

Features and classification

CSC401/2511 – Natural Language Computing – Spring 2026
Lecture 3 Ken Shi and Gerald Penn
University of Toronto

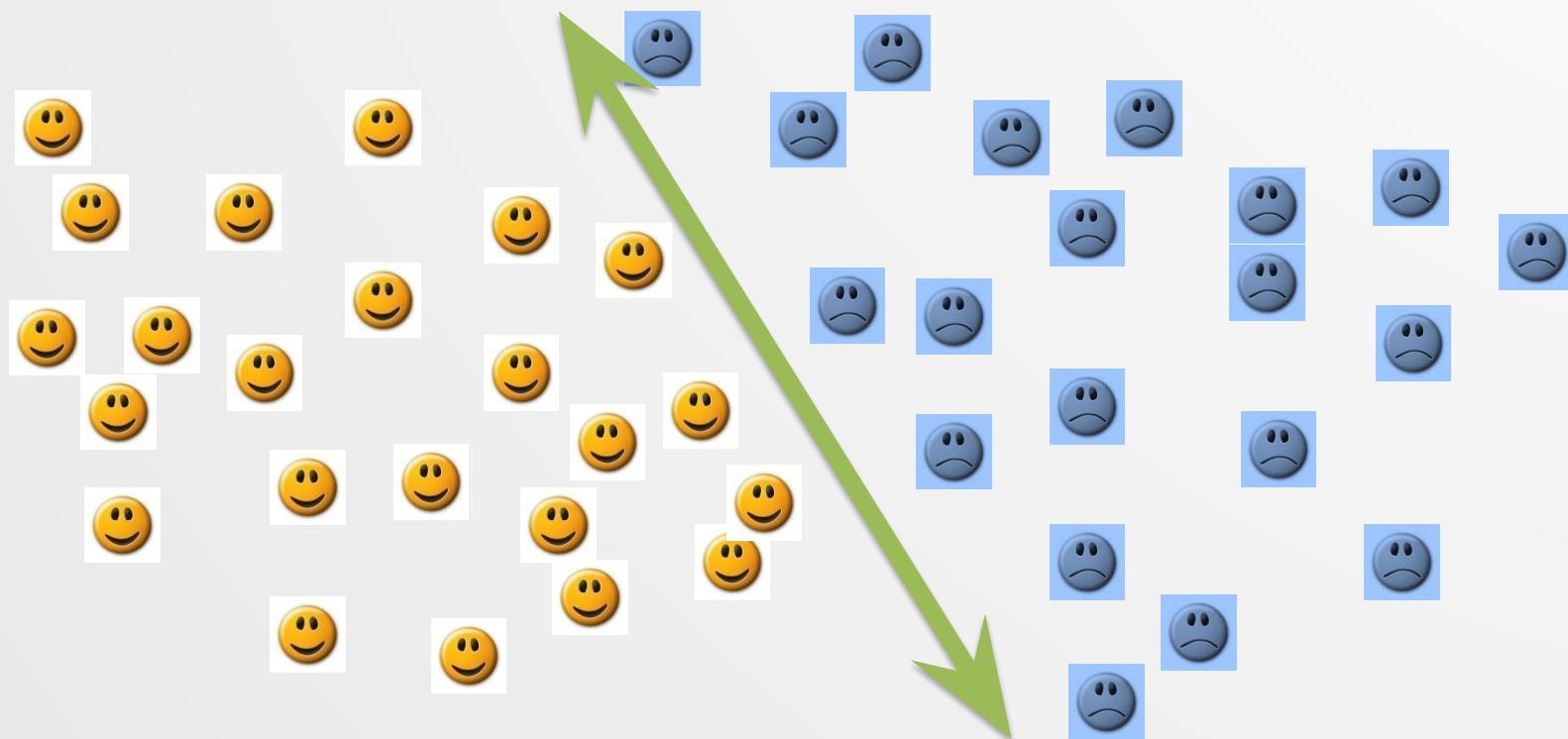
Lecture 3 (topic-wise) overview

- Today:
- **Classification** overview
- Quick introduction to Text Classification
- **Feature extraction** from text.
 - Deep Learning Manifesto: We don't need this
 - Practice: You sure?
- Some slides *may* be based on content from Bob Carpenter, Dan Klein, Roger Levy, Josh Goodman, Dan Jurafsky, and Christopher Manning.

Classification and Classifier Accuracy

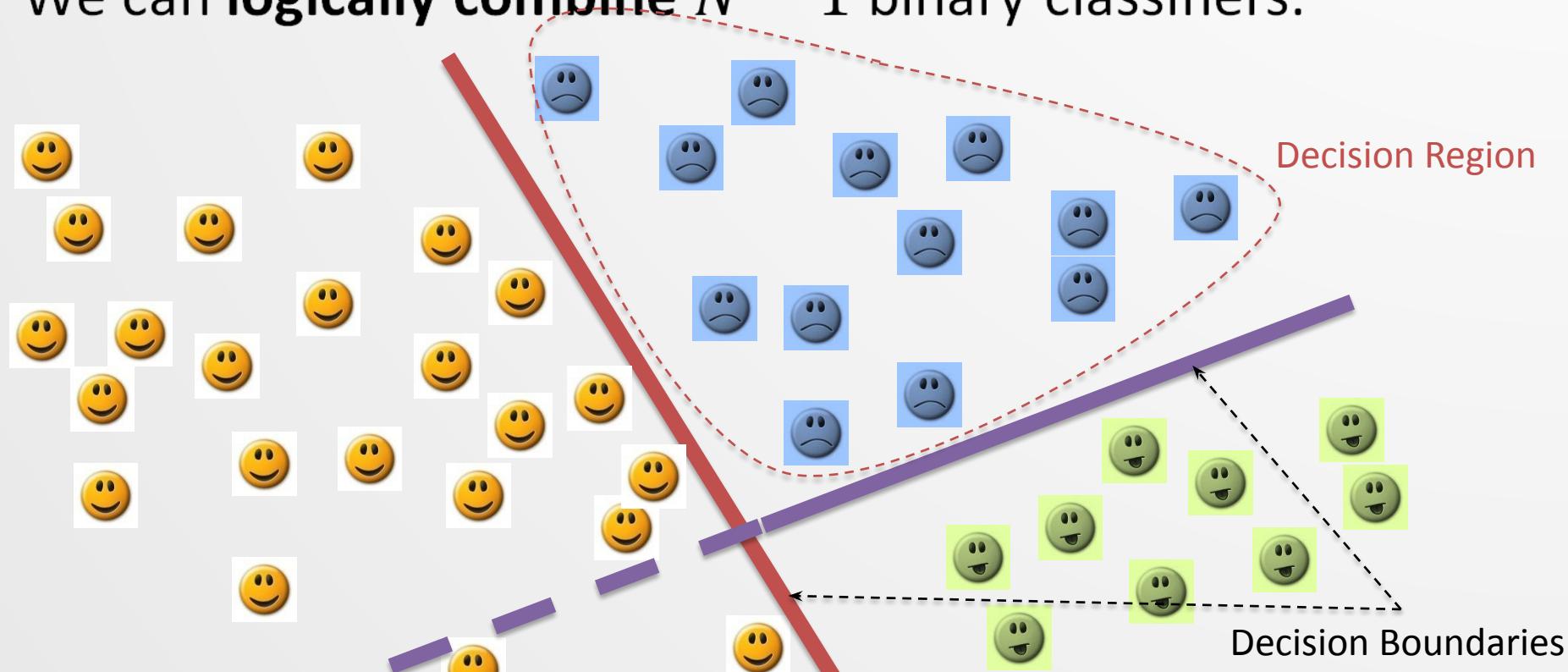
Binary and linearly separable

- Perhaps the easiest case.
 - Extends to dimensions $d \geq 3$, line becomes (hyper-)plane.



