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Neural models of language




Artificial neural networks

® Artificial neural networks (ANNs) were loosely inspired by
networks of cytoplasmic protrusions in the brain.

® Each unit has many inputs (~dendrites), one output (~axon).

* The nucleus fires (sending an electric signal along the axon)
given input from other neurons.

* ‘Learning” was formerly thought to occur at the synapses
that connect neurons, either by amplifying or attenuating

signals. "
Dendritesé o> Ofo

Nucleus UNIVERSITY OF
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Perceptron: an artificial neuron

® Each neuron calculates a weighted sum of its inputs and
compares this to a threshold, 7. If the sum exceeds the
threshold, the neuron fires.
* Inputs a; are activations from adjacent neurons, each
weighted by a parameter w;.

Ifx>1,5:=1

Else, S :=0
Q-
/ Wy

Ay
McCullogh-Pitts model b
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Feed-forward output

® QOutput is determined by an activation function, g(), which
can be non-linear (of weighted input). Activation is
empirically determined, but not learned as a parameter.

® Popular activation functions include tanh and the sigmoid:

1
gx) =o(x) = 5

* The sigmoid’s derivative is the easily computable ¢’ = ¢ - (1 — 0)

sigmoid

Output

-y = sinh{x)
==y = cosh(x)
vy o= tanh(x)

! From Wikipedia

Input Input = |
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Rectified Linear Units (RelLUs)

* Since 2011, the ReLU S = g(x) = max(0, x) has become

popular.
* More appeals to biological plausibility, but sparse activation, and
reduced likelihood of vanishing gradients are very practical reasons.

* A smooth approximation is e
the softplus log(1 + e*), e
which has a simple
derivative 1/(1 +e™%)

Output

* Why do we care about the — |

derivatives? : From Wikipecia
Input

X Glorot, A Bordes, Y Bengio (2011). Deep sparse rectifier neural networks. AISTATS.

5
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Threshold perceptra and XOR

* Some relatively simple logical functions cannot be learned by
threshold perceptra (since they are not linearly separable).

a
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Multi-layer neural networks

* Complex functions can be represented by layers of
perceptron (multi-layer perceptron, MLPs).

®* Inputs are passed to the

® Activations are propagated
through hidden layers
to the output layer.

°* MLPs are quite robust to noise.
MLP Sometimes, we even add noise.

‘ UNIVERSITY OF
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MLP Example

* Consider this simple fully-connected MLP below:
°* How do we use it given a piece of input?

i gz

L4
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Gradient Descent

* Now that we know how NN works, how can we get one?
(i.e. how to “learn” one so that it is useful?)

* Answer: Update the parameters (0) via Gradient Descent!
* |dea: adjust the parameters in proportion to the error

H(new) - 6(old) —a L

® a: Learning Rate
*/ L: Gradient of Loss

Y
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Backpropagation

* How do we compute the gradients?
°* Answer: Compute the gradients (VGL) via Backpropagation!
* As it turns out, the computation is not that bad

* Hint: Easier with backprop
signals and
carefully-chosen activation
function!

£
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Learning word semantics

"You shall know a word by the company it keeps."
— J.R. Firth (1957)

P(w; = lugubrious|ws_q = feeling, w;_, = been, ...)

[ l—l |ﬁ |

been feeling  lugubrious all day

felt a lugubrious  sadness in

Here, we’re predicting the center word given the context.
This is called the ‘continuous bag of words’ (CBOW) model*.

1 Mikolov T, Corrado G, Chen K, et al. Efficient Estimation of Word Representations in Vector Space. Proc (ICLR 2013) 2013;:1-12.
https://code.google.com/p/word2vec/ "”d
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https://code.google.com/p/word2vec/

Words

* Given a corpus with D (e.g., = 100K) unigue words, the one-
hot approach uniquely assigns each word an index in D-
dimensional vectors (‘one-hot’ representation).

P, oo o . o PWMo o
D

* In psychology, word-feature representations assign features
to each index in a much denser vector.
* E.g., concept-based features ‘cheerful’, ‘emotional-tone’.

d <D

 Neither of these is learned.

