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LMs and Information Theory

*LMs may be evaluated extrinsically through their
embedded performance on other tasks

°* An LM may be evaluated intrinsically according to
how accurately it predicts language

® Information Theory was developed in the 1940s for
data compression and transmission

* Many of the concepts, chiefly entropy, apply directly
to LMs

::: UNIVERSITY OF
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Information

*Imagine Darth Vader is about to say either “yes” or
“no” with equal probability.
® You don’t know what hée’ll say.

*You have a certain amount of uncertainty — a lack of
information.

Lo
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Information

* Imagine you then observe Darth Vader saying “no”

®* You'd be surprised: he could’ve said “yes”

® Your uncertainty is gone; you’ve received information.

°* How much information do you receive about event x
when you observe it?

s
UNIVERSITY OF
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Information

®*Imagine communicating the outcome in binary
*The amount of information is the size of the message

°*What’s the minimum, average number of bits needed
to encode any outcome?

®* Answer: 1

°*Example: =
—  S(x) = 1bit

“YES” llN O”

o

UNIVERSITY OF

CSC401/2511 — Spring 2026 6 W TORONTO



Information

* What about 4 equiprobable words?

S(x) = 2 bits

llYESI’ llN OI} llMaybell llsure}l

* In general S(x) = log, (ﬁ) = —log,P(x)

UNIVERSITY OF
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Information

*Imagine Darth Vader is about to roll a fair die.

*You have more uncertainty about an event because
there are more (equally probable) possibilities.

*You receive more information when you observe it.
*You are more surprised by any given outcome.

1
P(x)
= log, 1—2 ~ 2.58 bits

S(x) = log,

&
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Information can be additive

* One property of S(x) = log, E is additivity.

* From kindependent events x; ... Xj:
* Does S(xq ...xy) = S(x) +S(xy) + -+ S(xp,) ?

* The answer is yes!
1

S(xl xk) — lng P(xq..xk)

1
= lo = lo +---+1lo
52p(x) . P(xe) B2 P(xy) 52P ()

=S(x) +S(xy) + -+ S(xg)

S
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Events with unequal information

* Events are not always equally likely
* Surprisal will therefore be dependent on the event
* How surprising is the distribution overall?

* Suppose you still have 6
outcomes that are possible — but
you’re fairly sure it will be ‘No’.

* We expect to be less surprised on

=Yes (0.1) average
®No (0.7)

‘Maybe (0.04)
=Sure (0.03)
"Darkside (0.06)

&
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Entropy

* Entropy: n. the average uncertainty/information/surprisal of
a (discrete) random variable X.

H(X) = Z P(x)logs ;s

J

|

Expectation over X

* A lower bound on the average number of bits necessary to
encode X (more on this later)

S
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Entropy — examples
1
v H(X) = Zipi logz
0.710g,(1/0.7) + 0.110og,(1/0.1) + ---
s

“Maybe (0.04)

H(X)—z I . =6 11 L
. — LP0e2, T P %% 176
m] m) =3 m4 =5 mg = 2.585 bits
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Entropy characterizes the distribution

* Flatter distributions = higher entropy = hard to predict
* Peaky distributions = lower entropy = easy to predict

0.8 - = .
0.6 - o g
I
0.4 - A -
. a b E a b C
¥ X
&

P(X=x)
P(X=x)
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Bounds on entropy

* Maximum: uniformly distributed X;. Given I/ choices,

z 1 2 1 1

0
*  Minimum: only one choice, H(X,) = p; 1og2§ =1lod,1 =0

Lo
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Coding with fewer bits is better

* |f we want to transmit Vader’s words efficiently, we can
encode them so that more probable words require fewer bits.

+0n Laverage, fewer bits will need to be transmitted.