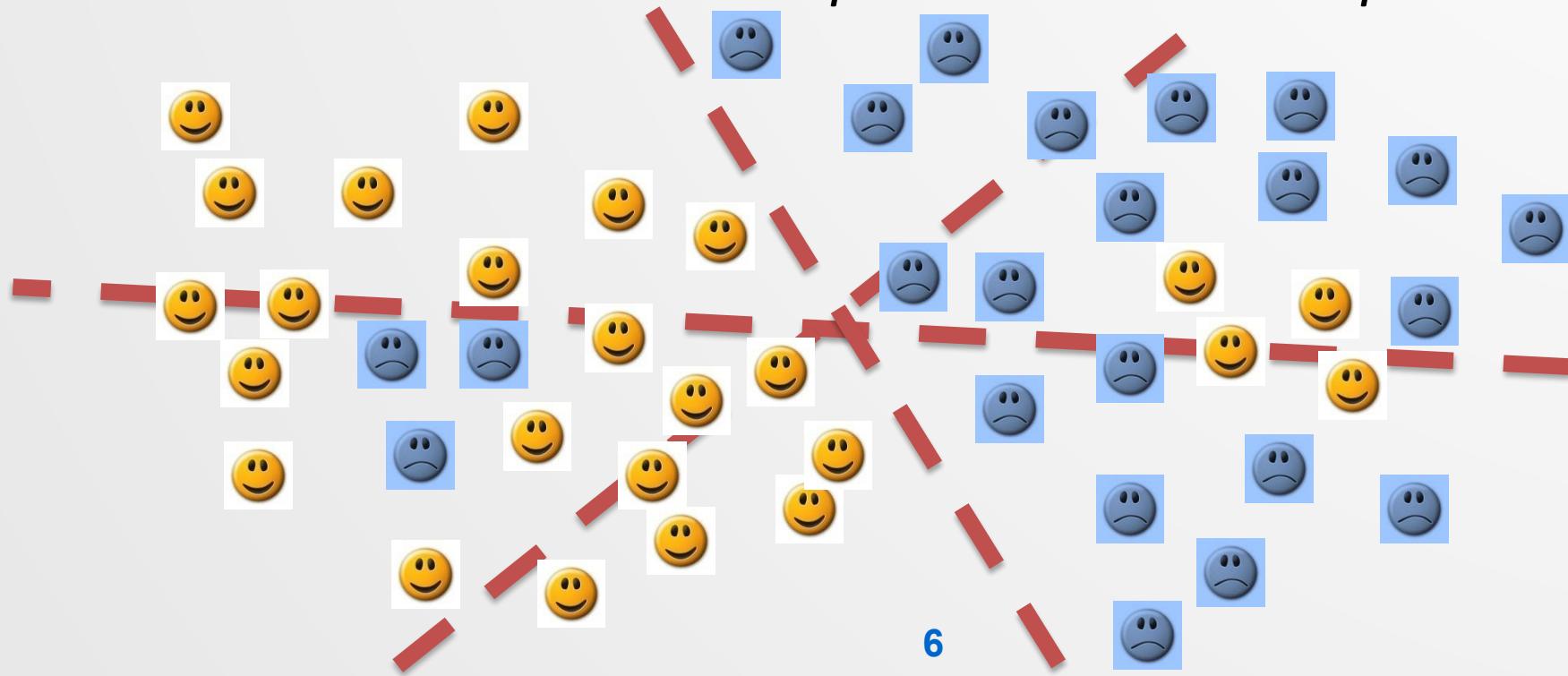
***N*-ary and linearly separable**

- A bit harder – random guessing gives $\frac{1}{N}$ accuracy (given equally likely classes).
 - We can **logically combine** $N - 1$ binary classifiers.



Class holes

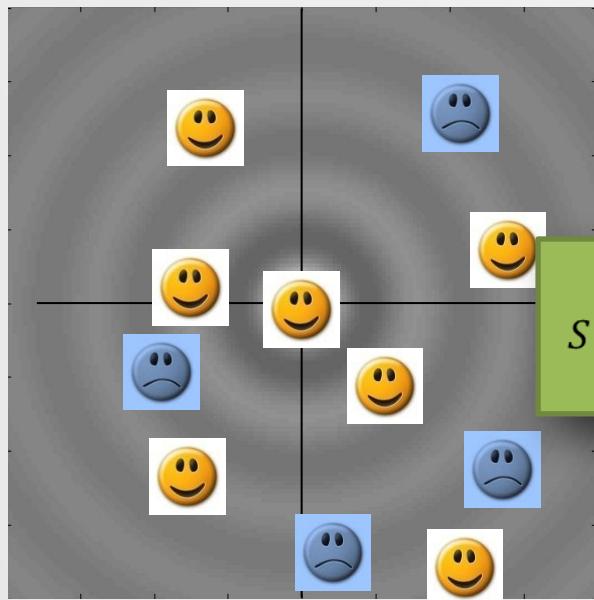
- Sometimes it can be impossible to draw *any* lines through the data to separate the classes.
 - *Are those troublesome points noise or real phenomena?*



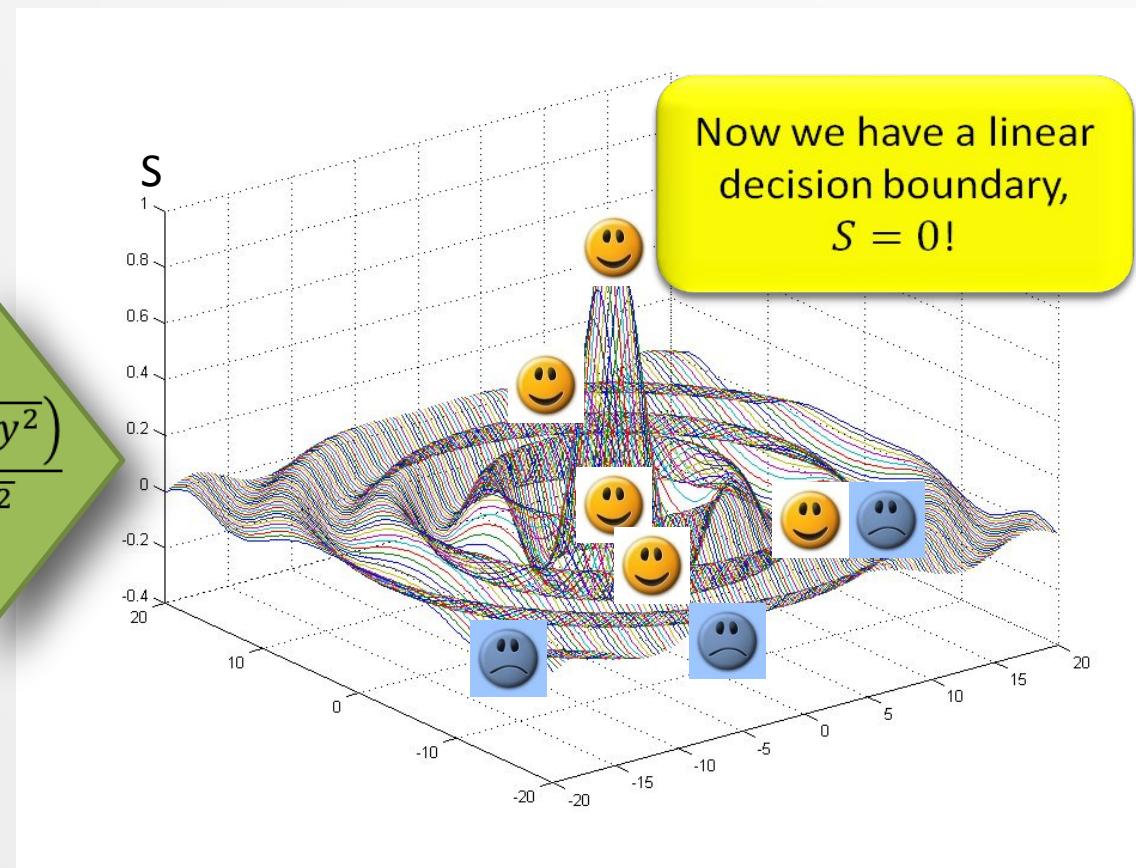
The kernel trick

- We can sometimes linearize a non-linear case by moving the data into a higher dimension with a **kernel function**.