Lo
UNIVERSITY OF
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Using word representations

Without a latent space,
lugubrious = [0,0,0, ...,0,1,0, ...,0], &
sad = 10,0,0, ...,0,0,1, ...,0] so
Similarity = cos(x,y) = 0.0

EMBEDDING

In latent space, T o0
lugubrious = [0.8,0.69,0.4, ...,0.05]4, &

sad = [0.9,0.7,043,...,0.05]5 50 "
Similarity = cos(x,y) = 0.9 O [l x 1

@ 1 UNIVERSITY OF
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word2vec training regimen

Input Vector

0

0

0

0

0

0
A ‘1" in the position 0
corresponding to the —%
word “ants 0

0

0

10,000
positions

Hidden Layer
Linear Neurons

S

<

)

300 neurons

Output Layer

Softmax Classifier

o0

10,000
neurons

Probability that the word at a
randomly chosen, nearby
position is “abandon”

.. “ability”

... “able”

... “zone”



Skip-grams with negative sampling

* Most word types do not appear together within a g
small window. The default process does not know
this.
* Also, not all that efficient — would be nice
not to update H X D weights
* Contrastive learning: push away from negative J
examples as well as towards positives. q@-»
* For the observed (true) pair (lugubrious, sadness),
only the output neuron for sadness should be 1, and =
all D — 1 others should be 0.

[T T T T T

b

| [ [ [ ]

l

|

| T[]l

e Mathematical Intuition:

* P(w,|lw,) =

l

l

l

eXp(VTVC)
ZD —1 exp(vac) } Computationally

infeasible wd
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Skip-grams with negative sampling

* We want to maximize the association of
observed (positive) contexts:
lugubrious sad
lugubrious feeling
lugubrious tired

* We want to minimize the association of
‘hallucinated’ contexts:
lugubrious happy
lugubrious roof
lugubrious truth

CSC401/2511 — Spring 2026 19
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Skip-grams with negative sampling

* Choose a small number k of ‘negative’ words, then
update the weights only for all the positive and the k

negative words.

e 5<k <20 canworkin practice for fewer data.
e For D = 100K, we only update 0.006%
of the weights in the output layer.

HjEEEEEEEE

1

-

l

k ‘1 h
J(6) = log O'(vgvc) + Z ]Ei~P(W) [1080(—U1:TVC)] ’E ¥

i= 1 Unigram dist.

I

* Mimno and Thompson (2017) choose the top

k words by modified unigram probability:

3
C(Weyq)%

3
ZW C (W)Z Yv.c

Mimno, D., & Thompson, L. (2017). The strange geometry of skip-gram with negative sampling. EMNLP 20;1?7. [link]

[T T T 1]l

P*(Wyq) =

l

l

l
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https://doi.org/10.18653/v1/d17-1308

RECURRENT NEURAL NETWORKS
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Statistical language models

* Probability is conditioned on (window of) n previous words”

* A necessary (but incorrect) Markov assumption: each
observation only factors through a short linear history of
length L.

P(Wnlwlz(n—l)) = P(Wnlw(n—L+1):(n—1))

* Probabilities are estimated by computing unigrams and
bigrams

t
t
P(s) = l_[P(W,;|Wi_1) P(s) = 1‘——2[P(Wi|Wi_2Wi_1)

2

*From Lecture 2
oy UNIVERSITY OF
CSC401/2511 — Spring 2026 22 ) TORONTO



Statistical language models

* Using higher n-gram counts (with smoothing) improves
performance*

®* RNN intuition:
* Use as much history as we need to use

* Use the same set of weight parameters for each word

(or across all time steps) to keep the size of the network
down

°* Memory requirement now scales with number of words

*From Lecture 2 5y
UNIVERSITY OF
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Recurrent neural networks (RNNs)

°* An RNN has feedback connections in its structure so that it
‘remembers’ previous states, when reading a sequence.

Ground Truth

Backpropagate

Elman network feed hidden units back

Jordan network (not shown) feed output units back

£

3 UNIVERSITY OF
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RNNSs: Unrolling the h;

* Copies of the same network can be applied (i.e., unrolled) at
each point in a time series.

°* Now we can use an approximation: backpropagation through
time (BPTT).

PRP AD] NN

You lovely person

hy = gW[hi_4;x] + ¢)
Ye=Woh+b

&
@ 1 UNIVERSITY OF
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Sampling from a RNN LM

° If |h;| < |V|, we’ve already reduced the number of
parameters relative to trigrams.
* Good news: NN encodings tend to be very compact.

were approaching

f i

riders were
he = g((Wyphe_1; Whox,] + €) Karpathy (2015), |
= softmax (I, | h,+b) The Unreasonable Effectiveness of Recurrent Neugl Networks

UNIVERSITY OF
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http://karpathy.github.io/2015/05/21/rnn-effectiveness/

RNNs and retrograde amnesia

* Bad news: gradients don’t multiply out well over long
distances (gradient decay).