,,,,,,

Word Linear Probabil | Huffman
(sorted) | Code ity Code

No 000 0.7 0
Yes 001 0.1 100
Destiny 010 0.07 101
“Yes (0.1) Darkside 011 0.06 110
®No (0.7) o
“Maybe (0.04) Maybe 100 0.04 1111
mSure (0.03) Sure 101 0.03 1110

®Darkside (0.06)

Average codelength (Huffman) = 1*0.7+3*(0.1+.07+.06)+
4*(.04+.03) = 1.67 bits > 1.54 bits ~ H(X)

"‘d
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The entropy rate of language

* (Can we use entropy to measure how predictable language is?
* Imagine that language follows an LM P which infinitely
generates one word after another: X = X, X5, ...
®* Acorpus cis a prefix of x
* Uhoh:asN - oo, H(X) =
* Instead, we take the per-word entropy rate

1
Hygee (X) = Al,i_r){}oNH(Xp o, Xy) < log,V

* How do we handle more than one variable?
* How do we evaluate P(x)?

i
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Entropy of several variables

* Consider the vocabulary of a meteorologist describing
Temperature and Wetness.
* Temperature € {hot, mild, cold}"
°* Wetness € {dry, wet}

P(W = d]‘y) — 06’ B 1 1 B |
P(W = Wet) =04 H(W) = 0.6 log; ﬁ + 0.4 logzﬁ = 0.970951 bits

P(T = hOt) — 03’ . . '
P(T = mlld) = (.5, H(T) = 0.3log, 03 + 0.5 logzﬁ + 0.2log, == 1. 48548 bits

P(T = cold) =0.2

But W and T are not independent,
P(W,T) + P(W)P(T)

. £
Example from Roni Rosenfeld = UNIVERSITY OF
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Joint entropy

® Joint Entropy: n. the average amount of information needed
to specify multiple variables simultaneously.

Y Y 1
H(X,Y) = Zx‘zy‘p(x, y)log, - —

® Hint: this is very similar to univariate entropy — we just replace
univariate probabilities with joint probabilities and sum over
everything.

e
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Entropy of several variables

* Consider joint probability, P(W,T)

| wet R 0.1 o1 Y

* Joint entropy, H(W,T), computed as a sum over the space
of joint events (W =w,T = t)

HW,T) =0.1log, /o1 + 0.4log, /o ++ 0.110g, /o 1
+0.2log, /9o + 0.11l0og, /51 + 0.1log, /o1 = 2.32193 bits

UNIVERSITY OF

% TORONTO
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Entropy given knowledge

* In our example, joint entropy of two variables together is
lower than the sum of their individual entropies
* HW,T) =~ 232< 246 = HW) + H(T)

* Why?

* Information is shared among variables
* There are dependencies, e.g., between temperature and
wetness.
* E.g., if we knew exactly how wet it is, is there less
confusion about what the temperature is ... ?

s
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CSC401/2511 — Spring 2026 20 ) TORONTO



Conditional entropy

® Conditional entropy: n. the average amount of information
needed to specify one variable given
that you know another.

HIYIX) = ) pCOH(YIX = x)

xeX

® Comment: this is the expectation of H(Y | X), w.r.t. x.

2
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Entropy given knowledge

* Consider conditional probability, P(T|W)

P(T|W) = P(W,T)/P(W)

1 oape oy [EEECIEE
o T

UNIVERSITY OF
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Entropy given knowledge

* Consider conditional probability, P(T|W)

* H(T

* H(T

1/2

dry 1/6 2/3 1/6

2
3

1/4 e I
1}) — 1.25163 bits

} — 1.5 bits

* Conditional entropy comblnes these:

0.6

0.4

H(T|W)
= [p(M/)H (TIW =dry)] + [p(W_=Wet)H (T'|W = wet)]

= 1.350978 bits

CSC401/2511 — Spring 2026
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Equivocation removes uncertainty

* Remember H(T) = 1.48548 bits Entropy (i.e., confusion) about
o H(W, T) = 2.32193 bits temperature is reduced if we know
° H(TlW) — 1.350978 bits how wet it is outside.

* How much does W/ tell us about T?
* H(T) — H(T|W) = 1.48548 — 1.350978 ~ 0.1345 bits

* Well, a little bit!

£
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.Perhaps T is more informative?

Consider another conditional probability, P(W|T)

. o

| wet [

.1/0.3 0.4/0.5 0.1/0.2
.2/0.3 0.1/0.5 0.1/0.2

| 10 | 10 | 10

HWI|T =

{ (4

,( ) | Arg \ "‘ 3 ] -
mild) = H (4-
QLS

hot) = H ({22

HWI|T = cold) = H ({%3}) — 0.918295 bits

\ T\ 721090 Lte
) = 0.721928 bits

H(W|T) = 0.8364528 bits

CSC401/2511 — Spring 2026
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A little bit of knowledge still removes

uncertainty, but ...