E.g.,



$$S = \frac{\sin(\sqrt{x^2 + y^2})}{\sqrt{x^2 + y^2}}$$



Precision and Recall

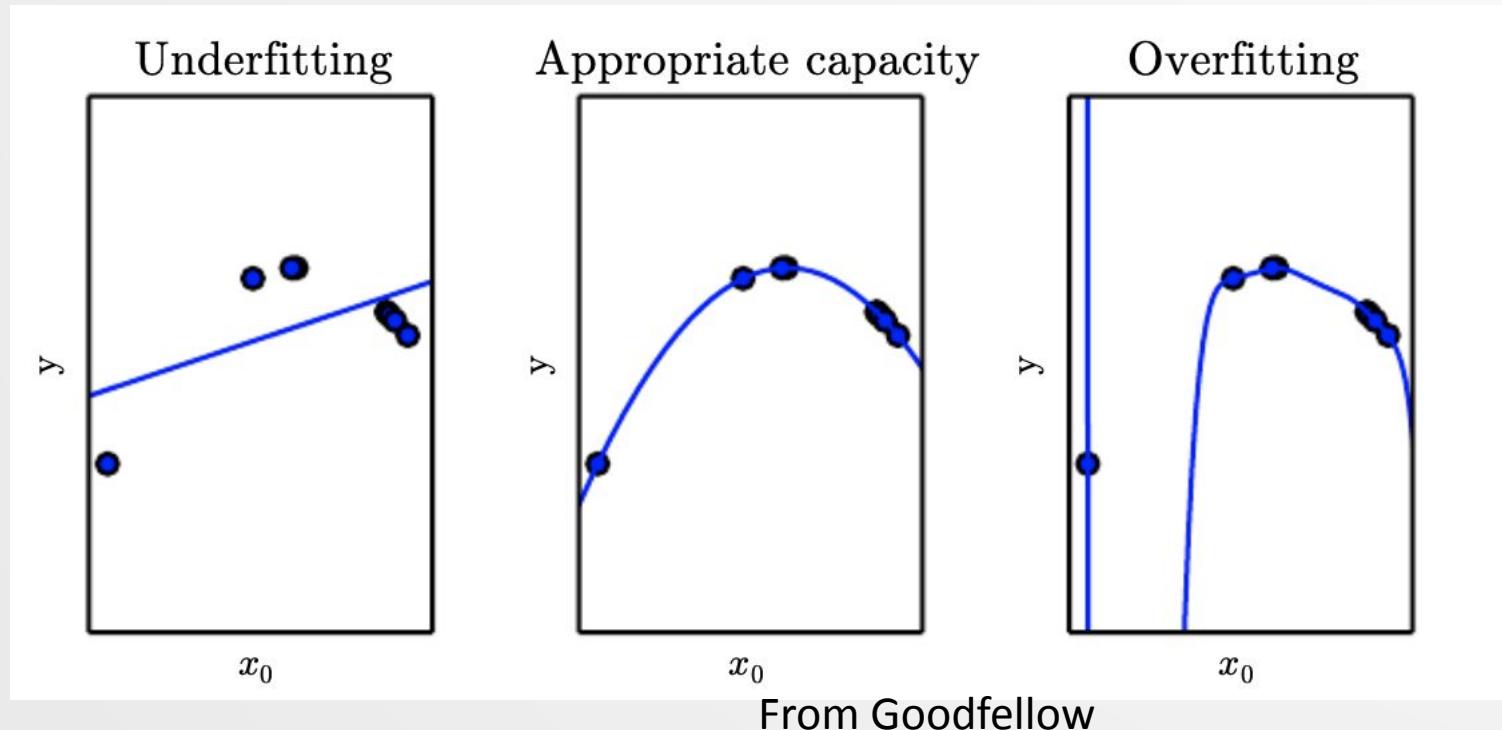
- **Precision:** $\frac{N_{\text{relevant} \& \text{retrieved}}}{N_{\text{retrieved}}}$
 - Among all **retrieved** documents, how many are relevant?
 - Precision in machine learning: $\frac{TP}{P}$
- **Recall:** $\frac{N_{\text{relevant} \& \text{retrieved}}}{N_{\text{relevant}}}$
 - Among all **relevant** documents, how many are retrieved?
 - Recall in machine learning: $\frac{TP}{T}$
- Note: Precision and recall has some tradeoff.

F-measure

- **F-measure** is the weighted harmonic mean of precision and recall:
 - $$F = \frac{1}{\alpha \frac{1}{p} + (1-\alpha) \frac{1}{r}}$$
- Where p is precision, r is recall, and $\alpha \in [0,1]$.
- Notes:
 - When $\alpha = \frac{1}{2}$, we have $F_1 = \frac{2pr}{p+r}$
 - If either of precision or recall is 0 (i.e., true positive count $TP = 0$), then F is arbitrarily set to 0.

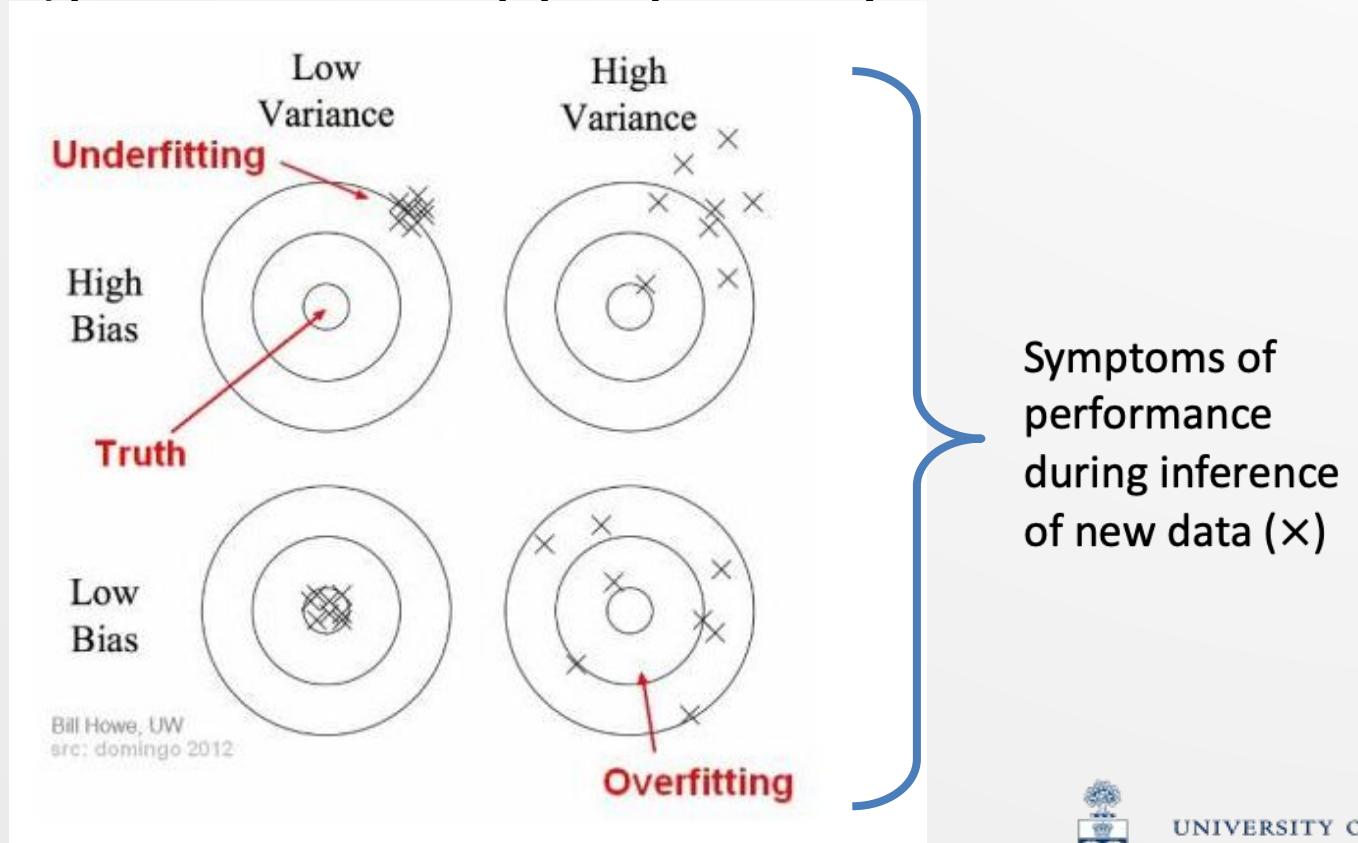
Capacity and over/under-fitting

- A central challenge in machine learning is that our models should **generalize** to unseen data, so we need to set our (hyper-)parameters appropriately.



