π′. But,
by convergence and assumption that π′ is stationary,

π′ = lim
t→∞

π′(P t)x,y = lim
t∞∞

(P t)x,y = π.

This contradicts our assumption that π ̸= π′.

This concludes the proof of the Fundamental Theorem of Markov Chain.



10.3. THE METROPOLIS-HASTINGS ALGORITHM 107

10.3 The Metropolis-Hastings Algorithm

Having proven the Fundamental Theorem of Markov Chain, we will consider an application of it. The
problem we would like to solve in this section is described as follows. Suppose we have a state space Ω and
a vector of positive weights w, indexed by Ω. The weights define a probability distribution π, given by

πx =
wx∑
y∈Ω wy

.

We want to sample a random variable variable X, taking values in Ω. so that for every x ∈ Ω, Pr(X =
x) = πx. In practice, |Ω| can be very large and we would like the sampling to be much faster than O(|Ω|).
To solve this problem, we construct a Markov chain with its stationary distribution as π. One very general
method to do this is known as the Metropolis-Hastings algorithm.

The Metropolis-Hasting algorithm is a general method to design a Markov chain whose stationary distribution
is a given target distribution p. Suppose that Ω is some arbitrary state space, and G = (Ω, E) is a connected
graph such that if (x, y) ∈ E and (y, x) ∈ E. Let d be an upper bound on the maximum out-degree in G for
all state x ∈ Ω. Let w be the vector of positive weights that we will use as our stationary distribution. A
single step on this Markov chain is as follows.

Metropolis-Step(Xt)

1 N(Xt) = {y ∈ Ω | (Xt, y) ∈ E}
2 pick y so that for any y ∈ N(Xt), Pr(Y = y) = 1/d and Pr(Y = ⊥) = 1− |N(Xt)|

d
3 if Y == ⊥
4 Xt+1 = Xt

5 else

6 Xt+1 =

{
Y with probability 1

2 min{1, wY

wXt
}

Xt with probability 1− 1
2 min{1, wY

wXt
}

The following theorem proves the correctness of the Metropolis-Hastings algorithm.

Theorem 10.15. The Markov chain constructed by Metropolis-Step(Xt) is irreducible, aperiodic, and
has stationary distribution π = wx∑

y∈Ω wy
.

Proof. The Markov chain is irreducible because we assumed that G is connected and symmetric, so it is
strongly connected. Moreover, it is aperiodic because it is irreducible with at least one self-loop (as indicated
by Line 4 of the algorithm). For any x ̸= y such that (x, y) ∈ E, the transition probability is

Px,y =
1

d
· 1
2
min

{
1,

wy

wx

}
.

Moreover, by symmetry,

Py,x =
1

d
· 1
2
min

{
1,

wx

wy

}
.

It follows that
πxPx,y =

1

2d
∑

z∈Ω wz
·min{wx, wy} = πyPy,x.

Therefore, the Markov chain is time reversible, and thus has a stationary distribution π that is uniform over
Ω according to Lemma 10.17. Uniformity is from the fact that at each step, we have a 1/2 probability of
moving to a new state and any neighboring states is equally likely.



108 CHAPTER 10. MARKOV CHAIN AND RANDOM PROCESS

We will also prove the non-trivial fact we used at the end of the proof.

Definition 10.16 (Time Reversible Markov Chain). A Markov chain with transition matrix P is reversible
if there exists a probability distribution over Ω given by a vector π such that

πxPx,y = πyPy,x.

Lemma 10.17. If P defines a time-reversible Markov chain, and π satisfies that πxPx,y = πyPy,x, then π
is a stationary distribution.

Proof. By definition of time-reversible Markov chain,

(πP )y =
∑
x∈Ω

πxPx,y =
∑
x∈Ω

πyPy,x = πy

∑
x∈Ω

Py,x = πy.

The Metropolis-Hastings algorithm falls under a general class algorithms known as Markov Chain Monte
Carlo (MCMC). These algorithms roughly follows this paradigm: We construct a sequence of random vari-
ables that converges to the target probability distribution π. By the Fundamental Theorem of Markov Chain,
we should converge to this distribution regardless of our starting point as long as our chain is irreducible
and aperiodic.

10.4 Gibbs Sampling

The Gibbs sampling algorithm is another example of MCMC algorithms. Gibbs sampling can be used when
we are given the conditional probabilities of the parameters of interest, and we are interested in finding their
joint probabilities. To generate samples of x = (x1, . . . , xd) from a target distribution p(x), we repeat the
following steps:

1. Choose a variable xi to be updated

2. Update xi to a new value sampled based on the marginal probability of xi with other variables fixed.

Let x,y be two states that differ in only one coordinate. Without loss of generality, assume the first
coordinate is different. Then,

Px,y =
1

d
p(y1 | x2, x3, . . . , xd).

Similarly,

Py,x =
1

d
p(x1 | y2, y3, . . . , yd) =

1

d
p(x1 | x2, x3, . . . , xd).

By definition of conditional probability,

Px,y =
1

d
p(y1 | x2, x3, . . . , xd) =

1

d

p(y1 | x2, . . . , xd) · p(x2, . . . , xd)

p(x2, . . . , xd)

=
1

d

p(y1, x2, . . . , xd)

p(x2, . . . , xd)

=
1

d

p(y)

p(x2, . . . , xd)
.

Similarly,

Py,x =
1

d

p(x)

p(x2, . . . , xd)
.



10.4. GIBBS SAMPLING 109

It follows that p(x)Px,y = p(y)Py,x. By Lemma 10.17, this Markov chain has a stationary distribution that
is p.

Gibbs sampling is applied in bioinformatics to identify repeating motifs in DNA sequence. We describe one
step of this iterative algorithm. In this example, we set the k-mer size k = 7.

1. Choose a sequence for samping.

ACCATGACAG
GAGTATACCT
CATGCTTACT
CGGAATGCAT

2. Choose a random motif position for each sequence that is not selected for sampling.

ACCATGACAG
GAGTATACCT
CATGCTTACT
CGGAATGCAT

3. Construct count table for each position of the selected k-mer. Position 0 represents the portion of the
string not covered by the selected k-mer.

0 1 2 3 4 5 6 7
A 3 0 1 1 2 1 0 0
C 2 0 1 0 0 1 2 1
G 2 2 1 0 0 0 1 0
T 2 1 0 2 1 1 0 2

4. Convert count table to frequency table according to the following formula. ci,j represents the (i, j)-entry
of the count table and bi and B are pseudocount adjustments so that we don’t end up with a zero entry
in the final table. N is the number of sequences.

qi,j =
ci,j + bi

N − 1 +B
qj,0 =

ci,0 + bi∑i
k=1 ck,0 +B

0 1 2 3 4 5 6 7
A 0.31 0.1 0.3 0.3 0.5 0.3 0.1 0.1
C 0.23 0.1 0.3 0.1 0.1 0.3 0.5 0.3
G 0.23 0.5 0.3 0.1 0.1 0.1 0.3 0.1
T 0.23 0.3 0.1 0.5 0.3 0.3 0.1 0.5

5. Calculate weight for each possible motif position (offset) in the chosen sequence. The weight is calculated
using the following formula, for sequence S = ACCATGACAG. In the formula, k is the length of the k-mer.

wi =

∏k−1
j=0 qS[i+j],j+1∏k−1
j=0 qS[i+j],0

Normalize wi so that w is a probability distribution. This gives us the probability that the k-mer starting
at position i is generated by the profile.

6. Randomly draw a sample from the distribution w and update the motif position of the chosen sequence
to the newly sampled position.

To find the best motif position, we repeat the steps described above until the resulting motif position
converges. For biased samples, Gibbs sampling can be modified to work with relative entropies instead of
frequencies.



110 CHAPTER 10. MARKOV CHAIN AND RANDOM PROCESS

10.5 Hidden Markov Model

The previous few sections focused on using Markov chains for sampling, but they are equally as useful for
optimization problems. Suppose we are given a set of sequence with annotation that tells us which region
of each sequence is coding-region and which is not. We also have a new sequence without annotation. We
would like to find an optimal segmentation of this novel sequence and annotate it (assign regions of this new
sequence as either coding or non-coding regions). We can model the annotated set using a Markov chain.
We omit the construction of this type of Markov chain, but we refer interested readers to the Baum-Welch
training algorithm. In subsequent discussion, we assume that the trained Markov model is given to us.

Figure 10.2: A trained Markov model that distinguishes coding and non-coding region by their GC-content.

The segmentation of a novel, unannotated sequence can be thought as a Markov chain in the trained model.
This type of model is called the Hidden Markov Model (HMM). Unlike the Markov chains that we
constructed earlier, in HMM, we don’t know the sequence of states of our Markov chain. We only know the
emitted string.

Formally,

Definition 10.18 (Hidden Markov Model). A hidden Markov model is a tuple (H,Σ, T, E,P) where H
is the set of hidden states, Σ is the set of symbols, T ⊆ H ×H is the set of transitions, E ⊆ H ×Σ is the set
of emissions, and P is the probability function for elements of T and E, satisfying the following conditions:

• There is a single start state hstart ∈ H with no incoming transitions and no emissions;

• There is a single end state hend ∈ H with no outgoing transitions and no emissions;

• Let P(h | h′) = Ph′,h denote the probability for the transition (h′, h) ∈ T and P(c | h) be the probability
of an emission (h, c) ∈ E. It must hold that∑

h∈H

P(h | h′) = 1 ∀h′ ∈ H \ {qend}

and ∑
h∈H

P(c | h) = 1 ∀h ∈ H \ {qend, qend}.

A path (chain) through an HMM is a sequence P of hidden states P = p0p1p2 . . . pnpn+1 where (pi, pi+1) ∈ T .



10.6. THE VITERBI ALGORITHM 111

The joint probability of P and a sequence S = s1s2 . . . sn ∈ Σn is

P(P, S) =
n∏

i=0

P(pi+1 | pi)
n∏

i=1

P(si | pi).

