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Artificial neural networks

• Artificial neural networks (ANNs) were loosely inspired by 
networks of cytoplasmic protrusions in the brain.

• Each unit has many inputs (~dendrites), one output (~axon).

• The nucleus fires (sending an electric signal along the axon) 
given input from other neurons.

• ‘Learning’ was formerly thought to occur at the synapses 
that connect neurons, either by amplifying or attenuating 
signals.

Dendrites
Axon

Nucleus
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Perceptron: an artificial neuron
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McCullogh-Pitts model
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Feed-forward output
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Rectified Linear Units (ReLUs)
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From Wikipedia

X Glorot, A Bordes, Y Bengio (2011). Deep sparse rectifier neural networks. AISTATS.
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Threshold perceptra and XOR

• Some relatively simple logical functions cannot be learned by 
threshold perceptra (since they are not linearly separable).
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Multi-layer neural networks

• Complex functions can be represented by layers of 
perceptron (multi-layer perceptron, MLPs). 

MLP

...

...
• Inputs are passed to the 

input layer.

• Activations are propagated 
through hidden layers
to the output layer. 

• MLPs are quite robust to noise. 
Sometimes, we even add noise.
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MLP Example

• Consider this simple fully-connected  MLP below:
• How do we use it given a piece of input?   
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Gradient Descent

• Now that we know how NN works, how can we get one? 
(i.e. how to “learn” one so that it is useful?)

• Answer: Update the parameters (θ) via Gradient Descent!

• Idea: adjust the parameters in proportion to the error
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• α: Learning Rate
• ∇θL: Gradient of Loss
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Backpropagation

• How do we compute the gradients? 
• Answer: Compute the gradients (∇θL) via Backpropagation!

• As it turns out, the computation is not that bad
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• Hint: Easier with backprop 
signals  and 
carefully-chosen activation 
function! 



been feeling lugubrious all day

felt a lugubrious sadness in

…

 

https://code.google.com/p/word2vec/ 

Here, we’re predicting the center word given the context.
This is called the ‘continuous bag of words’ (CBOW) model1. 
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"You shall know a word by the company it keeps." 
— J.R. Firth (1957)

Learning word semantics

1 Mikolov T, Corrado G, Chen K, et al. Efficient Estimation of Word Representations in Vector Space. Proc (ICLR 2013) 2013;:1–12.
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https://code.google.com/p/word2vec/


15

Words
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lugubrious
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Using word representations
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word2vec training regimen



Skip-grams with negative sampling
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Computationally 
infeasible 
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Skip-grams with negative sampling
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• We want to maximize the association of 
observed (positive) contexts:

lugubrious sad
lugubrious feeling
lugubrious tired

• We want to minimize the association of 
‘hallucinated’ contexts:

lugubrious happy
lugubrious roof
lugubrious truth
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Skip-grams with negative sampling
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Mimno, D., & Thompson, L. (2017). The strange geometry of skip-gram with negative sampling. EMNLP 2017. [link]

 

Unigram dist.
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https://doi.org/10.18653/v1/d17-1308


RECURRENT NEURAL NETWORKS

21CSC401/2511 – Spring 2026



Statistical language models
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• Probability is conditioned on (window of) n previous words*

*From Lecture 2

• A necessary (but incorrect) Markov assumption: each 
observation only factors through a short linear history of 
length L.

• Probabilities are estimated by computing unigrams and 
bigrams  

 

 

bigram trigram
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Statistical language models
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• Using higher n-gram counts (with smoothing) improves 
performance*

*From Lecture 2

• RNN intuition: 

• Use as much history as we need to use

• Use the same set of weight parameters for each word 
(or across all time steps) to keep the size of the network 
down

• Memory requirement now scales with number of words
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Recurrent neural networks (RNNs)
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• An RNN has feedback connections in its structure so that it 
‘remembers’ previous states, when reading a sequence.

Elman network feed hidden units back 

Jordan network (not shown) feed output units back 
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• Copies of the same network can be applied (i.e., unrolled) at 
each point in a time series.