Capacity and over/under-fitting

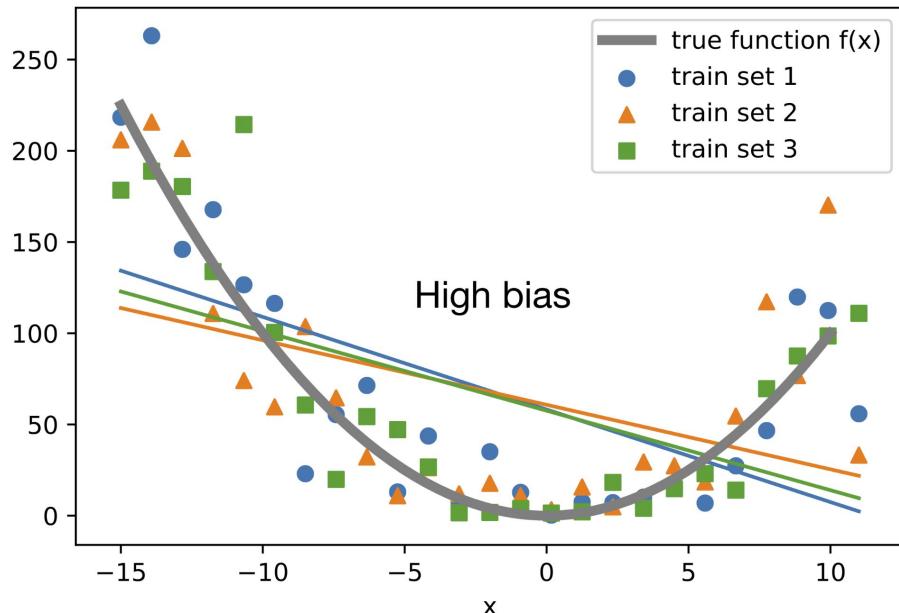
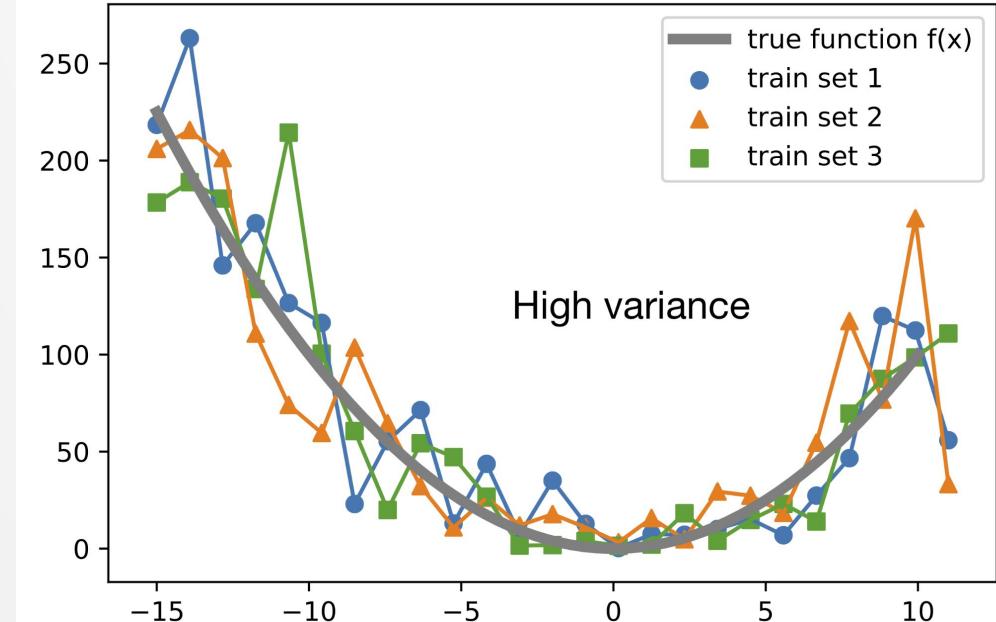
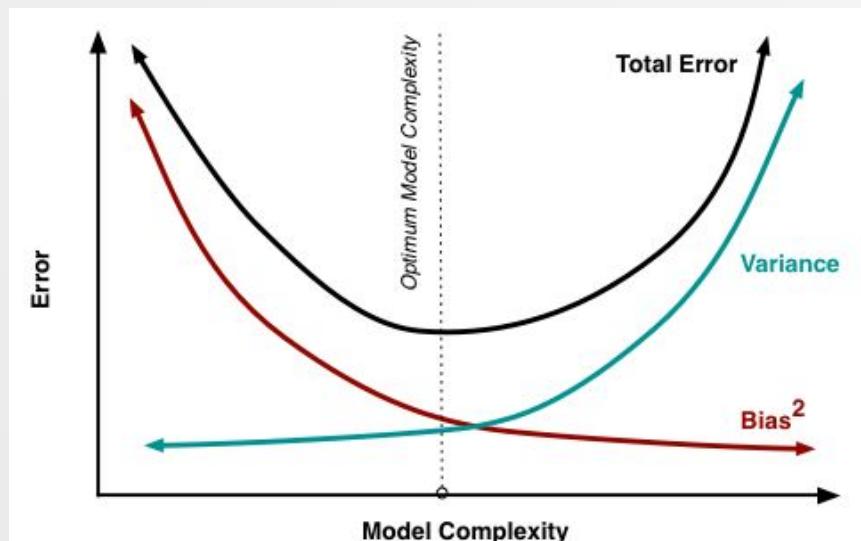
- A central challenge in machine learning is that our models should **generalize** to unseen data, so we need to set our (hyper-)parameters appropriately.



Bias and Variance

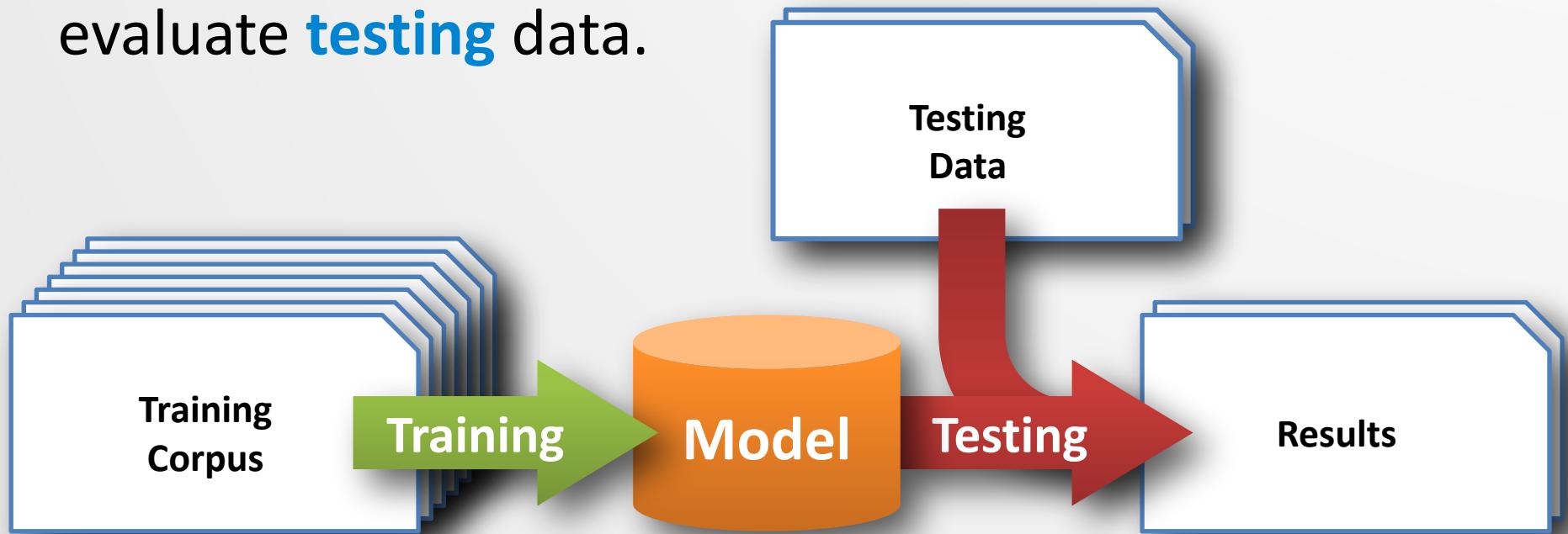
- ▶ Even though this analysis only applies to squared error, we often loosely use “bias” and “variance” as synonyms for “underfitting” and “overfitting”.
 - **Bias**: how wrong the expected prediction is (corresponds to underfitting).
 - **Variance**: the amount of variability in the predictions (corresponds to overfitting).

Bias and Variance



General process

1. We gather a big and relevant **training** corpus.
2. We learn our **parameters** (e.g., probabilities) from that corpus to build our **model**.
3. Once that model is fixed, we use those probabilities to evaluate **testing** data.