And our problem of finding an optimal segmentation can be reduced to finding an optimal path in the hidden
Markov model.

Problem 10.19. Given an HMM M over alphabet Σ and a sequence S = s1s2 . . . sn with each si ∈ Σ, find
the path P ∗ in M having the highest probability of generating S, namely,

P ∗ = arg max
P∈P(n)

P(P, S) = argmax
P∈P

n∏
i=0

P(pi+1 | pi)
n∏

i=1

P(si | pi).

To simpify our notation a little bit, we give the following definition where we ignore the first and the last
transitions, respectively. For path P = p0p1 . . . pn through the HMM, we define

Pprefix(P, S) =

n−1∏
i=0

P(pi+1 | pi)
n∏

i=1

P(si | pi).

Similarly, for path P = p1 . . . pnpn+1, define

Psuffix(P, S) =

n∏
i=1

P(pi+1 | pi)
n∏

i=1

P(si | pi).

10.6 The Viterbi Algorithm

The Vertibi algorithm solves the problem of finding the most probable path in an HMM. It is analogous to
the Bellman-Ford algorithm for finding the shortest weighted path in a graph. For every i ∈ [n] and h ∈ H,

v(i, h) = max{Pprefix(P, s1, . . . , si) : P = hstartp1 · · · pi−1h}.

v(i, h) is the largest probability of a path starting from state hstart and ending in state h, given that the
HMM generated the prefix s1 · · · si of string S. v can be expressed equivalently as the following recurrence
relation.

v(i, h) = max{Pprefix(hstartp1 · · · pi−1h
′, s1, . . . , si−1) · P(h | h′) · P(si | h) : (h′, h) ∈ T}

= P(si | h) ·max{v(i− 1, h) · P(h | h′) : (h′, h) ∈ T},

where, by convention, v(0, hstart) = 1 and v(0, h) = 0 for all h ̸= hstart. Finally, we need to find an optimal
transition from the second-to-last state into the end state. The final solution is given by this equation.

max
P∈P(n)

P(P, S) = max
(h′,hend)∈T

{v(n, h′) · P(hend | h′)}.

The value of v can be computed in O(n|T |) time using a bottom-up DP approach. And to obtain the optimal
path, one can store traceback pointers as we fill the DP array.



112 CHAPTER 10. MARKOV CHAIN AND RANDOM PROCESS

Bibliography

The proof of the fundamental theorem roughly follows the structure from CSC473 lecture notes by Aleksandar
Nikolov at the University of Toronto. The Metropolis-Hastings algorithm is known to be first introduced in
the paper Equation of state calculations by fast computing machines [21]. The discussion of Gibbs sampling
is based on the book An Introduction to Bioinformatics Algorithms by Jones and Pevzner [11].



Chapter 11

Random Graph Theory

Definition 11.1 (Erdös-Rényi Random Graph). Let G(n, p) be a graph-valued random variable with vertices
V and edges E such that n = |V | and p = Pr({vi, vj} ∈ E) for any i ̸= j.

11.1 Bulk Properties of Random Graphs

Theorem 11.2. Let v1 ∈ V be a vertex of a random graph G(n, p). Let α ∈ (0,
√
np). Then,

Pr(|(n− 1)p− deg(v1)| ≥ α
√
(n− 1)p) ≤ 3e−α2/8.

Proof. Note that

deg(v1) =

n∑
i=2

I1,i

where

Ii,j =

{
1 if (vi, vj) ∈ E

0 otherwise

is an indicator random variable. Since the expected degree is just (n − 1)p, the proof then follows from
Chernoff bounds

Pr[|deg(v1)− (n− 1)p| ≥ c(n− 1)p] ≤ 3e−(n−1)pc2/8.

The theorem follows by setting c = a√
(n−1)p

.

Corollary 11.3. Suppose ϵ > 0. If p ≥ 9 lnn
(n−1)ϵ2 , then with 1− o(1) probability, for all i

deg(vi) ∈ [(1− ϵ)(n− 1)p, (1 + ϵ)(n− 1)p].

Proof. Let α = ϵ
√
(n− 1)p in the previous theorem. For a fixed i, the failure probability is ≤ 3e−ϵ2(n−1)p/8.

By union bound, the failure probability for every i is ≤ 3ne−ϵ2(n−1)p/8. By assumption, p ≥ 9 lnn
(n−1)ϵ2 , so the

failure probability for every i is upper bounded as follows.

≤ 3ne−ϵ2(n−1)p/8 ≤ 3ne−9/8 lnn = 3n− n−9/8 = 3n−1/8 ∈ o(1).

This corollary essential tells us that if p ∈ Ω( logn
n ), then with high probability, all vertices have tightly

concentrated degree.

113



114 CHAPTER 11. RANDOM GRAPH THEORY

11.2 Structures in Random Graphs

Theorem 11.4. For sufficiently large n, G(n, d
n ) has in expectation, approximately d3/6 triangles.

We first give an intuitive justification of the theorem. Here, as n increases, the number of triples grows in
order of n3. But each pair of vertices has a d/n probability to be connected by an edge. So a pair of 3
vertices has an approximately d3/n3 probability to be adjacent to each other.

Proof. Let ∆ijk be the indicator variable for the existence of a triangle with vertices vi, vj , vk ∈ V . Then,

E[number of triangles] = E

∑
i,j,k

∆ijk


=
∑
i,j,k

E[∆ijk]

=

(
n

3

)(
d

n

)3

=
n(n− 1)(n− 2)

6
· d

3

n3
≈ d3

6
.

Let X be the random variable denoting the number of triangles. So X =
∑

i,j,k ∆ijk. So,

E[X2] = E


∑

i,j,k

∆ijk

2
 = E

 ∑
i,j,k

i′,j′,k′

∆ijk∆i′j′k′

 .

But notice here, ∆ijk and ∆i′j′k′ are not independent. We split the sum into 3 parts:

S1 = {i, j, k, i′, j′, k′ | ∆ijk and ∆i′j′k′ share no edges}

S2 = {i, j, k, i′, j′, k′ | ∆ijk and ∆i′j′k′ share exactly 1 edge}
S3 = {i, j, k, i′, j′, k′ | ∆ijk = ∆i′j′k′}.

Note for the last case, if two triangles share 2 or 3 edges, it implies that the two triangles are the same. So,

E

[∑
S1

∆ijk∆i′j′k′

]
=
∑
S1

E[∆ijk]E[∆i′j′k′ ] ≤

∑
i,j,k′

E[∆ijk]

+

 ∑
i′,j′,k′

E[∆i′j′k′ ]

 .

The second case is tricky. There are
(
n
4

)
ways to choose 4 vertices and

(
4
2

)
ways to choose the two vertices

forming the shared edge. Finally, we have p5 probability that the remaining 5 edges are present to form two
triangles. So,

E

[∑
S2

∆ijk∆i′j′k′

]
=

(
n

4

)(
4

2

)
p5 ≈ n4

24
· 6 · p5 =

1

4
n4p5 =

1

4
n4 d

5

n5
=

1

4

d5

n
∈ o(1).

This tells us this case (two triangles sharing exactly one edge in a random graph) rarely happens.



11.3. PHASE TRANSITIONS IN RANDOM GRAPHS 115

Figure 11.1: Two triangles sharing exactly one edge.

Finally, for the last case,

E

[∑
S3

∆ijk∆i′j′k′

]
= E

[∑
S3

∆ijk

]
= E[X].

Combining every case together, we have

E[X2] ≤ E[X]2 + E[X] + ϵ

for some ϵ ∈ o(1). It follwos that

Var(X) = E[X2]− E[X]2 ≤ E[X] + ϵ

for ϵ ∈ o(1).

By Chebyshev’s inequality, for sufficiently large n,

Pr(X = 0) ≤ Var(X)

E[X]2
≤ E[X] + o(1)

E[X]2
≤ 6

d3
+ o(1).

Note from the first section, for p ≥ 9 lnn
(n−1)ϵ2 , deg(vi) ∈ [(1− ϵ)(n− 1)p, (1 + ϵ)(n− 1)p] with high probaility.

Then it follows that for a random graph G(n, d
n ), the degree for each vertex will be near d with high

probability. Then, for d < 3
√
6, E[X] = d3/6 < 1, so in this case, there will not be many triangles. This

should intuitively make sense because if most vertices have degree less than 2, then triangles should be rare
in such graphs.

11.3 Phase Transitions in Random Graphs

Definition 11.5 (Phase Transition). If there exists some function p(n) such that limn→∞ p1(n)/p(n) = 0
for some other function p1(n), G(n, p1(n)) does not satisfy a property with high probability, but for another
function p2 where limn→∞ p2(n)/p(n) = ∞, G(n, p2(n)) satisfies the same property with high probability,
then we say a phase transition occurs at the threshold p(n).

Definition 11.6 (Sharp Threshold). If for cp(n) such that when c < 1, G(n, cp(n)) does not satisfy a
property with high probability but for c > 1, G(n, cp(n)) satisfies the same property, then p(n) is a sharp
thershold.

Below is a list of properties with phase transitions in an Erdös-Rényi random graph.

There are mainly two methods for analyzing phase transitions.

1. First moment method: Let X(n) denote the occurrence of certain objects (structures, properties,
etc.) in a random graph. If E[X(n)] → 0 as n → ∞, then the graph almost surely has not occurrence
of such object.



116 CHAPTER 11. RANDOM GRAPH THEORY

Pr

0

1

p(n) p(n)

Pr

0

0.1

rescale

Figure 11.2: A graph illustration phase transition.