* H(T) = 1.48548 bits

e H(W) = 0.970951 bits
 HOW,T) = 2.32193 bits
e H(T|W) = 1.350978 hits

* H(T) — H(TIW) ~ 0.1345 bits )

* How much does T tell us about I/ on average?
e HW) — H(W]|T) = 0970951 — 0.8364528
~0.1345 bitsJ

Previously
computed

* Interesting ... is that a coincidence?

&
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Mutual information

® Mutual information: n. the average amount of information
shared between variables.

1(X:Y) = H(X) — HX|Y) = H(Y) — H(Y|X)

. p(x,y)
= Ly P(x, ) logy — s

* Hint: The amount of uncertainty removed in variable X if you know Y.
* Hint2: If X and Y are independent, p(x, y) = p(x)p(y), then
log, p(x,y)
p(x)p(y)

= log, 1 = 0 Vx, y — there is no mutual information!

i
UNIVERSITY OF
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Relations between entropies
H(X,Y)

~
H(Y)

H(X)

H(X,Y) = HX) + HY) — I(X;Y)

&

IIIIIIIIIIII
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Returning to language

* Recall Hyqre(X) = lim %H(Xl,Xz,...,XN)
* Now we have

1
H(X.,X5,..,Xy) = z P(xq, ..., xy)l0
(X1, X5 N) - (x4 N) 82P(x1 o x)

* But we still don’t know how to compute P(...)
* We will approximate the log terms with our trained LM Q

Y
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Cross-entropy

* Cross-entropy measures the uncertainty of a
distribution Q of samples drawn from P

HX Q) = ) P()10g2 5o

°* As (Q nears P, cross-entropy nears entropy
* We pay for this mismatch with added uncertainty
* More on this shortly

‘ UNIVERSITY OF
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Estimating cross-entropy

* We can evaluate Q but not P
® But corpus ¢ = x4, ..., Xy is drawn from P!

* Let 54, Sy, ..., Spy be ¢’s sentences where )..|s,,| = N

1
Hygte(X) = NH(Xl: . Xn) < (large N)
1

~ LH(Xy o Xy; Q) < (Q~ P)
1 1 .
. log, 200 4 (it happened!)
~ % Z%:l ]0g2 Q(1 )- Negative Log Likelihood (NLL)
Sm

* Aside: With time invariance, ergodicity, and Q = P,
NLL approaches N X H,.;;, as N = o

UNIVERSITY OF
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Quantifying the approximation

* How well does cross-entropy approximate entropy?
* Well if P and Q are close
* Poorly if P and Q are far apart
* |If we can quantify the “closeness” of P and Q, we
can quantify how good/bad our NLL estimate is

‘":‘ UNIVERSITY OF
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Quick Recap

* Information S(x) = log, (ﬁ) = —log,P(x)
®* Entropy, Entropy Rate

1 1
H(X) = ZP(x)logzm (X)) — Al/i_r)rgoﬁH(Xl, -, Xy) <log,V
X

* Joint Entropy, Conditional Entropy

1
HOX,Y) = ng(xw logy s HY|X) = ;p(x)ﬂmx = %)

* Mutual Information 1(x;Y)=HX) - HX|Y) = H(Y) — H(Y|X)

=Y., p(x,y) log, 222

* Cross-entropy PP

1
H(X: )=sz lo
Q ’ (x) ng(x)
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Relatedness of two distributions

* How similar are two probability distributions?

°e.g., Distribution P learned from Kylo Ren
Distribution Q learned from Darth Vader

Probability
Probability

Words

i
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Relatedness of two distributions

* An optimal code based on Vader (Q) instead of Kylo (P) will
be less efficient at coding symbols that Kylo will say.
* What is the average number of extra bits required to code

symbols from P when using a code based on Q?