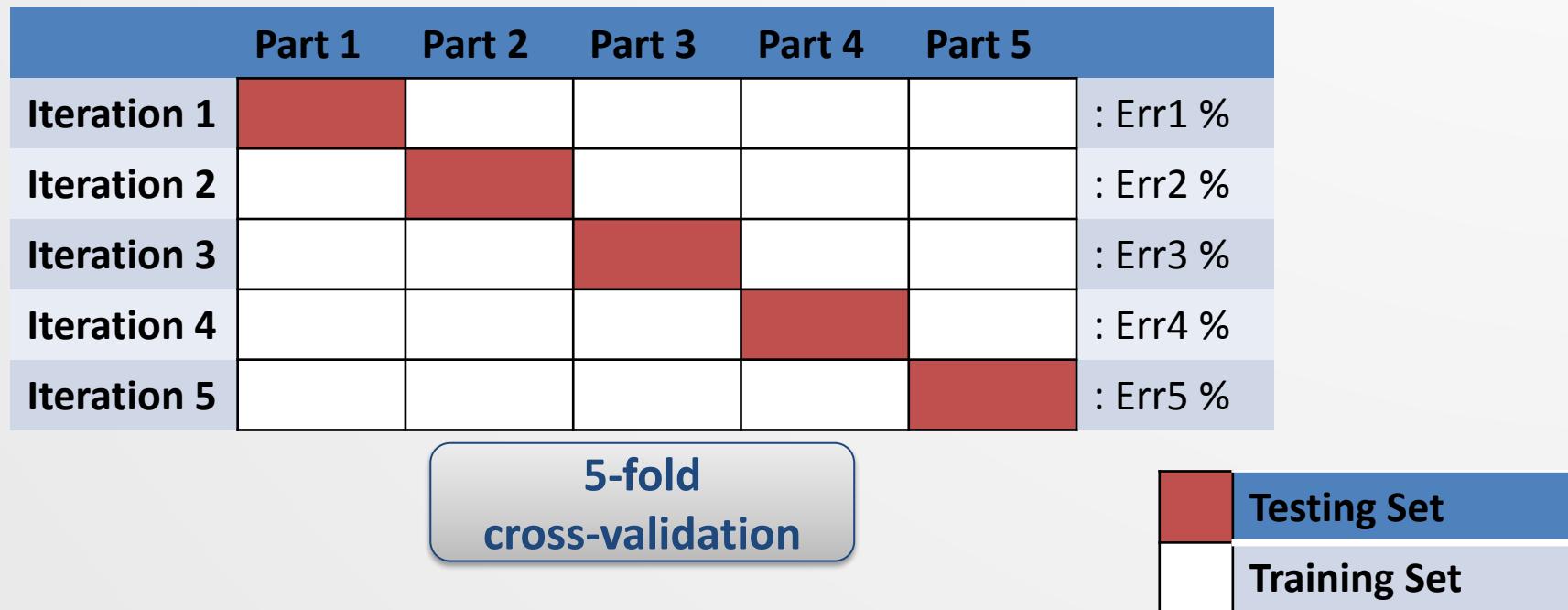


General process

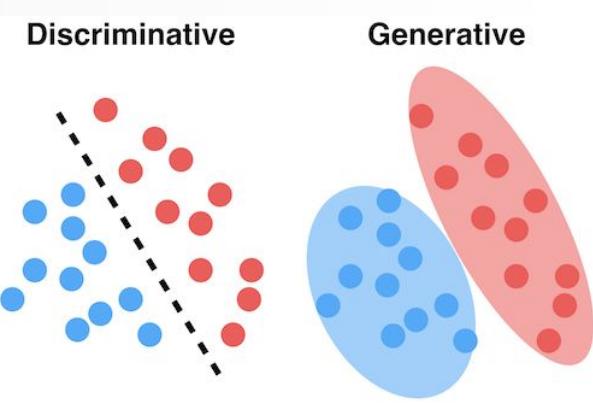
- Often, **training data** consist of 80% to 90% of the available data.
 - Often, some subset of *this* is used as a **validation/development set**.
- **Testing data** are not used for training but often come from the same *corpus*.
 - It often consists of the remaining available data.
 - Sometimes, it's important to **partition** speakers/writers so they **don't** appear in both training and testing.
 - *But what if we just partitioned (un)luckily??*

Better process: *K*-fold cross-validation

- ***K*-fold cross validation**: n . splitting all data into K **partitions** and iteratively testing on each after training on the rest (report means and variances).

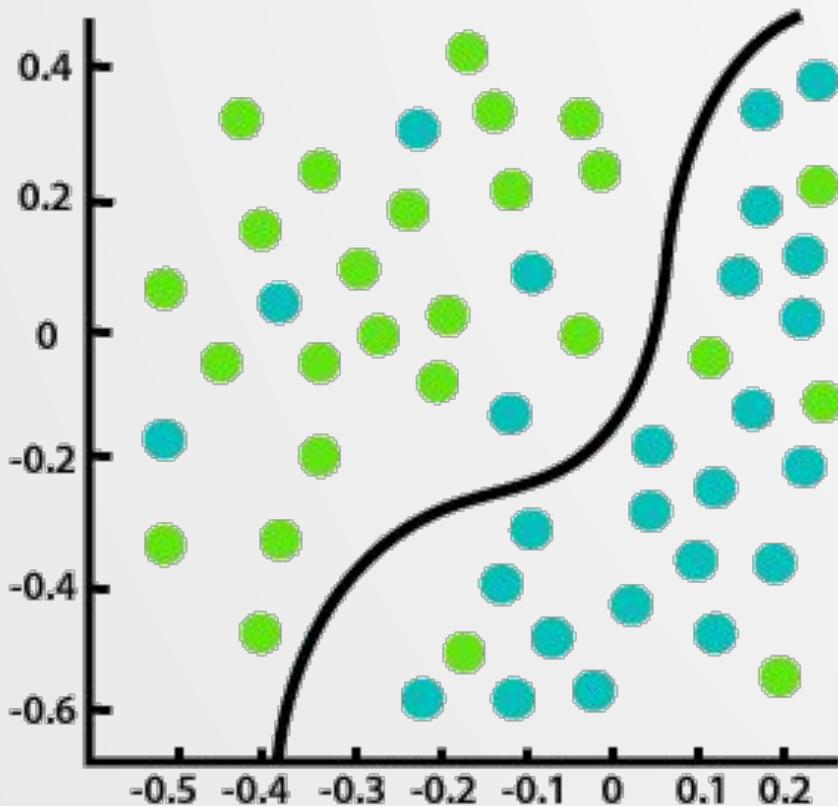


(Some) Types of classifiers

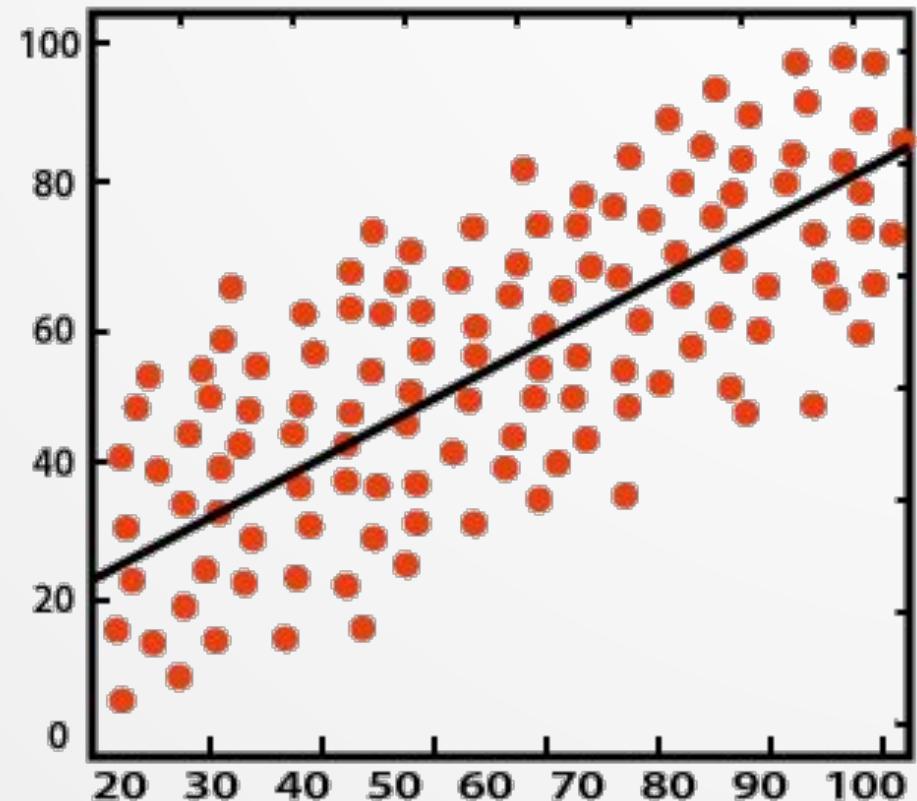


- **Generative** classifiers model the data.
 - Parameters set to maximize likelihood of training data.
 - We can *generate* new observations from these.
 - e.g., hidden Markov models
- **Vs.**
- **Discriminative** classifiers emphasize **class boundaries**.
 - Parameters set to minimize error on training data.
 - e.g., support vector machines, decision trees.
- *...What do class boundaries look like in the data?*

Classification vs. Regression



Classification



Regression

Quick Intro to Text Classification

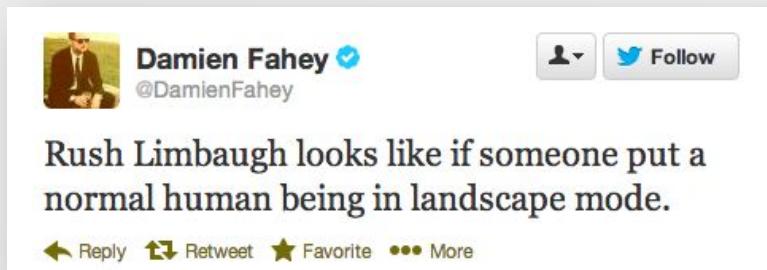
From Technology Upskilling Machine Learning Software Foundations by En-Shiun Annie Lee

Features

- **Feature**: *n.* A measurable **variable** that is (or *should be*) **distinctive** of something we want to model.
- We often choose features to **classify** something.
 - e.g., an emotional, whiny **tone** is likely to indicate that the speaker is not professional, scientific, nor political.
 - Note that in neural networks, e.g., ‘**features**’ refer to something distinctive but often not *nameable*.
- We often need **various, heterogeneous** features to adequately model something,
e.g. tone plus aspects of grammar.

Example: Feature vectors

- Values for several features of an **observation** can be put into a single **vector**.



Damien Fahey @DamienFahey

Rush Limbaugh looks like if someone put a normal human being in landscape mode.

Reply Retweet Favorite More

# proper nouns	# 1 st person pronouns	# commas
2	0	0

Faux John Madden @FauxJohnMadden

BREAKING: Apple Maps projecting Barack Obama to win Brazil.

Reply Retweet Favorite More

5	0	0
---	---	---

Jim Gaffigan @JimGaffigan

If there was an award for most pessimistic, I probably wouldn't even be nominated.

Reply Retweet Favorite More

0	1	1
---	---	---

Feature vectors

- Features should be useful in **discriminating** between categories.

Table 3: Features to be computed for each text

- Counts:
 - First person pronouns
 - Second person pronouns
 - Third person pronouns
 - Coordinating conjunctions
 - Past-tense verbs
 - Future-tense verbs
 - Commas
 - Colons and semi-colons
 - Dashes
 - Parentheses
 - Ellipses
 - Common nouns
 - Proper nouns
 - Adverbs
 - *wh*-words
 - Modern slang acronyms
 - Words all in upper case (at least 2 letters long)
- Average length of sentences (in tokens)
- Average length of tokens, excluding punctuation tokens (in characters)
- Number of sentences

Higher values → this person is referring to themselves (to their opinion, too?)