Probability Property (Behavior)

p ∈ o( 1n ) Graph is a forest of trees, component size bounded by O(log n)

p = d
n , d < 1 Graph has some cycles, component size bounded by O(log n)

p = d
n , d = 1 Component size bounded by O(n2/3)

p = d
n , d > 1 Giant component plus some components with size bounded by O(log n)

p = 1
2
lnn
n Giant component plus isolated vertices

p = lnn
n No isolated vertices; existence of Hamiltonian circuits; graph diameter O(log n)

p =
√

2 lnn
n Graph diameter is 2

p = 1
2 Existence of clique of size (2− ϵ) lnn



11.4. MODELING PROTEIN-PROTEIN INTERACTION NETWORK 117

Proof. Since X(n) is non-negative, we can apply Markov’s inequality.

Pr(X(n) ≥ a) ≤ E[X(n)]

a

so if E[X(n)] → 0 as n → ∞, then

Pr(X(n) ≥ 1) ≤ E[X(n)] → 0.

2. Second moment method: Let X(n) be a random variable with E[X(n)] > 0. If Var(X) ∈ o(E[X(n)]2),
then X(n) > 0 almost surely.

Proof. By Chebyshev,

Pr(X ≤ 0) ≤ Pr(|X − E[X]| ≥ E[X]) ≤ Var(X)

E[X]2
→ 0.

This is the technique used to prove the occurrence of triangles in random graphs.

11.4 Modeling Protein-Protein Interaction Network

Systems biology studies biological systems as a whole. This includes the study of interaction between proteins,
genes, and the study of differential gene expression from data obtained via DNA microarray and RNASeq.
Networks play a crucial role in arriving at and summing up the holistic picture and in understanding the
emergent properties of the system. The volume of experimental data on protein-protein interactions is
rapidly increasing thanks to high-throughput techniques which are able to produce large batches of PPIs.
However, producing pairwise interaction data on a large set of potential interactors is often still infeasible
both computationally and practically. This requires us to model the interaction network using a random
graph model where the connectivity probability is trained to fit the experimental data.

Further, it is often hard to perform quantitative and qualitative analysis and comparisons on large-scale
graphs and networks. In these cases, analyses are often performed on subgraphs and components of the
graph. In this section, we will briefly discuss the ER random graph model and its application in PPI
network as well as how the phase transition properties may affect our ability to compare PPI networks.

We first note that the probability of a given node in a random graph on n vertices having degree k is given
by

Pr(deg(v) = k) =

(
n− 1

k

)
pk(1− p)n−1−k.

If n ≫ kz, the distribution becomes the Poisson distribution p(k) = zke−x

k! where z is the mean. As we
have seen earlier, if p ∈ Ω( logn

n ), then all vertices have tightly concentrated degree with high probability.
Additionally, random graphs tend to have small diameters.

When using the ER random graph model to model PPI networks, we need two parameters n and p. n is the
number of vertices, and p is calculated so that the expected number of the network equals to m.



118 CHAPTER 11. RANDOM GRAPH THEORY

Another important metric for a random graph is the cluster coefficient. Defined as follows:

Ci =
|{(vj , vk) ∈ E | vj , vk ∈ N(vi)}|

deg−(vi)(deg−(vi)− 1)

where N(vi) is the neighborhood of vi and deg− denotes the out-degree of a vertex. The overall clustering
in a network can be mesured using the average clustering coefficient, defined as

C =
1

n

n∑
i=1

Ci.

In real-world networks like PPI networks, the clustering coefficient tends to be high, while Erdös-Rényi graphs
do not. This is because in ER random graph, the probability of two vertices being adjacent is independent
and the clustering coefficient for a vertex in an ER random graph is just p, the connection probability.

This is not the only issue with using ER graphs as models for PPI network. Due to the phase transition
property of random graphs, it can be unreliable to compare networks using subgraphs. Commonly used
metrics like the GDDA (Graphlet Degree Distribution Agreement) exhibits unstable behavior when the
graph density is around the threshold region for the appearance of small subgraphs.

Bibliography

The last section of the chapter used idea and results from [22] while the rest of the material is based on
Chapter 8 of [2].



Chapter 12

Hashing

12.1 Hash Functions

Intuitively, sometimes it could be helpful to randomly map numbers. Given a domain U , and a range
[m] = {0, 1, . . . ,m − 1}, a truely random hash function is a map h : U → [m] where each h(x) is an
i.i.d. uniform r.v. in [m]. h is a |U |-dimensional random variable chosen uniformly at random from [m]U .

However, in practice, we need to store a hash function in order to use it again in the future. A truely
random hash function is very expensive to store. For every element in the universe, we need to store the
corresponding map under the hash function, taking O(|U | log2 m) bits of space.

More generally,

Definition 12.1 (Hash Function). A hash function h : U → [m] is a random variable in the class of all
functions U → [m] (not necessarily uniform).

A trivial example of a hash function is the identity map. Another more practical example uses a prime field:
Let h : [p] → [p] for a prime p given by h(x) = (ax+ b) mod b where a, b are uniformly chosen in [p].

We now formally define a desirable property of a hash function or family of hash functions. A fixed hash
function can always suffer from bad worst-case performance against an adversary. In order to obtain provable
results regarding hash functions, we need to introduce randomness and consider the expected performance.

Definition 12.2 (Universal Hash Family). A family H of hash functions h : U → [m] is universal if
∀x, y ∈ U. x ̸= y, then

Pr
h∈H

[h(x) = h(y)] ≤ 1

m
.

Note that for truly random hash functions, this probability is equal to 1
m . Furthermore, we say a family H

of hash functions is c-approximately universal if for all x, y ∈ U such that x ̸= y,

Pr
h∈H

[h(x) = h(y)] ≤ c

m

for some c ∈ O(1).

If |U | ≤ m, the identity function h(x) = x is universal on [|U |] → [m]. If |U | ≥ m, the mod function h(x) = x
mod m is not universal on [|U |] → [m] because 1 and 1 +m collide with probability 1.

12.2 Strong Universality (2-Independence)

Definition 12.3 (2-Independence). A random hash family H of h : U → [m] is 2-independent or strongly
universal if

Pr
h∈H

[h(i1) = j1 ∧ h(i2) = j2] =
1

m2

for all i1 ̸= i2 and j1, j2.

119



120 CHAPTER 12. HASHING

Lemma 12.4. Strong universality implies universality.

Proof. Apply marginalization to sum over all possible choice of j2.

Theorem 12.5. Strongly universality is equivalent to the statement that each key is hashed uniformly into
[m] and that every two keys are hashed independently.

Proof.

( =⇒ ): Let h : U → [m] be strongly universal. Let x ̸= y ∈ U . Clearly, for all q ∈ [m],

Pr
h∈H

[h(x) = q] =
∑
r∈[m]

Pr
h∈H

[h(x) = q ∧ h(y) = r] =
m

m2
=

1

m
.

Hence, uniformity holds. Furthermore,

Pr
h∈H

[h(x) = q | h(y) = r] =
Prh∈H[h(x) = q ∧ h(y) = r]

Prh∈H[h(y) = r]
=

1
m2

1
m

=
1

m
= Pr

h∈H
[h(x) = q]

so independence also holds.

( ⇐= ): If h(x) and h(y) are independent and uniform. Then,

Pr[h(x) = q ∧ h(y) = r] = Pr[h(x) = q] · Pr[h(y) = r] =
1

m2
.

We can generalize the notion of 2-independence to k-independence.

Definition 12.6 (k-independence). H is a k-independent family if for all distinct i1, i2, . . . , ik ∈ U and for
all j1, . . . , jk ∈ [m],

Pr
h∈H

[h(i1) = j1 ∧ . . . ∧ h(ik) = jk] =
1

mk
.

There are some trivial examples of k-independent hashing families.

Example 12.7. The set H of all functions [u] → [m] is k-independent for all k. For this family, |H| = mu

so h ∈ H is representable in u lgm bits.

Now we consider a non-trivial example of a k-independent hash family. Let u = m = q where q is a prime
power and U = [u]. Let Hpoly-k be the set of all polynomials of degree at most k − 1 in Fq[x] (Galois field
of order q).

Claim. Hpoly-k is k-independent.

Proof. If we know that i1, . . . , ik are distinct, then using the Lagrange interpolation, we have

p(x) =

k∑
r=1

( ∏
y∈[k]\{r}(x− iy)∏
y∈[k]\{r}(ir − ry)

)
· jr

which satisfies p(ir) = jr for all r. Note that p(x) is a polynomial of degree k − 1. Furthermore, p(x) is the
unique polynomial of degree of at most k − 1, where p(ir) = jr. Thus,

p(x) = αk−1x
k−1 + · · ·+ α1x+ α0



12.3. FINITE FIELDS 121

so it is determined by k elements of Fq. Then, |Hpoly-k | = qk. It follows that

Pr
h∈Hpoly-k

[h(i1) = j1 ∧ . . . ∧ h(ik) = jk] =
1

qk

since only one of the qk polynomials of degree k − 1 satisfies that p(ir) = jr for all r.

This hash family is easier to store and represent. Each h ∈ Hpoly-k is representable using k lg q bits.

12.3 Finite Fields

Consider the Galois field Fq where q = 2w where w is the size of a word on a computer (usually 32 or
64). This turns out to be a reasonable choice for our hash family because 264 is a prime power. Recall
that F264 = F2[X]/(p) where p is an irreducible polynomial (i.e. cannot be factored) in F2[X] of degree
64. An element z ∈ F264 can be written as an−1x

n−1 + · · · a1x + a0 ∈ F2[x] where each ai ∈ {0, 1} and
(an−1, . . . , a1, a0) can be encoded as a 64-bit binary number. Addition in this field is easy.

an−1 · · · a0
XOR bn−1 · · · b0

(an−1 ⊕ bn−1) · · · (a0 ⊕ b0)

However, multiplication requires Euclidean division by p, which is harder compared to some other choices of
finite fields.