Probability
Probability

Words

s
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Kullback-Leibler divergence

* KL divergence: n. the average log difference between the
distributions P and Q, relative to Q.

a.k.a. relative entropy.
caveat: we assume 0log0 =0

Probability
Probability

Words

Words

‘.: UNIVERSITY OF
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Kullback-Leibler divergence

Dg1(P||Q) = ZP(X) log, QE %

* |t is somewhat like a ‘distance’ :

* Dk (P[|1Q) =20 VP,Q

®* Di; (P||Q) = 0iff P and Q are identical.
* It is not symmetric, Dy; (P||Q) # Dy (Q]|P)
* Aside: normally computed in base e

‘ UNIVERSITY OF
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KL and cross-entropy

* Manipulating KL, we get
Dk (P]1Q)

= Z P(x)log h z P(x)log -
x Q) L *P(x)
= H(X;0)—H(X) =0

* Therefore,
Hrate (X) = H(Xy, ... Xy)
< H(Xq, .. Xy; Q) ~ NLL(c; Q)
* The NLL is an approximate upper bound on H,. (X)

‘ UNIVERSITY OF
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Perplexity

* The intrinsic quality of an LM is often quantified by its

perplexity on held-out data ¢ by exponentiating its NLL
1/N

PP(c; Q) —ZNZ 110g2Q( HQ(S )

* A uniform Q over a vocabulary of size V gives PP(c; Q) =V
® PP is sort of like an “effective” vocabulary size

* If an LM Q has a lower PP than Q' (for large N), then
* () better predicts ¢

* Di; (PlQ) < Dg,(P]1Q")
* PP(c; Q) is a tighter bound on 2frate(X)

g

o UNIVERSITY OF
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Perplexity (per token)

* The intrinsic quality of an LM is often quantified by its
perplexity on held-out data ¢ by exponentiating its NLL

D)

* A uniform Q over a vocabulary of size V gives PP(c;Q) =V
® PP is sort of like an “effective” vocabulary size

* If an LM Q has a lower PP than Q' (for large N), then
* () better predicts ¢

* Di (P||Q) < Dg(P[1Q")
* PP(c; Q) is a tighter bound on 2frate(X)

o
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Decisions
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Deciding what we know

* (Cross-)entropy, KL divergence, and perplexity can all be
used to justify a preference for one method/idea over
another

* “Q is a better language model than Q

* Engineering statistics are often not enough to be truly

meaningful.
* “My ASR system is 95% accurate on my test data. Yours is
only 94.5% accurate! Heh heh heh”
* What if the test data was biased somehow?
°* What if our estimates were inaccurate due to simple
randomness?
* We need tests to increase our confidence in our results.

'n
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Statistical significance testing

Step 1: State a hypothesis (and choose a test)
* Decide on the null hypothesis H
Step 2: Compute some test statistics and associated p-value
* Such as the t-statistic
Step 3: Reject H if p < a, otherwise do not reject it
* Significance level a usually < 0.05
* |If you can reject Hy, then the result is significant

2
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Null hypothesis and p-value

* Null hypothesis H, usually states that “there is no effect”.
* It is the negation of what you hope for
* The phrasing of “there is no effect” dictates the
appropriate test (and its negation)
* “The sample is drawn from a normal distribution with
some fixed mean”
* You want to cast doubt on the plausibility of H,
* It’s very unlikely that this measurement would be
observed randomly under the H,
* The p-value of is the probability that the measured effect
occurs under Hy by chance

o
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Statistical tests

°* Here are some popular tests (no need to memorize)

e X = %Zan is the sample mean

T | By |cowplewscws

Two-sided, one-
sample t test

One-sided, two-
sample t test

One-way ANOVA

One-sided Mann
Whitney U test

CSC401/2511 — Spring 2026

X ~ N (u, o) for known p,
unknown o

A~ N (g, 0), B ~ N(up,0)
for unknown iy, g, o where
ta < g (or py = ug)

X1, X, ... ~N(u,0) for
unknown u, o

P(A, > B,) < 0.5 (or = 0.5)

45

Whether Elon’s average tweet
length is different from the
average user’s (u = 100)

Whether ASR system A (trained
N times) makes fewer mistakes
than B (trained N times)

Whether network architecture
predicts accuracy

Whether ASR system A (trained
N times) makes fewer mistakes
than B (trained N times)

&

@

@
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Pitfall 1: parametric assumptions

* Parametric tests make assumptions about the parameters
and distribution of RVs
* Often normally distributed with some fixed variance
* |f untrue, H, could be rejected for spurious reasons
* Must first pass tests of normality — difficult with small N
* If non-normal, must use non-parametric tests
* Tend to be less powerful (p-values are higher)