Higher values → looking forward to (or dreading) some future event?

Lower values → this tweet is more formal. Perhaps not overly sentimental?

Different features for different tasks

- **Alzheimer's disease** involves atrophy in the brain.
 - Excessive **pauses** (acoustic disfluencies),
 - Excessive **word type repetition**, and
 - Simplistic or **short** sentences.
 - 'function words' like *the* and *an* are often **dropped**.
- To **diagnose** Alzheimer's disease, one might measure:
 - **Proportion** of utterance spent in **silence**.
 - **Entropy** of **word type** usage.
 - **Number** of word **tokens** in a sentence.
 - **Number** of prepositions and determiners (explained shortly).

Explainability/Interpretability!

Features in Sentiment Analysis

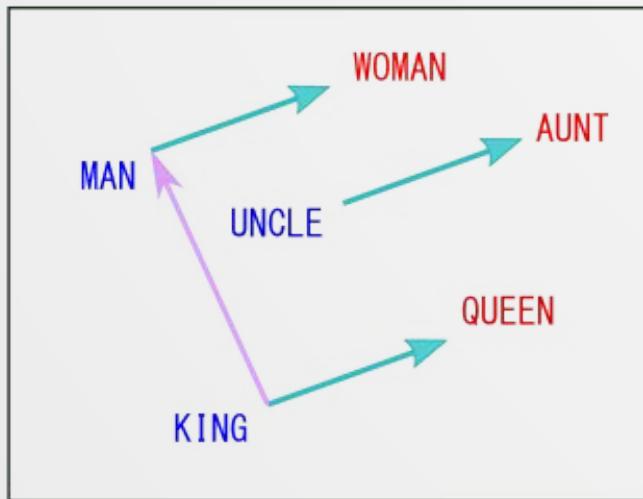
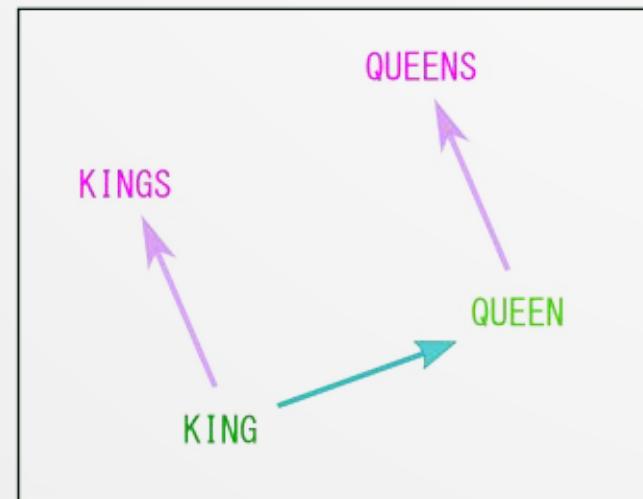
What does this mean?

- **Sentiment analysis** can involve detecting:
 - Stress or frustration in a conversation.
 - Interest, confusion, or preferences. Useful to marketers.
 - e.g., *'got socks for xmas wanted #ps5 fml'*
 - Deceipt. e.g., *'Let's watch Netflix and chill.'*
 - Complicating factors include sarcasm, implicitness, and a subtle spectrum from negative to positive opinions.
 - Useful features for sentiment analyzers include:
 - Trigrams.
 - First-person pronouns?
 - Passive voice.

Pronouns? Voice?

Features = Dimensions?

- In modern NLP, features don't necessarily correspond to specific dimensions.
- However, this doesn't mean that features no longer exist in them. (more on these models later)



Pre-processing

- **Pre-processing** involves **preparing** your data to make feature extraction easier or more valid.

- E.g., **punctuation** likes to press up against words. The sequence “*example*,” should be counted as **two** tokens – not one.
 - We separate the punctuation, as in “*example* ,”.

- **There is no perfect pre-processor.**

Mutually exclusive approaches can often **both** be justified.

- E.g., Is *Newfoundland-Labrador* **one** word type or **two**?
Each answer has a unique implication for splitting the dash.
- Often, **noise-reduction** removes *some* information.
- Being **consistent** is important.

Parts of Speech

Parts-of-speech (PoS)

- Linguists like to group words according to their **syntactic function** in building sentences.
 - This is similar to grouping Lego by their shapes.
- **Part-of-speech:** *n.* lexical category or morphological class.

Nouns collectively constitute a part-of-speech
(called *Noun*)

Example parts-of-speech

Part of Speech	Description	Examples
Noun	is usually a person, place, event, or entity.	<i>chair, pacing, monkey, breath.</i>
Verb	is usually an action or predicate.	<i>run, debate, explicate.</i>
Adjective	modifies a noun to further describe it.	<i>orange, obscene, disgusting.</i>
Adverb	modifies a verb to further describe it.	<i>lovingly, horrifyingly, often</i>

Example parts of speech

Part of Speech	Description	Examples
Preposition	Often specifies aspects of space, time, or means.	<i>around, over, under, after, before, with</i>
Pronoun	Substitutes for nouns; referent typically understood in context.	<i>I, we, they</i>
Determiner	logically quantify words, usually nouns.	<i>the, an, both, either</i>
Conjunction	combines words or phrases.	<i>and, or, although</i>

Content categories

- Some PoSs convey content labels more than function or linguistic structure.
 - Usually nouns, verbs, adjectives, adverbs.
 - **Content** categories are usually multifarious.
 - e.g., there are more **nouns** than **prepositions**.
- **New** content words are continually **added**
e.g., an *app*, *to google*, *to underestimate*.
- Some **archaic** content words go **extinct**.
e.g., *fumificate*, *v.*, (1721-1792),
frenigerent, *adj.*, (1656-1681),
melanochalcographer, *n.*, (c. 1697).

Functional categories

- Some PoS are ‘glue’ that holds others together.
 - E.g., prepositions, determiners, conjunctions.
 - **Functional** PoS usually cover a **small** and **fixed** number of word types (i.e., a ‘**closed class**’).
- Their **semantics** depend on the contentful words with which they’re used.
 - E.g., *I’m on time* vs. *I’m on a boat*

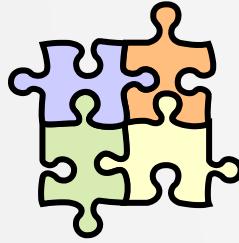
Grammatical features

- There are several **grammatical features** that can be associated with words:
 - **Case**
 - **Person**
 - **Number**
 - **Gender**
- These features can **restrict** other words in a sentence.

Other features of nouns

- **Proper noun:** named things (e.g., “*they’ve killed Bill!*”)
- **Common noun:** unnamed things
(e.g., “*they’ve killed the bill!*”)
- **Mass noun:** **divisible** and **uncountable**
(e.g., “*butter*” split in two gives two piles of butter – not two ‘*butters*’)
- **Count noun:** **indivisible** and **countable**.
(e.g., a “*pig*” split in two does not give two pigs)

Agreement



- Parts-of-speech **should** match (i.e., **agree**) in certain ways.
- **Articles** ‘have’ to **agree** with the **number** of their **noun**
 - e.g., “these pretzels are making me thirsty”
 - e.g., “a winters are coming”
- **Verbs** ‘have’ to **agree** (at least) with their **subject** (in English)
 - e.g., “the dogs eats the gravy” **no number** agreement
 - e.g., “Yesterday, all my troubles seem so far away”
bad tense – should be past tense *seemed*
 - e.g., “Can you handle me the way I are?”

Lecture Review Slide

- What are some examples of Text Classification
- **What are features?**
 - What are unique features for the specific tasks of sentiment analysis versus spam detection?
 - What are some words with multiple POS tags?

Tagging

PoS tagging

- **Tagging:** v.g. the process of **assigning** a **part-of-speech** to each word in a sequence.
- E.g., using the '**Penn treebank**' tag set (see appendix):

Word	The	nurse	put	the	sick	patient	to	sleep
Tag	DT	NN	VBD	DT	JJ	NN	IN	NN

Ambiguities in parts-of-speech

- Word types can have many parts-of-speech.
 - E.g., *back*:
 - *The back/JJ door* (adjective)
 - *On its back/NN* (noun)
 - *Win the voters back/RB* (adverb)
 - *Promise to back/VB you in a fight* (verb)
- We want to determine the **appropriate** tag for a given *token* in its context.

Why is tagging useful?