12.3.1 Prime Fields

Instead, we consider a better choice of a field for hashing. Let p be a large prime. Then Fp = Z/pZ and
multiplication is done modulo p. Recall that Mersenne primes are prime numbers of the form 2n − 1 which
is relatively close to what we want (a power of 2).

Claim. If n is composite, so is 2n − 1.

Proof. Let n = ab. Then,
2ab − 1 = (2a − 1)(1 + 2a + 22a + · · ·+ 2(b−1)a)

= (2b − 1)(1 + 2b + 22b + · · ·+ 2(a−1)b).

This tells us n being prime is a necessary condition for 2n − 1 to be prime. The following n’s are valid
Mersenne expononents so that 2n − 1 is prime: n = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127 (OEIS A00043).

Furthermore, it turns out arithmetics is easy on a prime field.

Claim. If p = 2q − 1 and p and q prime, then x ≡ x mod 2q +
⌊

x
2q

⌋
(mod p).

Proof. Let x = a2q + b where b < 2q. Then

x mod p = (a mod p)(2q mod q) + (b mod p)

= (a mod p)(2q mod 2q − 1) + (b mod p)

= (a+ b) mod p.



122 CHAPTER 12. HASHING

But a =
⌊

x
2q

⌋
is the upper bits and b = x mod 2q is the lower bits.

It follows from this claim that this is easy to compute on a computer using bit shifts.

(x >> q) =
⌊ x

2q

⌋
(x&p) = x mod 2q.

Then, y = x mod p can be computed by

1 y = (x&p) + (x >> q)
2 if y ≥ p
3 y = y − p

12.4 Universal Hashing of Variable-Length Strings

Consider x0, x1, . . . , xd where xi ∈ [u] and U = [u]. We would like to construct an approximately universal
hash family to [q]. Let q be a prime number and consider the finite field Fq. Let

px0,...,xd
(α) =

d∑
i=0

xiα
i.

Let ha(x0, . . . , xd) = px0,...,xd
(a) where a ∈ Fq uniformly drawn from the finite field.

Claim. If y0, . . . , yd′ is some other string with d′ ≤ d, then

Pr
a∈Fq

[ha(x0, . . . , xd) = ha(y0, . . . , yd′)] ≤ d

q
.

Proof. Note that ha(x0, . . . , xd) = ha(y0, . . . , yd′) is equivalent to px0,...,xd
(a) − py0,...,yd′ (a) = 0. But then

px0,...,xd
(a)−py0,...,yd′ (a) is also a polynomial in Fq[x]. By the fundamental theorem of algebra, the polynomial

px0,...,xd
(a)− py0,...,yd′ (a) has at most d distinct roots. So the probability that a random a ∈ Fq is the root

is at most d/q.

12.5 Applications of Hashing

Hashing has a wide range of applications in computer science and computational biology. It is used in the
construction of many data structures to achieve good expected runtime as well as cryptographic algorithms
that hash input string into a code or signature satisfying certain desirable cryptographic properties. Mean-
whle, locality sensitive hashing is used to map data points that are close to each other (with respect to some
distance function) in applications like data clustering and dimensionality reduction.

12.5.1 Hash Tables

Let S be a subset of the universe U where |S| = n ≤ m. Consider the hash table constructed using m
buckets with a randomly chosen universal hash function.

Now we use the definition of universality to prove that universal hash families perform well when used for
a hash table. For each hash table bucket i, let Si denote the set of all items x ∈ S with h(x) = i. The



12.5. APPLICATIONS OF HASHING 123

average-case performance of an insertion is the expected length of the chaining linked list at the bucket x
hashed to.

Assume that h is chosen from a universal hash family, and that on query h(x) = i such that x ̸∈ Si. Let Ix(y)
be the indicator random variable that is equal to 1 when h(x) = h(y). Then, by linearity of expectation and
universality of H,

E
h∈H

∑
y∈Si

Ix(y)

 =
∑
y∈Si

E
h∈H

[Ix(y)] =
∑
y∈Si

Pr
h∈H

[h(x) = h(y)] ≤ n

m
≤ 1.

That is, the average time complexity for insertion when using a universal hash family is O(1).

12.5.2 Checksums

Suppose that Alice wants to send a file F to Bob. Bob receives F ′. We would like to know if Bob received
the correct file as sent by Alice. The idea of checksum using hashing is to check if h(F ) = h(F ′) for some
hash function h. Ideally, if h(F ) = h(F ′), we can declare with high probability that F = F ′.

Problem 12.8. Assign a unique signature s(x) for all x ∈ S such that |S| = n. We want s(x) ̸= s(y) for
all x, y ∈ S where x ̸= y.

We can start by choosing a universal hash function s : U → [m]. We need to know how large m needs to be
in order to satisfy our requirements with high enough probability.

Pr
s∈H

[∃x, y ∈ S : s(x) = s(y), x ̸= y] ≤
∑

{x,y}∈S
x ̸=y

Pr[s(x) = s(y)]

≤
(
n
2

)
m

.

Therefore, by choosing m ≥ n2, we can guarantee a 1− 1
2n probability of no collision.

12.5.3 Bloom Filters

A Bloom filter is a data structure that is similar to a hash table but for checking set membership. It is
commonly used in genome assembly algorithms. It supports the following two operations:

1. Insert(x): insert x to the Bloom filter;

2. Check(x): returns true iff x is in the Bloom filter.

We would like both operations to be in constant time. We begin with a simple implementation: a bit vector
hash table. Let h be a hash function from a universal hash family H. Insert can be implemented very
easily, and same for Check.

Insert(T, x)
1 T [h(x)] = 1

Check(T, x)
1 if T [h(x)] == 1
2 return True
3 else return False



124 CHAPTER 12. HASHING

Of course, an important issue with this is that there is a chance that Check will return the incorrect result.
In particular, it is possible that x is not in the Bloom filter but its hash value collides with some other
element, say y, that is in the Bloom filter. We can boost the success probability by making k copies of the
Bloom filter, each with its own hash function hi, sampled from a universal family. The implementation only
needs to be slightly modified.

Insert(T, x)
1 for i = 1 to k
2 Ti[hi(x)] = 1

Check(T, x)
1 for i = 1 to k
2 if Ti(hi(x)) ̸= 1
3 return False
4 return True

Assuming universality, the collision probability is at most 1
m where m is the size of each Bloom filter. The

probability that a given bit is 0 after m elements are inserted is(
1− 1

m

)nk

.

Then, the probability of a false positive is

Pr(FP ) =

(
1−

(
1− 1

m

)nk
)k

=
(
1− eln(1−

1
m )nk

)k
.

This is minimized when we take k = ln 2 · m
n .

12.6 Locality Sensitive Hashing

Definition 12.9 (Locality Sensitive Hash Family). A family H of hash functions is said to be (d1, d2, p1, p2)-
sensitive with respect to some distance function d(·, ·) if for any p, q ∈ P and any h ∈ H,

• If d(p, q) ≤ d1, then h(p) = h(q) with probability at least p1
• If d(p, q) ≥ d2, then h(p) = h(q) with probability at most p2.

It can also be defined equivalently for similarity s(·, ·).
• If s(p, q) ≥ s1, then h(p) = h(q) with probability at least p1
• If s(p, q) ≤ s2, then h(p) = h(q) with probability at most p2.

12.6.1 Hamming Distance and Nearest Neighbor Search

In this subsection, we will consider the locality sensitive hash family for Hamming distance and how to use
this to implement a probabilistic data structure that allows for fast query of nearest neighbors.

Definition 12.10 (Hamming Distance). Let Σ = {0, 1 . . . , k − 1} be an alphabet, and let x, y ∈ Σd. Then,
the Hamming distance between x and y, dH(x, y) is defined as

dH(x, y) = |{i | xi ̸= yi}|.



12.6. LOCALITY SENSITIVE HASHING 125

For any i ∈ [d], g : {0, 1}d → {0, 1} is defined by gi(x) = xi. Suppose i is picked from [d] uniformly at
random. Then,

Pr
i∼[d]

(gi(x) = gi(y)) =
|{i | xi = yi}|

d
= 1− |{i | xi ̸= yi}|

d
=

1− dH(x, y)

d

And we can bound the collision probability:

1. If dH(x, y) ≤ r,
Pr(gi(x) = gi(y)) ≥ 1− r

d
= pi

2. If dH(x, y) ≥ Cr,

Pr(gi(x) = gi(y)) ≤ 1− Cr

d
= p2

We can define buckets using this LSH as follows.

{x ∈ {0, 1}d | gi(x) = 0} and {x ∈ {0, 1}d | gi(x) = 1}.

We can further amplify the probability gap by sampling more coordinates from the input point. For a
sequence of indices from I = (i1, . . . , ik) from [d], gI is defined by

gI(x) = (xi1 , xi2 , . . . , xik).

Here, k is a parameter to be decided later.

Example 12.11. For example, given x = (1, 0, 0, 1, 1, 1, 0) and I = (3, 1, 7), we have gI(x) = (0, 1, 0).

For I picked uniformly and independently from [d],

Pr(gI(x) = gI(y)) = Pr(xi1 = yi1 , . . . , xik = xik)

= Pr(xi1 = yi1) · · ·Pr(xik = yi,k) independence

=

(
1− dH(x, y)

d

)k

.

so

1. If dH(x, y) ≤ r,

Pr(gI(x) = gI(y)) ≥
(
1− r

d

)k
= pki

2. If dH(x, y) ≥ Cr,

Pr(gi(x) = gi(y)) ≤
(
1− Cr

d

)k

= pk2

We can then construct a data structure for near neighbor query using a two-level hashing scheme. The data
structure consists of the following:

• L hash tables T1, . . . , TL with m ≥ n slots each

• L regular hash functions h1, . . . , hL : {0, 1}k → [m], sampled from a universal family

• L locality sensitive hash function gI1 , . . . , gIL : {0, 1}d → {0, 1}k.
Searching for near neighbor in this data structure can be done using the procedure describe in the pseudocode.