* Can we spend some parameters to store extra information?

t | t
~ N N N
N
( O
A
A Neural Network Pointwise
Layer Operation
\,, & J J

Here, ‘A’ represents identical recurrent cell blocks.

o

|
&

Concatenate

Imagery and sequence from http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/

RNNs and retrograde amnesia

* Catastrophic forgetting is common.
* E.g., the relevant context in “The teacher taught
transformers terribly telling tiring, tortuous theories ...”
has likely been overwritten by the time h5 is produced.

The teacher theories

Bengio Y, Simard P, Frasconi P. (1994) Learning Long-Term Dependencies with Gradient Descent
is Difficult. IEEE Trans. Neural Networks.;5:157—66. doi:10.1109/72.279181 s R
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Long short-term memory (LSTM)

* Within each recurrent unit or cell:

* Self-looping recurrence for cell state using vector C
* Information flow regulating structures called gates

—®— Pointwise multiplication
©—e—o—r@®

@-» _>° Sigmoid neural net layer

S
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LSTM — core ideas

* In each cell (i.e. recurrent unit) in an LSTM, there are four
interacting neural network layers.

& O, <ET9

a N\ )
> —®——® > > O

A ? ® A Neural Network Pointwise
[0 Layer Operation
—> > —>

\ J J \l J
Vector
C Concatenate Co
C, t Py
t—1 OX @ > Transfer

The cell state is a special vector stream that
runs through the entire chain and stores
long-term information.

o
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LSTM — core ideas

* In each cell (i.e. recurrent unit) in an LSTM, there are four

interacting neural network layers.

O, ®
T

4

( N\ N\ )

> —— > -
A Lele]ll A

—> 4 ->

\l J 4 \I J

&) x) &)

Vector
—®— Transfer

Neural Network
Layer

Concatenate

O

Pointwise
Operation

—_ > <<

Copy

Gates decide what information should be withheld in the cell state.
They are a sigmoid followed by a pointwise X.
Values near 0 block information; values near 1 pass information.
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LSTM step 1: decide what to forget

* The forget gate layer compares h;_; and the current input x;
to decide which elements in cell state C;_4 to keep and which

to turn off.
* E.g., the cell state might ‘remember’ the number (sing./plural) of the
current subject, in order to predict appropriately conjugated verbs,

but decide to forget it when a new subject is mentioned at x;.
* (There’s scant evidence that such informationis so readily interpretable.)

o previous cell state
o forget gate output
© >
»
fe 1r' ?
© l >
Tt

ft=0Wj-lhi—1,2¢] + by) 4
CSC401/2511 — Spring 2026 34 @ TLCSRIE)IINTTIO
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LSTM step 2: decide what to store

* The input gate layer has two steps.
* First, a sigmoid layer & decides which cell units to update.
* Next, a layer creates new candidate values C;.
* E.g., the g can turn on the ‘number’ units, and the tanh can push
information on the current subject.
®* The o layer is important — we don’t want to push information on
units (i.e., latent dimensions) for which we have no information.

_ iy = 0 (Wi [hi—1,z¢] + b;)
Ci = tanh(We - [he—1,2¢] + be)

o
UNIVERSITY OF
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LSTM step 3: update the cell state

* Update C;_4 to C;.
* First, forget what we want to forget: multiply C;_1 by f¢.
* Then, create a ‘mask vector’ of information we want to store, i XC;.
* Finally, write this information to the new cell state ;.

G0 -0 ~ 000 -0 ~ 000 - 0 - 000 - O
G X 00®.0 *

i, XC;
C;
‘—® ® b
ftT itr-%'t Ct — ftXCt—l + ltxa

:ai;
UNIVERSITY O
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LSTM step 4: output and feedback

® Output something, o;, based on the current x; and h;_;.

®* Combine the output with the cell to give your h;.
* Normalize cell C¢ on [-1,1] using tanh and combine with o,

* In some sense, C; is long-term memory and h; is the short-term
memory (hence the name).

he A\
G
04 X) 0 = o(W,lhe_q1,x¢] + by)
, | O | hy
t—1

h; = osXtanh(C;)

et
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CSC401/2511 — Spring 2026 37 @ TORON’fO



Variants of LSTMs

®* There are many variations on LSTMs.