- First step towards many practical purposes.
 - **Speech synthesis:** how to pronounce text
 - *I'm conTENT/JJ* vs. *the COContent/NN*
 - *I object/VBP* vs. *the OBJect/NN*
 - *I lead/VBP ("I iy d")* vs. *it's lead/NN ("I eh d")*
 - **Information extraction:**
 - Help to find names and relations.
 - **Machine translation:**
 - Help to identify phrase boundaries
 - **Explainability?**

Tagging as classification

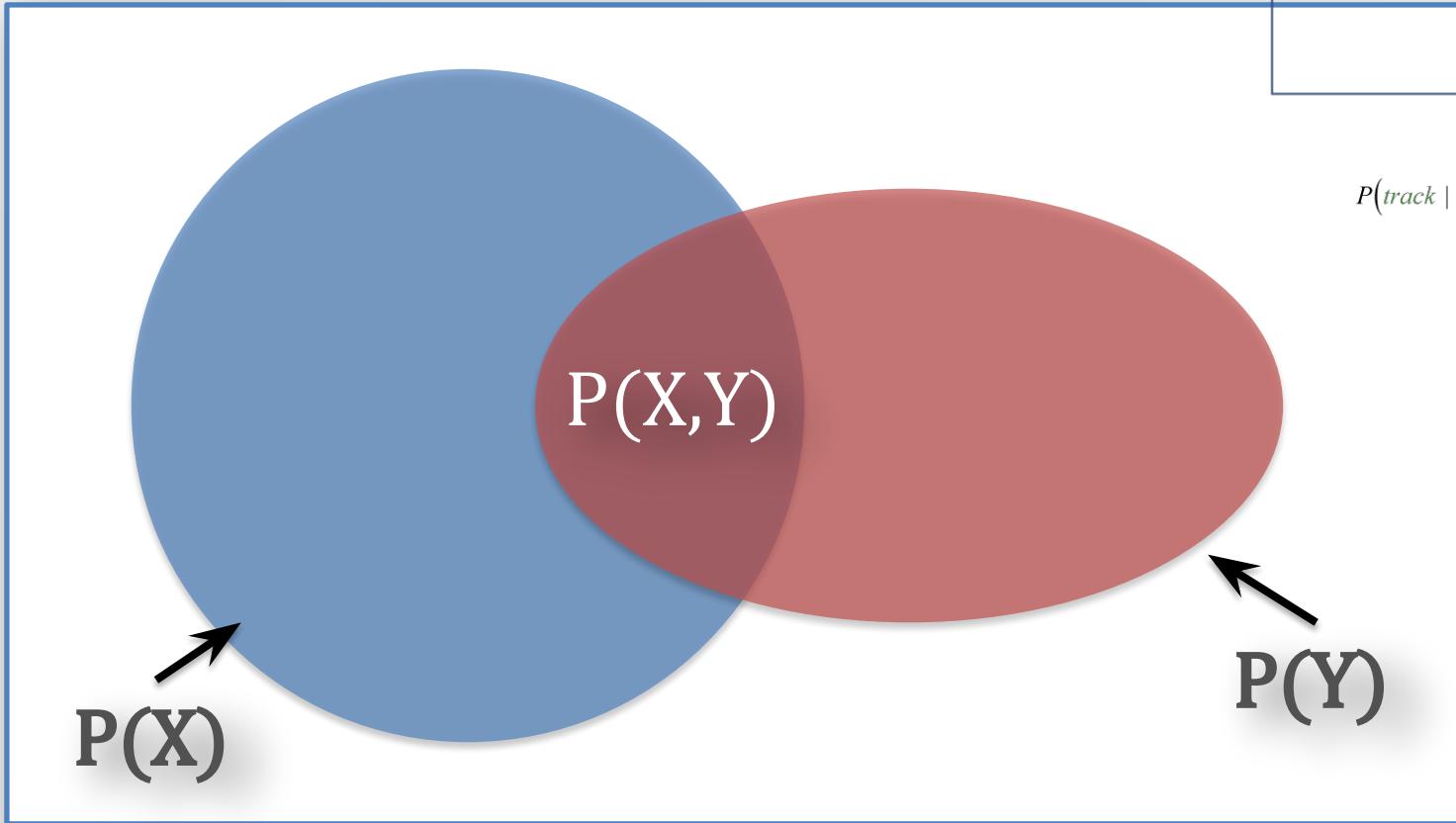
- We have access to a **sequence of observations** and are expected to decide on the best assignment of a **hidden variable**, i.e., the PoS

				NN		
				VB		
		VBN		JJ		NN
PRP	VBD	TO	RB	DT	VB	
she	promised	to	back	the	bill	

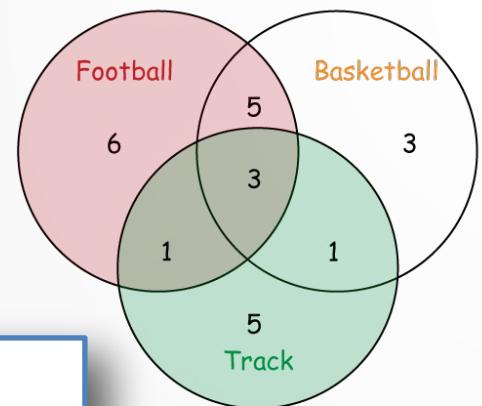
Hidden variable

Observation

Reminder: Bayes' Rule



$$P(X|Y) = \frac{P(X)}{P(Y)} P(Y|X)$$



$$P(\text{track} | \text{football}) = \frac{P(\text{track} \cap \text{football})}{P(\text{football})} = \frac{\left(\frac{4}{24}\right)}{\left(\frac{15}{24}\right)} = \frac{4}{15}$$

$$P(X,Y) = P(X)P(Y|X)$$

$$P(X,Y) = P(Y)P(X|Y)$$

Statistical PoS tagging

- Determine the **most likely** tag sequence $t_{1:n}$ by:

$$\operatorname{argmax}_{t_{1:n}} P(t_{1:n} | w_{1:n}) = \operatorname{argmax}_{t_{1:n}} \frac{P(w_{1:n} | t_{1:n})P(t_{1:n})}{P(w_{1:n})} \quad \text{By Bayes' Rule}$$

$$= \operatorname{argmax}_{t_{1:n}} \frac{P(w_{1:n} | t_{1:n})P(t_{1:n})}{\cancel{P(w_{1:n})}} \quad \text{Only maximize numerator}$$

$$\approx \operatorname{argmax}_{t_{1:n}} \prod_i^n P(w_i | t_i)P(t_i | t_{i-1})$$

Assuming
independence

Assuming
Markov

Those are hidden Markov models!

- We'll see these soon...



Image sort of from *2001:A Space Odyssey*
by MGM pictures

• Word likelihood probability $P(w_i|t_i)$

- **VBZ** (verb, 3rd person singular present) is likely ***is***.
- Compute $P(\textbf{\textit{is}}|\textbf{\textit{VBZ}})$ by **counting** in a corpus that has **already** been **tagged**:

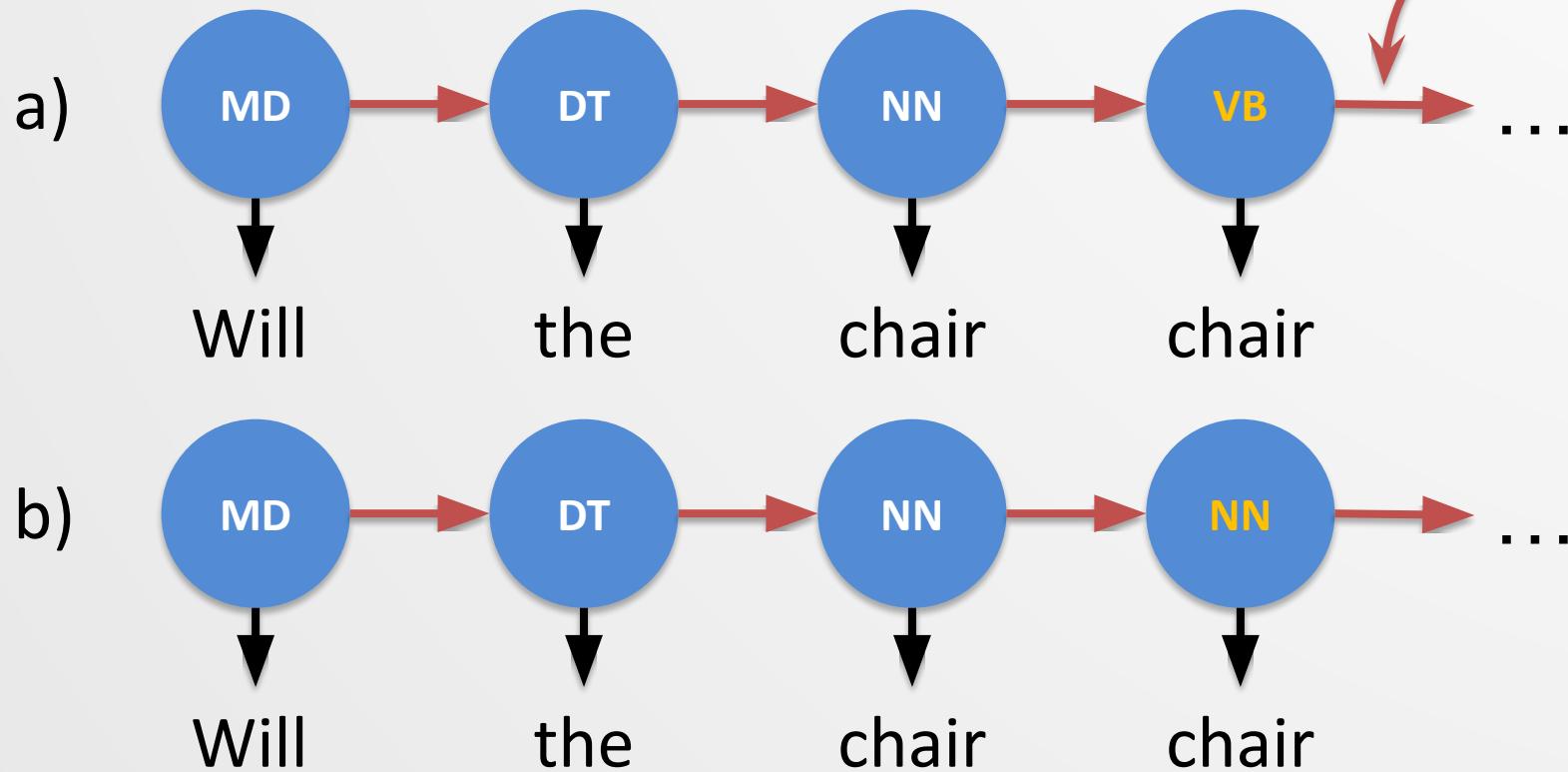
$$P(w_i|t_i) = \frac{\text{Count}(w_i \text{ tagged as } t_i)}{\text{Count}(t_i)}$$