126 CHAPTER 12. HASHING

Near-Neighbor(P, q)
1 num-checked = 0
2 for l = 1 to L
3 i = hl(gIl(q))
4 x = Tl[i].head
5 while x ̸= nil
6 if d(q, x) ≤ Cr
7 return x
8 num-checked = num-checked + 1
9 if num-checked == 12L+ 1

10 return fail
11 else
12 x = x.next
13 return fail

x

T1

TL

...

· · ·

· · ·

gI1

gI1(x) h1

gIL

gIL(x)

hL

Figure 12.1: A point is first hashed with the locality sensitive hash function g before hashed a second time
with h to determine the position in the hash table to insert. Resolve collision using chaining.

Locality sensitive hashing for Hamming distance and Euclidean distance by themselves are useful in ap-
plications such as nearest neighbor search and data clustering. However, there are also locality sensitive
hash functions designed for distance metrics that are commonly used in biology to measure the similarity
between sequences and gene sets. In the next few subsections, we will briefly talk about the techniques used
to construct and analyze locality sensitive hash functions for other non-Euclidean distance metrics like the
Jaccard and the edit distance.



12.6. LOCALITY SENSITIVE HASHING 127

12.6.2 Jaccard Index

Definition 12.12 (Jaccard Similarity). Let A,B ⊆ U be two subsets of the universe U . Let n = |A ∪ B|.
Then, the Jaccard similarity is defined as

J(A,B) =
|A ∩B|
|A ∪B| .

Jaccard similarity is a similarity measure for sets. It is used in bioinformatics to compare the similarity
between, say two gene sets. For large sets, it is often intractable to compute the Jaccard index directly by
taking the union and intersection of the sets as it would likely require storing the sets explicitly. We now
describe a procedure known as Min Hash for estimating the Jaccard similarity in the streaming model. The
goal of Min Hash is to compute the Jaccard index efficiently without explicitly computing the intersection
and union.

Min-Hash-Jaccard(A,B)

1 H = {random hash function hi : U → [q] | i ∈ [k]}
2 for i = 1 to k
3 if mina∈A hi(a) == minb∈B hi(b)
4 δi = 1
5 else
6 δi = 0

7 return Ĵ = 1
k

∑k
i=1 δi

Claim. If q ≥ kn2

δ and k > 2
ϵ2δ , then

Pr(|Ĵ − J | > ϵ) < δ.

This requires O
(

1
ϵ2δ log

kn2

δ

)
space.

Proof. Recall that if hi is a universal hash function, then all of hi(x) for x ∈ A ∪ B are distinct with
probability at least 1− δ/2k.

By the union bound, all the hi’s have no collisions with probability at least 1− δ/2. Then, with probability
at least 1− δ/2, hi(a) = hi(b) only if a = b. This implies

min
a∈A

hi(a) = min
b∈B

(hi(b)) =⇒ a = b.

Clearly, the converse is also true. Thus, E[δi] = J and E[Ĵ ] = J . Further, Var(δi) ≤ J . Then, by Chebyshev
and the fact that J ≤ 1,

Pr(|Ĵ − J | ≥ ϵ) ≤ Var(Ĵ)

ϵ2
≤

J
k

ϵ2
<

δJ

2
≤ δ

2
≤ δ.

This gives us an algorithm that gives us an estimate for the Jaccard index on expectation. It again used
the non-trivial assumption that we have oracle access to a set of random hash functions. It turns out that
k-independence is not sufficient for this purpose, and we need a minwise hash function.

Definition 12.13 (Minwise Hashing). Given a random permutation π of the universe U , the minwise hash
function is defined as

hπ(S) = min
x∈S

(π(x)).



128 CHAPTER 12. HASHING

This is closely related to the previous algorithm that computes the Jaccard. When we take a random hash
function and assume it has no collision, it is essentially a permutation of its domain. And taking the minimum
hash value over all elements is really just the same as finding the smallest element in a random permutation.
We will show that minwise hashing (a.k.a. MinHash) is locality sensitive for Jaccard similarity.

Proposition 12.14. For all sets S1, S2 ⊆ U , Pr(hπ(S1) = hπ(S2)) = J(S1, S2).

Proof. Let t be the element in S1 ∪ S2 with the smallest hash value so

t = argmin
i∈S1∪S2

hπ(i).

Then, S1 and S2 have the same hash value if and only if t ∈ S1∩S2. Since π is a random permutation, every
element is equally likely to be t. Thus,

Pr(hπ(S1) = hπ(S2)) = Pr(t ∈ S1 ∩ S2) =
|S1 ∩ S2|
|S1 ∪ S2|

.

Example 12.15. Let U = {0, 1, 2, 3, 4} with S1 = {0, 3, 4} and S2 = {1, 2, 3}. Let π = [3, 2, 0, 4, 1]. That
is, π maps 0, 1, 2, 3, 4 to 3, 2, 0, 4, 1, respectively. Then,

π(S1) = π({0, 3, 4}) = {3, 4, 1} =⇒ hπ(S1) = 1

π(S1) = π({1, 2, 3}) = {2, 0, 4} =⇒ hπ(S2) = 0.

In the next chapter, we will look at more applications of sketching algorithms and how to further improve
the space complexity of our Jaccard estimator.

12.6.3 Edit Distance

Edit distance is a similarity/dissimilarity measure for strings. In essence, edit distance counts the number of
edits (substitution, insertion, deletion) required to transform one string to another. In this section, we will
present the high-level idea behind the locality sensitive hash function for edit distance but will not go into
detail about the more rigorous analysis of our construction.

Issues With Jaccard and MinHash

Given a sequence A, let K(A) be the set of k-mers. You can read more on k-mer counting and other distance
metrics that use k-mer sets in Chapter 9. One might attempt to use the Jaccard index of the k-mer sets
of the two sequences as a proxy to approximate the edit distance. More specifically, we define the Jaccard
distance between two sets as

dJ(S1, S2) = 1− A ∩B

A ∪B
.

Then, we can analogously define the Jaccard distance of two sequences A and B as the Jaccard distance
between their corresponding k-mer sets.

dJ(A,B) = dJ(K(A),K(B)).



12.6. LOCALITY SENSITIVE HASHING 129

Indeed, if the edit distance is low, the Jaccard distance is also low. However, high edit distance does not
necessarily imply high Jaccard distance because Jaccard distance ignored k-mer repetition. Say for example,
let

A =

n−k︷ ︸︸ ︷
AAAAAAAAAAAAAAA

k︷ ︸︸ ︷
CCCCC

B = AAAAA︸ ︷︷ ︸
k

CCCCCCCCCCCCCCC︸ ︷︷ ︸
n−k

.

Clearly, the edit distance is high, whereas the Jaccard distance is 0 because they produce the same k-mer sets:
{AAAAA, AAAAC, AAACC, AACCC, ACCCC, CCCCC}. To avoid this issue, one may consider using weighted Jaccard
and multisets, defined as

Jw(A,B) =
|A ∩B|
|A|+ |B| where A and B are multisets.

However, we notice that although weighted Jaccard does not suffer from repetitive k-mers, it ignores the
relative order of the k-mers. Therefore, we can conclude from our two observations that Jaccard distance
is insensitive to either k-mer reptitions (e.g. repeated sequences, indels), relative positions of k-mers (e.g.
translocation), or both.

We will use a modified version of MinHash to construct a locality sensitive hashing scheme for the edit
distance. To rephrase it in LSH terminology, MinHash is a family of hash functions Hmin where

Hmin =

{
hπ(A) = min

x∈A
π(x) : π is a permutation of X

}
.

Hmin is (s, s, s, s)-sensitive for any s ∈ [0, 1] with respect to the Jaccard distance because Prh∈Hmin
(h(A) =

h(B)) = J(A,B).

Order Min Hash (OMH)

We now introduce a locality-sensitive scheme for edit distance, built upon the idea of MinHash but with
modifications to address the shortcomings discussed earlier. Similar to MinHash, a multiset of k-mers are
selected at random using a random permutation, but additionally, we subsample l of the k-mers and record
their relative order in the sequence. Moreover, the method handles repeated k-mers by appending to each
k-mer in the multiset the number of times it has occurred so far in the sequence. Doing this gives us a
unique representation of k-mers in each sequence.

For a string S of length |S| = n, consider the set Mw
k (S) of pairs of the k-mers and their occurrence number.

If there are x copies of m in the sequence S, then the x pairs of (m, 0), . . . , (m,x− 1) are in the set Mw
k (S).

The occurrence number of m denotes the number of other copies of m left to this particular copy. That
is, the occurrence number of m is

|{j ∈ [i] | S[j : k] = m}|.
A permutation π of Σk × [n] defines two function hw

ℓ,π and hℓ,π where hℓ,π(S) = ((m1, o1), . . . , (mℓ, oℓ)) is a
vector of length ℓ of elements of Mw

k (S) such that:

• the pairs (mi, oi) are the ℓ smallest elements of Mw
k (S) according to π;

• the pairs are listed in the vecotr in the order in which the k-mer appears in the sequence S. That is, if
i < j, mi = S[x : k] and mj = S[y : k], then x < y.

and hℓ,π = (m1, . . . ,mℓ) contains only the k-mers from hw
ℓ,π(S), in the same order. Then, the Order MinHash

(OMH) is the set of hash functions

Hk,ℓ = {hℓ,π | π is a permutation of Σk × [n]}.



130 CHAPTER 12. HASHING

In the extreme case where ℓ = n−k+1, the vector contains overlapping k-mers that cover the entire sequence
S. In that case, equality of the hash values implies strict equality of the sequences. On the other hand, if
ℓ = 1, the vectors contain only k-mer and no relative order information is preserved. In this case, the vectors
only measure similarity between k-mer contents.

In the paper by Marçais et al., the authors proved the following theorem about OMH.