&
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Pitfall 2: multiple comparisons

* Imagine you're flipping a coin to see if it’s fair. You claim
that if you get ‘heads’ in 9/10 flips, it’s biased.
* Assuming H,, the coin is fair, the probability that one fair

coin would come up heads = 9 out of 10 times is
p; = 11 x 0.51° =~ 0.01

* But the probability that any of 173 coins hits > 1—90 IS

p173=1—(1 —p)*"° = 0.84
* The more tests you conduct with a statistical test, the more
likely you are to accidentally find spurious (incorrect)
significance accidentally.

i
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Pitfall 3: effect size

* Just because an effect is reliably measured doesn’t make it
Important
* Even u; =1 and u, = 1.00000000000001 can be
significantly different
* One must decide whether the purported difference is worth
the extra attention
* There are various measures of effect size to support this

i
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More information

® This is a cursory introduction to experimental statistics and
hypothesis testing

®* You should be aware of their key concepts and some of their
pitfalls

* Before you run your own experiments:
* Take STA248 “Statistics for computer scientists”
* Look up stats packages for R, Python
® Read a book, e.g.:

* Using multivariate statistics, 7" ed., Tabachnick, Pearson; 2019.
* Categorical Data Analysis, 3" ed., Agresti, Wiley, 2013.

* Ask a statistician for help

o
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https://librarysearch.library.utoronto.ca/permalink/01UTORONTO_INST/14bjeso/alma991106135775306196
https://librarysearch.library.utoronto.ca/permalink/01UTORONTO_INST/14bjeso/alma991106421830806196

Appendix

Everything beyond this slide is not on the exam.

o
UNIVERSITY OF

CSC401/2511 — Spring 2026 50 @ TORONTO



Samples, events, and probabilities

* Samples are the unique outcomes of an experiment
* The set of all samples is the sample space
* Examples:
* What DV could say (“yes” or “no”)
* The face-up side of a die (1..6)
* Events are subsets of the sample space assigned a probability
* This is usually any subset of the sample space
* Examples:
* {"yes"}, {“no”}, {“ves, “no”}, @
* The face-up side is even
* The function assigning probabilities to events is the probability
function

%
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Random variables

* Random variables (RVs) are real-valued functions on
samples/outcomes of a probability space
* The RV is usually upper-case X while its value is lower x
* Examples:
* A function returning the sum of face-up sides of N dice
* A function counting a discrete sample space
°* E.g. “Yes”" =1, “No” =2
* Like a programming variable, but with uncertainty
* Let X be defined over samples w and a, b real
*Z=aX+bmeansVw:Z(w) = aX(w) + b
* X = x occurs with some probability P(x)

s
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PMFs and laziness

* A probability mass function (pmf) sums the probabilities of
samples mapped to a given RV value

PX=x)=) P}, 9 = (0:X(0) = x)

° Itis often expressed as P(x) or p(x)
* If the values of X are 1-to-1 with samples, the pmf is easily
confused with the probability function
* P(x) could be either
* P(X = x) is the pmf
* P(X = yes) is an abuse of notation

2
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Expected value

* The expected value of an RV is its average (or mean) value

over the distribution
* More formally, the expected value of X is the arithmetic mean

of its values weighted by the pmf
E,[X] = z P(X = x) x
X

* E[-]is alinear operator
¢ EX,y[aX ~+ Y ~+ b] — aEx[X] ~+ Ey[Y] ~+ b

2
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Expected value - examples

* What is the average sum of face-up values of 2 fair, 6-sided

dice?

* Let X, be the sum

2 (3 a4 |5 6 |7 |8 |9 Jlo u |12

{11 {21} {31} {41}
{12} {22} 3,2}
{13} {2,3}

{1,4}

{5,1}
14,2}
3,3}
2,4}
{1,5}

{6,1}
{5,2}
{4,3}
{3,4}
{2,5}
{1,6}

{6,2} {6,3} ({6,4} {6,5} {6,6}
{5,3y {54} {55} {5,6}
{44y {4,5} {4,6}

{3,5} {3,6}

{2,6}

1 2
*E[X] = X2, PG =x)x =2+ -3+ =7

* Alternatively, let X, = 2X;

e E[2X,] = 2E[X,]=2X35=7

CSC401/2511 — Spring 2026
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