• Now we can use an approximation: backpropagation through 
time (BPTT).

 

PRP ADJ NN
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Sampling from a RNN LM
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riders were
Karpathy (2015),
The Unreasonable Effectiveness of Recurrent Neural Networks
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http://karpathy.github.io/2015/05/21/rnn-effectiveness/


RNNs and retrograde amnesia
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• Bad news: gradients don’t multiply out well over long 
distances (gradient decay).

• Can we spend some parameters to store extra information?

Imagery and sequence from http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 

Here, ‘A’ represents identical recurrent cell blocks.
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/


RNNs and retrograde amnesia
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Bengio Y, Simard P, Frasconi P. (1994) Learning Long-Term Dependencies with Gradient Descent
is Difficult. IEEE Trans. Neural Networks.;5:157–66. doi:10.1109/72.279181
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• Within each recurrent unit or cell:

• Self-looping recurrence for cell state using vector C  

  

• Information flow regulating structures called gates

Sigmoid neural net layer

Pointwise multiplication

Long short-term memory (LSTM)
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LSTM – core ideas
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• In each cell (i.e. recurrent unit) in an LSTM, there are four 
interacting neural network layers.

The cell state is a special vector stream that 
runs through the entire chain and stores 
long-term information.
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LSTM – core ideas
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• In each cell (i.e. recurrent unit) in an LSTM, there are four 
interacting neural network layers.
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LSTM step 1: decide what to forget
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LSTM step 2: decide what to store
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LSTM step 3: update the cell state
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LSTM step 4: output and feedback 
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Variants of LSTMs
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• There are many variations on LSTMs.

• ‘Bidirectional LSTMs’ (and bidirectional RNNs generally), 
learn. (Similar: Multi-stack RNNs) 

Schuster, Mike, and Kuldip K. Paliwal. (1997) Bidirectional recurrent neural networks. Signal 
Processing, IEEE Transactions on 45(11) (1997): 2673-2681.2.
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Variants of LSTMs
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• Gers & Schmidhuber (2000) add ‘peepholes’ that allow 
all sigmoids to read the cell state.

• We can couple the ‘forget’ and ‘input’ gates.
• Joint decisioning is more efficient. 
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• Which of these variants is best? Do the differences matter?
• Greff, et al. (2015) do a nice comparison of popular variants, 

finding that they’re all about the same

• Jozefowicz, et al. (2015) tested more than ten thousand RNN 
architectures, finding some that worked better than LSTMs on 
certain tasks.

Aside - Variants of LSTMs
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Update gate

• Gated Recurrent units (GRUs; Cho et al (2014)) go a step 
further and also merge the cell and hidden states.
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http://arxiv.org/pdf/1503.04069.pdf
http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf
https://arxiv.org/pdf/1406.1078v3.pdf


CONTEXTUAL WORD EMBEDDINGS
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Deep contextualized representations
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Peters ME, Neumann M, Iyyer M, et al. (2018) Deep contextualized word representations. 
Published Online First: 2018. doi:10.18653/v1/N18-1202; http://arxiv.org/abs/1802.05365  

• What does the word play mean?
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http://arxiv.org/abs/1802.05365


● BERT  

43towardsdatascience.com  



●Training task 1: Masking  

44towardsdatascience.com  



●Training task 2: Next Sent.  

45Modified from towardsdatascience.com  



●Transformers  

46jalammar.github.io  
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●Self-attention  

47jalammar.github.io  
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●Multiheaded Self attention  

48jalammar.github.io  
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●Positional encodings  

49kazemnejad.com  
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● Encodings of any two distinct positions are 
distinct

● Each position maps to only one encoding
● Test sentences may be longer than training
● Distance between two positions should be 

constant across sentences (of varying 
lengths).

●Huh?



●Training task 1: Masking  

51towardsdatascience.com  
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● Real easy to do well on MASKed position and 
nothing else

● Real easy to learn to copy the 
context-independent embedding

● So…
● 80% of the time: MASK
● 10% of the time: correct word
● 10% of the time: another random word

●The truth about masking