Theorem 12.16. For any ℓ = [2, n − k] and any 1 > s1 ≥ s2 > 0, there exist functions p1n,k,ℓ and p2n,k,ℓ
such that OMH is (s1, s2, p

1
n,k,ℓ(s1), p

2
n,k,ℓ(s2))-sensitive for the edit distance.

We omit the proof of the theorem. Interested readers should read the original paper by Marçais et al. for
the proof of the main theorem.

Bibliography

OMH was introduced in the paper [19], and the discussion is based on the talk by the authors for the same
paper.



Chapter 13

Probabilistic Sampling and Sketching

Having introduced the prerequisite concepts of hashing and probabilistic analysis, we now look at an example
where we utilize randomness to compute information about a large set of data without explicitly storing all
the data. The main model that we will consider in this chapter is the streaming model where the inputs come
in as a stream. The goal of probabilistic streaming and sketching algorithms is to compute properties of the
stream while using only a small amount of memory. These techniques are commonly used in bioinformatics,
especially in the study of space efficient genomic analysis.

13.1 Frequency Moments

First, we look at how to use sampling to compute the frequency moment of a stream. Frequency moment
provides us with useful insights into our data, ranging from distinct elements to variance.

Consider a sequence a1, . . . , an ∈ [m] where n and m are both large. For all s ∈ [m], we call fs = |{i | ai = s}|
the frequency of s in the stream.

Definition 13.1. For p ∈ N, the pth frequency moment of the stream is

Fp =

m∑
s=1

fp
S .

For the purpose of this definition, we define 00 = 0.

Remark: F0 is the number of distinct elements; F1 is the length of the stream; F2 can be used to calculate
the variance in the occurrence of elements.

1

m

m∑
s=1

(
fs −

n

m

)2
=

1

m

m∑
s=1

(
f2
s − 2

n

m
fs +

n2

m2

)
=

(
1

m

m∑
s=1

f2
s

)
− 2n

m2

m∑
s=1

fs +
n2

m2

which is equal to F2

m − n2

m2 .

Remark: The limit

lim
p→∞

F
1
p
p = lim

p→∞

(
m∑
s=1

fp
s

) 1
p

is equal to the frequency of the most frequent element(s).

The frequency moments can be very useful in bioinformatics. The most obvious and direct application is to
estimate the number of distinct k-mers in a sequence or the distribution of k-mer frequencies.

13.2 Distinct Elements

In this section, we will cover sketching algorithms for computing the 0th frequency moment of a data set.
Recall that the 0th moment is the number of distinct elements in the input stream. Because of this, the

131



132 CHAPTER 13. PROBABILISTIC SAMPLING AND SKETCHING

algorithm is also referred to as count-distinct sketch. There are some simple and immediate algorithms for
the distinct element problem:

• bit vector: O(m) space
• list of items seen: O(n logm)

13.2.1 A Lower Bound on Deterministic Algorithms

Although a simple problem, counting the number of distinct elements in an input stream is proven to be hard
with limited memory space. This limits our ability to analyze large data sets with deterministic algorithms
and will motivate the development of randomized algorithms.

Theorem 13.2. Any exact deterministic algorithm solving the distinct element problem must use at least
m bits of memory on some sequence of length m+ 1.

Proof. Assume that some algorithm ALG uses less than m bits of memory on all such sequences. Recall that
|P([m])| = 2m and unique{a1, . . . , am} can be any subset except the empty set ∅. Thus, there are 2m − 1
possible answers to the distinct element problem. However, we only have at most 2m−1 memory states.
Then, by pigeonhole principle two different subsets S1, S2 ∈ P([m]) \ ∅ where S1 ̸= S2 must have the same
memory states. The correctness of ALG implies that |S1| = |S2| because otherwise ALG would be incorrect.

Let b ∈ S1 and b ̸∈ S2. Then, S1 ∪ {b} = S1 so |S1 ∪ {b}| = |S1| and |S2 ∪ {b}| = |S2| + 1. Since ALG has
the same memory state for S1 and S2, it should have the same memory state after adding b. However, this
is not the case, which implies that ALG must be wrong on one of S1 and S2.

13.2.2 Idealized Count-Distinct Sketch

Let σ = a1, . . . , an be the stream of inputs, and let d = F0 be the number of distinct elements in the stream.
Consider the following algorithm:

Idealized-Distinct-Elements(σ)
1 h : [m] → [0, 1] be a random hash function
2 z = 1
3 while σ is not empty
4 e = σ.Next()
5 z = min(z, h(e))
6 return 1/z − 1.

At the end of the loop, z = mini∈σ h(ai). We claim that the above algorithm gives us an estimation of the
number of distinct elements. Let S = unique{a1, . . . , an} = {b1, . . . , bd}. Since h is a random hash function
and each element is hashed independently,

h(b1), . . . , h(bd) = X1, . . . , Xd

are i.i.d. uniform r.v. over [0, 1] and we can define the r.v. Z = min{Xi}di=1.

Lemma 13.3. Let X : Ω → [0,∞) be a non-negative r.v. Then,

E[X] =

∫ ∞

0

Pr(X > x)dx.



13.2. DISTINCT ELEMENTS 133

Next, we claim

E[Z] =
1

d+ 1
.

Proof.

E[Z] =

∫ ∞

0

Pr(Z > λ)dλ

=

∫ 1

0

Pr(∀i, Xi > λ)dλ

=

∫ 1

0

t∏
i=1

Pr(Xi > λ)dλ

=

∫ 1

0

(1− λ)ddλ

=
1

d+ 1
.

Thus, the expectation of our output value 1/z − 1 is equal to d = F0. To see how accurate our algorithm
performs, we compute the variance of our result. After getting the variance, we can then bound the accuracy
probability using Chebyshev’s inequality.

Claim.

E[Z2] =
2

(d+ 1)(d+ 2)
.

Proof.

E[Z2] =

∫ 1

0

Pr(Z2 > λ)dλ

=

∫ 1

0

Pr(Z >
√
λ)dλ

=

∫ 1

0

(1−
√
λ)ddλ

= 2

∫ 1

0

ut(u− 1)du u = 1−
√
λ

=
2

(d+ 1)(d+ 2)
.

Thus,

Var(Z) = E[Z2]− (E[Z])2 =
d

(d+ 1)2(d+ 2)
<

1

(d+ 1)2
.

This algorithm is known as the idealized count-distinct sketch algorithm (ISA).



134 CHAPTER 13. PROBABILISTIC SAMPLING AND SKETCHING

13.2.3 Averaging to Reduce Variance

We can further improve our estimate by repeating the ISA algorithm multiple times and taking the average.

1. run q = 1
ϵ2η instances of the idealized count-distinct sketch algorithm in parallel

2. take the average over all the independent runs z = 1
q

∑q
i=1 zi

3. output 1/z − 1.

We can calculate

E[Z] =
1

d+ 1
and Var(Z) =

1

q

d

(d+ 1)2(d+ 2)
<

1

q(d+ 1)2
.

Note that for i.i.d. r.vs Xi where for each i, Var[Xi] = σ2, Var[X] = Var
[
1
n

∑n
i=1 Xi

]
= 1

n2Var [
∑n

i=1 Xi] =
1
n2

∑n
i=1 Var[Xi] =

σ2

n .

By Chebyshev,

Pr

(
|Z − 1

d+ 1
| > ϵ

d+ 1

)
<

(d+ 1)2

ϵ2
· 1

q(d+ 1)2
= η.

Claim.

Pr

(∣∣∣∣( 1

Z
− 1

)
− d

∣∣∣∣ > O(ϵd)

)
< η.

This is a non-trivial claim and needs to be proven because the variance can be different when we take the
reciprocal of a random variable (e.g. Z → 1/Z).

Proof. Recall

Pr

(
|Z − 1

d+ 1
| > ϵ

d+ 1

)
< η.

The event |Z − 1
d+1 | > ϵ

d+1 is equivalent to |dZ + Z − 1| > ϵ. Thus,

Pr
(
|dZ + Z − 1| > ϵ

)
< η.

This is, in turn, equivalent to

Pr

(∣∣∣∣ 1Z − d− 1

∣∣∣∣ > ϵ

|Z|

)
= Pr

(∣∣∣∣d+ 1− 1

Z

∣∣∣∣ > ϵ

|Z|

)
< η.

We know with probability 1− η, |Z| ≤ 1+ϵ
d+1 . Then, from the previous probability bound, we have

Pr

(∣∣∣∣ 1Z − d− 1

∣∣∣∣ > ϵ(d+ 1)

1 + ϵ

)
< η.

Note that ϵ(d+1)
1+ϵ = ϵ(d + 1) · 1

1+ϵ ∈ O(ϵd) for small ϵ. So, with high probability, out estimate is within a
factor 1 +O(ϵ) of 1 + d.

The space complexity of the average algorithm is O
(

1
ϵ2η

)
, ignoring the space complexity of storing the

random hash function. This, however, is a highly idealized assumption, and in practice, the space for storing
a random hash function from [m] to [0, 1] is not trivial. Further, since the error parameters ϵ and η are in
the denominator, the more accurate our estimate, the more space it will take.



13.2. DISTINCT ELEMENTS 135

13.2.4 Boosting Accuracy Using Median of Averages

1. instantiate s =
⌈
36 ln

(
2
δ

)⌉
independent instances of the average algorithm from the previous subsection

with q = 1/3

2. output the median d̂ of {1/zj − 1}sj=1 where zj is the jth output of the average algorithm

Claim. For s =
⌈
36 ln

(
2
δ

)⌉
,

Pr
(
|d̂− d| > ϵd

)
< δ.

Proof. Let Yj be the indicator variable for the event |1/zj − d| > ϵd. The median fails if at least half of the
Yj is 1. That is,

s∑
j=1

Yj >
s

2
.