* ‘Bidirectional LSTMSs’ (and bidirectional RNNs generally),
learn. (Similar: Multi-stack RNNs)

00000 |FEEE
|
BOG00| [BEE5S

(@) (b)
Structure overview

(a) unidirectional RNN
(b) bidirectional RNN

Schuster, Mike, and Kuldip K. Paliwal. (1997) Bidirectional recurrent neural networks. Signal
Processing, IEEE Transactions on 45(11) (1997): 2673-2681.2.

i
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Variants of LSTMs

* Gers & Schmidhuber (2000) add ‘peepholes’ that allow
all sigmoids to read the cell state.

ft =0 (Wg-[Coeryhi—1,2¢] + by)
it = 0 (Wi [Ci—1,he—1,2¢] + b;)
—

or = 0 (Wo-[Ct, hi—1, 2] + bo)

* We can couple the ‘forget’ and ‘input’ gates.

* Joint decisioning is more efficient.

F@-’ Ct:ft*ct—1+(1_ft)*ét

S
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Aside - Variants of LSTMs

* Gated Recurrent units (GRUs; Cho et al (2014)) go a step
further and also merge the cell and hidden states.

2zt = o (W, - [ht—1, x¢]) Update gate

re = o (W, - [ht—1,2¢]) Reset gate (0: replace units in hy_
hie = tanh (W - [ry % hy_1, 24)) with those in x¢)

ht:(l—zt)*ht_l —|—Zt>|<ibt

e Which of these variants is best? Do the differences matter?

 Greff, etal. (2015) do a nice comparison of popular variants,
finding that they’re all about the same

e Jozefowicz, et al. (2015) tested more than ten thousand RNN
architectures, finding some that worked better than LSTMs on
certain tasks. &

UNIVERSITY OF
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http://arxiv.org/pdf/1503.04069.pdf
http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf
https://arxiv.org/pdf/1406.1078v3.pdf

CONTEXTUAL WORD EMBEDDINGS
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Deep contextualized representations

* What does the word play mean?

AllenNLP

Peters ME, Neumann M, lyyer M, et al. (2018) Deep contextualized word representations.

Published Online First: 2018. doi:10.18653/v1/N18-1202; http://arxiv.org/abs/1802.05365
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BERT

Embeddi ks we . s
e 1 T 1
softmax
[ Classification Layer: Fully-connected layer + GELU + Norm
T I I I I
04 02 O3 O4 ] Os
I T T T T
d )
Transformer encoder
& >
Embedding T T T t T
W1 ] W2 W3 [ [MASK] ] W5
A
T I T T
Wi w2 W3 W4 W5
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.Training task 1: Masking

Embedding W uk: w’s W4 wW's
o ! T I =
[ Classification Layer: Fully-connected layer + GELU + Norm ]
T T T T T
O 02 O3 (o) ] Os
I T T T 1
i 2
Transformer encoder
" Y
Embedding T T T 3 T
W1 ] W2 W3 [ [MASK] ] Ws
4
i 1 i i
Wi W2 W3 Wa Ws
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.Transformers

ENCODER #2 kk JJ

1 1
r r- |
A

ENCODER #1 f \
Feed Forward Feed Forward
Neural Network Neural Network

E=EE EEEE
1 1

Self-Attention

v, N

Thinking Machines
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Self-attention

exp (gl k;)

o
Yy exp (¢ k)

47




-Multiheaded Self attention

1) This is our 2) We embed
input sentence* each word*

Thinking
Machines

* In all encoders other than #0,

we don't need embedding.

We start directly with the output
of the encoder right below this one

3) Split into 8 heads.
We multiply X or
R with weight matrices

W@
= o= = WoK
] WoV

4) Calculate attention
using the resulting
Q/K/V matrices

5) Concatenate the resulting ~ matrices,
then multiply with weight matrix W" to
produce the output of the layer




.Positional encodings

i sin(wl.t) 3
COs(wbt) F(Z) _ f(t)(z) . Siﬂ(wk. t), lf’l, = Zk
o ! | cos(wg.t), ifi=2k+1
S1IN(wa.
4
D = S where

1
100002/

Wi
sin(wd/z. t)

_cos(wd/2. t) |z

49



. Encodings of any two distinct positions are
distinct

. Each position maps to only one encoding
. Test sentences may be longer than training

. Distance between two positions should be
constant across sentences (of varying
lengths).

50



.Training task 1: Masking

Embedding W uk: w’s W4 wW's
o ! T I =
[ Classification Layer: Fully-connected layer + GELU + Norm ]
T T T T T
O 02 O3 (o) ] Os
I T T T 1
i 2
Transformer encoder
" Y
Embedding T T T 3 T
W1 ] W2 W3 [ [MASK] ] Ws
4
i 1 i i
Wi W2 W3 Wa Ws
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.The truth about masking

. Real easy to do well on MASKed position and
nothing else

. Real easy to learn to copy the
context-independent embedding

. S0...

80% of the time: MASK
10% of the time: correct word

10% of the time: another random word

52