Note

Pr

 s∑
j=1

Yj >
s

2

 = Pr

 s∑
j=1

Yj −
s

3
>

s

6

 .

We will bound the probability on the RHS using Chernoff bound. First, let us simplify the problem by
assuming the stronger assumption that E[Yj ] = Pr(|1/zj − d| > ϵd) = 1/3. Then, the RHS simplifies to

Pr

 s∑
j=1

Yj −
s

3
>

s

6

 = Pr

 s∑
j=1

Yj − E

 s∑
j=1

Yj

 >
1

2
E[Yj ]


and by Chernoff (Pr(X − E[X] ≥ δ E[X]) ≤ exp(−δ2 E[X]/3) where X is the sum of n independent 0/1
r.v.s),

Pr

 s∑
j=1

Yj − E

 s∑
j=1

Yj

 >
1

2
E[Yj ]

 < exp

(−(1/2)2 · s/3
3

)
< δ.

The median of average algorithm has space complexity of O
(

1
ϵ2 log

1
δ

)
, again, ignoring the space for storing

the random hash function.

13.2.5 Non-Idealized Distinct Element Sketch via Sampling

Recall that in last section, we discussed an idealized algorithm that solves the distinct element problem.
Although having nice theoretical guarnatee, it makes a non-trivial assumption, which is the use of random
hash functions that hash each element independently.

In this section, we will see how we can use 2-wise independent hash families and sampling to remove this
assumption.

1. pick h from a 2-wise family [n] → [n] for some n that is a power of 2
2. maintain X = maxai∈σ lsb(h(ai)) where lsb is the index of the least-significant bit of a number
3. output d̃ = 2X .



136 CHAPTER 13. PROBABILISTIC SAMPLING AND SKETCHING

13.3 Second Frequency Moment Sketch

1. let h : [m] → {−1, 1} be a 4-wise independent hash function
2. let Xs = h(s) be a Bernoulli r.v. with equal probability
3. output a = (

∑n
i=1 h(ai))

2

Lemma 13.4. E[a2] ≤ 3E2[a].

Proof. If any s, t, u, v are distinct, by 4-independence, the expectation is 0. So it suffices to consider only
the cases where all 4 variables are the same or there are two pairs of variables.

E[a2] = E

[
m∑
s=1

xsfs

]4
= E

 ∑
1≤s,t,u,v≤m

xsxtxuxvfsftfufv


=

(
4

2

)
E

[
m∑
s=1

m∑
t=s+1

x2
sx

2
tf

2
s f

2
t

]
+ E

[
m∑
s=1

x4
sf

4
s

]

= 6

m∑
s=1

m∑
t=s+1

f2
s f

2
t +

m∑
s=1

f4
s

≤ 3

(
m∑
s=1

f2
s

)2

= 3
2

E[a].

13.4 Majority Element and Misra-Gries

13.4.1 Lower Bound on Deterministic Algorithms

Theorem 13.5. Any deterministic streaming algorithm requires Ω(min(n,m)) space if we require the algo-
rithm to output the majority element if there is one.

Proof. Suppose n is even and the last n/2 elements are identical. Every possible set of unique n/2 first
elements must have a different memory configuration. Otherwise, we can make the algorithm incorrect by
choosing the second half to belong the one subset but not the other. If n/2 ≥ m, then there are 2m − 1
subsets, which requires log(2m− 1) ∈ Ω(m) bits. If n/2 ≤ m, then there are at least m!

(m−n/2)! subsets, which

requires log
(

m!
(m−n/2)!

)
∈ Ω(n) bits.

13.4.2 Misra-Gries and Majority Algorithm

Problem (majority problem): Given a stream σ = (i1, . . . , im) of updates in [n] = {1, . . . , n}. If there exists
an i ∈ [n] such that more than half the updates in σ are equal to i, the algorithm should output i. If no
such element exists, the algorithm outputs any arbitrary element.

The following algorithm by Boyer and Moore solves the problem using two words of memory.



13.4. MAJORITY ELEMENT AND MISRA-GRIES 137

Majority(σ)
1 element = i1
2 count = 1
3 for t = 2 to m
4 if element == it
5 count = count + 1
6 else
7 if count > 0
8 count = count − 1
9 else

10 element = it
11 count = 1
12 return element

Intuitively, the algorithm keeps track of the head of a stack without actually storing the stack. Whenever the
current element in the stream is not the stored majority element, we decrement the counter (decrementing
the stack pointer, poping the top element). Whenever the current element in the stream is the majority
element, we increment the counter (pushing the element into the stack). The correctness of the algorithm is
captured by the following theorem.

Theorem 13.6. If there exists an element i such that more than half of the updates in σ are equal to i, then
Majority outputs i. Moreover, at any point during the execution of the algorithm, felement ≤ count +m/2
where felement is the number of times element has occurred in the stream so far.

Proof. The idea of the proof is to pair each update that leads to the decrement of count with a previous
occurrence of the value currently stored as element . This formalizes our intuition that each encounter of an
element that is not the stored majority element causes an element to be popped from the imaginary stack.

More specifically, we pair the updates as follows:

• Initialization: The first update i1 is unpaired.

• Maintenance: If it = element , or count = 0, we leave it unpaired. If it ̸= element and count > 0, we
pair it with some is where s < t and is = element .

It can be shown using induction on t that at any time step t, count is equal to the number of unpaired
updates equal to element . For all j ̸= element , all updates equal to j are paired.

By our pairing procedure, for every pair (is, it), is ̸= it. Since there are at most m/2 pairs, at most m/2 of
the updates equal to i are paired. Letting fi denote the number of occurrences of i so far, we have at least
fi −m/2 > 0 updates equal to i that are unpaired. count is equal to the felement minus the number of pairs
(is, it) where is = element . If there is a majority element, i is returned when the algorithm terminates and
we have count ≥ fi −m/2. If there is no majority element, the theorem holds trivially.

We can generalize the majority element algorithm and obtain the Misra-Gries algorithm that finds all
elements that appear in more than 1/k fraction of the updates.



138 CHAPTER 13. PROBABILISTIC SAMPLING AND SKETCHING

Misra-Gries-Frequent(σ, k)
1 S =
2 for t = 1 to m
3 if ∃x ∈ S, x.element == it
4 x.count = x.count + 1
5 elseif |S| < k − 1
6 x = (element = it, count = 1)
7 S = S ∪ x
8 else
9 for x ∈ S

10 x.count = x.count − 1
11 if x.count == 0
12 S = S \ {x}
13 return S

We have a similar theorem that proves the correctness of Misra-Gries.

Theorem 13.7. The set S output by Misra-Gries-Frequent contains all i ∈ [n] such that fi > m/k.
Moreover, for any x ∈ S, fx.element +m/k.

The proof is similar to the one for Majority with a few more cases for pairing. We omit the proof here.

13.5 CountMin Sketch

Recall the Bloom filter. Whenever a new element arrives, we insert it into the bit vector using k different
hash functions. When we want to check for membership, we check if every k positions are all set. Bloom
filter has a probability of returning a false positive.

Let a1, . . . , an ∈ [m], and let x ∈ Rm be the frequency vector containing the frequency of each item in [m].
We maintain a t × w matrix C. For each row, associate a hash function hj : [m] → [w] from a 2-wise
independent hash family. Insert i by incrementing all counters Cj,hj(i) for j ∈ [t].

h2(i)

h1(i)

h3(i)

hj(i)

C =

w

t

Figure 13.1: Example of a CountMin sketch matrix.

Insert(C)

1 for j = 1 to t
2 C[j][hj(i)] = C[j][hj(i)] + 1



13.5. COUNTMIN SKETCH 139

We have another function Point-Query that outputs

Point-Query(i) = min
j∈[t]

{Cj,hj(i)}.

Intuitively, taking the minimum should help balance out the potential over count resulted from hash collision.
We have an overcount if some element other than the query point i, incremented some of the counters, but
it may not have incremented all the same counters as i. This type of sketch is useful when estimating the
k-mer counts in a large sequence. It provides more details about an individual set compared to Jaccard and
MinHash which only gives us information about the set in relation to another set.

Theorem 13.8. If t > lg( 1δ ) and w ≥ 2
t , then

Pr (Point-Query(i) ∈ [xi − ϵ∥x∥1, xi + ϵ∥x∥1]) ≥ 1− δ

where xi is the true count of i.

Proof. For any j ∈ [t],
Cj,hj(i)(i) = xi +

∑
r ̸=i

hj(r)=hj(i)

xr = xi +
∑
r ̸=i

δrxr

where δr is the indicator variable I[hj(r) = hj(i)]. Consider the expectation

E

∑
r ̸=i

δrxi

 =
1

w

∑
r ̸=i

xr ≤ ϵ

2
∥x∥1.

By Markov’s inequality, since xi ≥ 0,

Pr

∑
r ̸=i

δrxr > ϵ∥x∥1

 ≤ 1

2
.

Thus, Cj,hj(i)(i) ≥ xi and with probability more than 1
2 , Cj,hj(i)(i) ≤ ϵ∥x∥1. Repeating this for t rows, we

have
Pr

(
min
j∈[t]

Cj,hj(i) > xi + ϵ∥x∥1
)

≤ 1

2t
< δ.





Bibliography

[1] D. Belazzougui, F. Cunial, J. Kärkkäinen, and V. Mäkinen. Versatile succinct representations of the
bidirectional burrows-wheeler transform. In Algorithms–ESA 2013: 21st Annual European Symposium,
Sophia Antipolis, France, September 2-4, 2013. Proceedings 21, pages 133–144. Springer, 2013.

[2] A. Blum, J. Hopcroft, and R. Kannan. Foundations of Data Science. Cambridge University Press, jan
2020. doi: 10.1017/9781108755528. URL https://doi.org/10.1017%2F9781108755528.

[3] J. D. Buhler. Search algorithms for biosequences using random projection. PhD thesis, 2001.

[4] M. Burrows and D. Wheeler. A block-sorting lossless data compression algorithm. SRC Research Report,
124, 1994.

[5] D. Clark. Compact pat trees. PhD thesis, 1997.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms. MIT press, 2022.

[7] P. Ferragina and G. Manzini. Opportunistic data structures with applications. In Proceedings 41st
annual symposium on foundations of computer science, pages 390–398. IEEE, 2000.

[8] R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text indexes. 2003.

[9] D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biol-
ogy. Cambridge University Press, 1997. doi: 10.1017/CBO9780511574931.

[10] G. J. Jacobson. Succinct static data structures. PhD thesis, 1988.

[11] N. C. Jones and P. A. Pevzner. An introduction to bioinformatics algorithms. MIT press, 2004.

[12] J. Kärkkäinen, P. Sanders, and S. Burkhardt. Linear work suffix array construction. Journal of the
ACM (JACM), 53(6):918–936, 2006.

[13] S. Kaur and M. Sukhjeet. Entropy coding and different coding technique. Journal of Network Commu-
nication and Emerging Technologies, 6:4–7, 2016.

[14] D. K. Kim, J. S. Sim, H. Park, and K. Park. Linear-time construction of suffix arrays. In Combinatorial
Pattern Matching: 14th Annual Symposium, CPM 2003 Morelia, Michoacán, Mexico, June 25–27, 2003
Proceedings 14, pages 186–199. Springer, 2003.

[15] L. G. Kraft. A device for quantizing, grouping, and coding amplitude-modulated pulses. PhD thesis,
Massachusetts Institute of Technology, 1949.

[16] S. Kullback and R. A. Leibler. On information and sufficiency. The Annals of Mathematical Statistics,
22(1):79–86, mar 1951. doi: 10.1214/aoms/1177729694. URL https://doi.org/10.1214%2Faoms%
2F1177729694.

[17] A. Lempel and J. Ziv. On the complexity of finite sequences. IEEE Transactions on Information Theory,
22(1):75–81, 1976. doi: 10.1109/TIT.1976.1055501.

[18] V. Mäkinen, D. Belazzougui, F. Cunial, and A. I. Tomescu. Genome-Scale Algorithm Design. Cam-
bridge University Press, may 2015. doi: 10.1017/cbo9781139940023. URL https://doi.org/10.1017%
2Fcbo9781139940023.

[19] G. Marçais, D. DeBlasio, P. Pandey, and C. Kingsford. Locality-sensitive hashing for the edit distance.
Bioinformatics, 35(14):i127–i135, 2019.

141

https://doi.org/10.1017%2F9781108755528
https://doi.org/10.1214%2Faoms%2F1177729694
https://doi.org/10.1214%2Faoms%2F1177729694
https://doi.org/10.1017%2Fcbo9781139940023
https://doi.org/10.1017%2Fcbo9781139940023


142 BIBLIOGRAPHY

[20] B. McMillan. Two inequalities implied by unique decipherability. IRE Transactions on Information
Theory, 2(4):115–116, 1956. doi: 10.1109/TIT.1956.1056818.

[21] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation of state
calculations by fast computing machines. The journal of chemical physics, 21(6):1087–1092, 1953.

[22] T. Rito, Z. Wang, C. M. Deane, and G. Reinert. How threshold behaviour affects the use of subgraphs for
network comparison. Bioinformatics, 26(18):i611–i617, sep 2010. doi: 10.1093/bioinformatics/btq386.
URL https://doi.org/10.1093%2Fbioinformatics%2Fbtq386.

[23] C. E. Shannon. A mathematical theory of communication. The Bell System Technical Journal, 27(3):
379–423, 1948. doi: 10.1002/j.1538-7305.1948.tb01338.x.

[24] M. Sipser. Introduction to the Theory of Computation. Course Technology, Boston, MA, third edition,
2013. ISBN 113318779X.

[25] E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, sep 1995. doi: 10.1007/
bf01206331. URL https://doi.org/10.1007%2Fbf01206331.

https://doi.org/10.1093%2Fbioinformatics%2Fbtq386
https://doi.org/10.1007%2Fbf01206331


Index

2-independent, 119

aperiodic, 102
approximate near neighbor, 124

Bayes’ rule, 23
bidirectional BWT index, 80
bijective, 18
binomial theorem, 18
bipartite graph, 11
Bloom filter, 123
Burrows-Wheeler transform, 71

Chebyshev’s inequality, 26
checksum, 123
Chernoff bound, 28
chromatic number, 12
Clark’s select, 76
codeword, 44
combination, 17
complete graph, 3
conditional expectation, 24
conditional probability, 23
connected component, 5
connected graph, 5
cosine similarity, 94
CountDistinct sketch, 131
counting sort, 59
CountMin sketch, 138
coupling, 104
coupling lemma, 105
covariance, 25
cycle graph, 3
cyclic shift, 71

DC3 algorithm, 65
degree, 4
directed graph, 3

edit distance, 128
empirical entropy, 44
entropy, 33
Erdös-Rényi random graph, 113
Eulerian circuit, 8
Eulerian graph, 8
expectation, 24

FM index, 74
frequency moment, 131
fundamental theorem of Markov chain, 103, 105

Galois field, 121
Gaussian Annulus Theorem, 91
Gibbs sampling, 108

Hall’s theorem, 13
Hamiltonian graph, 9
Hamming distance, 124
Handshaking lemma, 4
hash function, 119
hashtable, 122
hidden Markov model (HMM), 110
Huffman’s code, 46

independent, 24
independent set, 11
induced subgraph, 4
injective, 18
inverse BWT, 72
irreducible, 102
isomorphism, 4

Jaccard similarity, 127
Jacobson’s rank, 75
Johnson-Lindenstrauss Lemma, 93

Kärkkäinen-Sanders’ algorithm, 65
Kolmogorov complexity, 36
Kraft-McMillan inequality, 46
Kullback-Leibler divergence, 35

law of large numbers, 26
law of total expectation, 24
law of total probability, 23
law of total variance, 24
Lempel-Ziv complexity, 38
LF mapping, 72
locality sensitive hashing (LSH), 124

Markov chain, 101
Markov’s inequality, 25
Master Tail Bounds Theorem, 27
median of averages, 135
Metropolis-Hastings algorithm, 107
MinHash, 127
Misra-Gries algorithm, 136
moment generating function, 28
MSD radix sort, 60

normal compression distance, 97
normal compressor, 97

143



144 INDEX

order min hash (OMH), 129

path, 5
path graph, 3
permutation, 17
Perron-Frobenius theorem, 103
phase transition, 115
Pigeonhole Principle, 16
Poisson distribution, 117
poset, 15
prefix doubling algorithm, 63
prefix-free code, 45
Principle of Inclusion-Exclusion, 19
probability space, 23
proper coloring, 12
protein-protein interaction, 117

radix sort, 60
random projection, 92
random variable, 24

self-information, 33
sequence logo, 35
Shannon-Fano codes, 49
spanning subgraph, 7
spanning tree, 7
stationary distribution, 103
string kernel, 96
strong universality, 119
strongly connected, 5
subadditivity, 40
subgraph, 3
succinct suffix array, 79
suffix, 53
suffix array, 59
suffix link, 55
suffix trie, 53
surjective, 18
symbol code, 44

time-reversible, 108
total variation distance, 103
tree, 5
trie, 53

Ukkonen’s algorithm, 55
undirected graph, 3
union bound, 23
uniquely decodable, 44
univeral hash family, 119
universality, 119

variance, 24
Viterbi algorithm, 111

walk, 5
wavelet tree, 77
weakly connected, 5
Well-Ordering Principle, 19
word RAM model, 58
worst-case entropy, 43


	I Basic Mathematics
	Graphs and Combinatorics
	Graph Theory
	Eulerian and Hamiltonian Circuits
	Hall's Theorem
	Partially Ordered Sets
	Counting

	Probability
	Review of Basic Probability Theory
	Concentration Inequalities
	Moment Generating Functions


	II Information and Compression
	Measure of Information and Complexity
	Entropy
	Entropy of Biological Sequences
	Kolmogorov Complexity
	Lempel-Ziv Complexity

	Entropy Coding
	Worst-Case Entropy
	Zero-Order Empirical Entropy
	Symbol Codes
	Lower Bounds


	III Index Data Structures
	Suffix Tree
	Suffix Tries
	Ukkonen's Linear-Time Construction

	Suffix Array
	String Sorting
	Naive Construction From Suffix Tree
	A Divide-and-Conquer Approach
	Kärkkäinen-Sanders Algorithm

	Burrows-Wheeler Transform and FM Index
	Burrows-Wheeler Transform
	FM Index
	Bidirectional BWT Index


	IV Data in High-Dimensional Space
	Geometry of High-Dimensional Objects
	Most Volume of High-dimensional Objects is Near the Surface
	Most Points in a Unit Ball Are Nearly Orthogonal

	Comparing Data in High Dimension
	Johnson-Lindenstrauss Lemma and Random Projection
	Alignment-Free Sequence Comparison


	V Randomness and Randomization
	Markov Chain and Random Process
	Definitions
	Fundamental Theorem of Markov Chain
	The Metropolis-Hastings Algorithm
	Gibbs Sampling
	Hidden Markov Model
	The Viterbi Algorithm

	Random Graph Theory
	Bulk Properties of Random Graphs
	Structures in Random Graphs
	Phase Transitions in Random Graphs
	Modeling Protein-Protein Interaction Network

	Hashing
	Hash Functions
	Strong Universality (2-Independence)
	Finite Fields
	Universal Hashing of Variable-Length Strings
	Applications of Hashing
	Locality Sensitive Hashing

	Probabilistic Sampling and Sketching
	Frequency Moments
	Distinct Elements
	Second Frequency Moment Sketch
	Majority Element and Misra-Gries
	CountMin Sketch

	Bibliography
	Index