e.g.,

$$P(\textbf{\textit{is}}|\textbf{\textit{VBZ}}) = \frac{\text{Count}(\textbf{\textit{is}} \text{ tagged as } \textbf{\textit{VBZ}})}{\text{Count}(\textbf{\textit{VBZ}})} = \frac{10,073}{21,627} = 0.47$$

• Tag-transition probability $P(t_i|t_{i-1})$

- Will/MD the/DT **chair/NN** **chair/??** the/DT meeting/NN from/IN that/DT **chair/NN?**



Let's summarize a few of the classifiers from Assignment 1

Naïve Bayes and SoftMax

- Broadly, Bayesian probability conceives of probability *not* as frequency of some phenomenon occurring, but rather as an expectation related to our own certainty.
- Given an observation x , **Naïve Bayes** simply chooses the class $c \in C$ that maximizes $P(c | x)$.
 - This can be done in many ways.

$$\operatorname{argmax}_c P(c|x) = \frac{P(c)}{\cancel{P(x)}} P(x|c)$$

Estimate the $P(\cdot)$ using Gaussians, or...

Bayesian Classifier

Given features $\mathbf{x} = [x_1, x_2, \dots, x_D]^T$

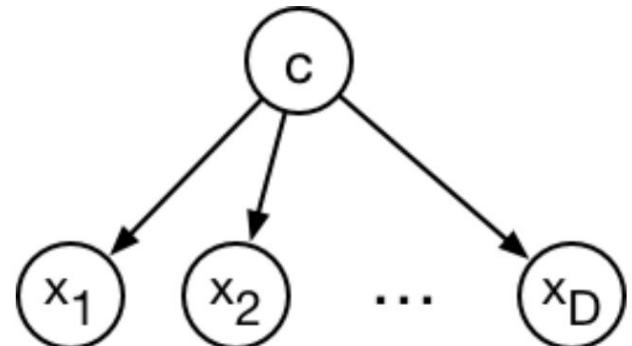
want to compute class probabilities using Bayes Rule:

$$\underbrace{p(c|\mathbf{x})}_{\text{Pr. class given feature}} = \frac{\overbrace{p(\mathbf{x}|c)}^{\text{Pr. feature given class}}}{p(\mathbf{x})} p(c)$$

In words,

$$\text{Posterior for class} = \frac{\text{Pr. of feature given class} \times \text{Prior for class}}{\text{Pr. of feature}}$$

To compute $p(c|\mathbf{x})$ we need: $p(\mathbf{x}|c)$ and $p(c)$.



Independence Assumption

- ▶ Naive assumption: The features x_i are conditionally independent given the class c .
- ▶ Allows us to decompose the joint distribution:

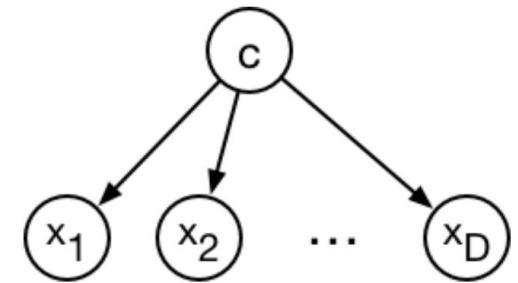
$$p(c, x_1, \dots, x_D) = p(c) p(x_1|c) \cdots p(x_D|c).$$

- ▶ Compact representation of the joint distribution.
 - Prior probability of class:
 - Conditional probability of feature given class:

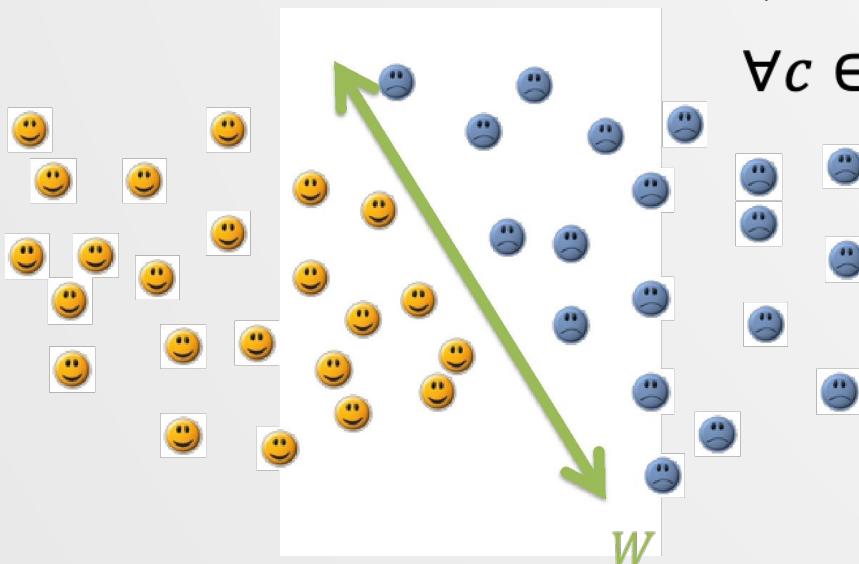
$$p(c = 1) = \pi$$

$$p(x_j = 1|c) = \theta_{jc}$$

Naïve Bayes and SoftMax



- Assume $x \in \mathbb{R}^d$, learning a linear decision boundary is tantamount to learning $W \in \mathbb{R}^{C \times d}$.



$$P(\text{Class}|\text{features}) = P(\text{features}|\text{Class}) * P(\text{Class})$$

$$\forall c \in C: f_c = W[c, \dots] \cdot x = \sum_{i=1}^d W[c, i] \cdot x[i]$$

Uh oh – f_c can be negative and we want something on $[0,1]$, to be a probability.
 Solution: Just raise it with an exponent

Softmax:

$$P(y|x) = \frac{\exp(f_y)}{\sum_{c=1}^C \exp(f_c)}$$

Naive Bayes: <https://www.youtube.com/watch?v=O2L2Uv9pdDA>

SoftMax: https://www.youtube.com/watch?v=8ps_JEW42xs

Example on Text: <https://www.youtube.com/watch?v=temQ8mHpe3k>

Naive Bayes on Spam: <https://youtu.be/M59h7CFUwPU>

Why Naive Bayes are Cool: <https://www.youtube.com/watch?v=8NEfN3JbINA>

Naive Bayes Properties

- ▶ An amazingly cheap learning algorithm!
- ▶ **Training time**: Estimate parameters using maximum likelihood.
 - Compute co-occurrence counts of each feature with the labels.
I Requires only one pass through the data!
- ▶ **Test time**: Apply Bayes' Rule.
 - Cheap because of the model structure. For more general models, Bayesian inference can be very expensive and/or complicated.
- ▶ Analysis easily extends to prob. distributions other than Bernoulli.
- ▶ Less accurate in practice compared to discriminative models due to its “naive” independence assumption.

Readings

- J&M: 5.1-5.5 (2nd edition)
- M&S: 16.1, 16.4

Appendix – prepositions from CELEX

of	540,085	through	14,964	worth	1,563	pace	12
in	331,235	after	13,670	toward	1,390	nigh	9
for	142,421	between	13,275	plus	750	re	4
to	125,691	under	9,525	till	686	mid	3
with	124,965	per	6,515	amongst	525	o'er	2
on	109,129	among	5,090	via	351	but	0
at	100,169	within	5,030	amid	222	ere	0
by	77,794	towards	4,700	underneath	164	less	0
from	74,843	above	3,056	versus	113	midst	0
about	38,428	near	2,026	amidst	67	o'	0
than	20,210	off	1,695	sans	20	thru	0
over	18,071	past	1,575	circa	14	vice	0

Appendix – particles

aboard	aside	besides	forward(s)	opposite	through
about	astray	between	home	out	throughout
above	away	beyond	in	outside	together
across	back	by	inside	over	under
ahead	before	close	instead	overhead	underneath
alongside	behind	down	near	past	up
apart	below	east, etc.	off	round	within
around	beneath	eastward(s),etc.	on	since	without

Appendix – conjunctions

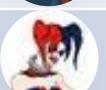
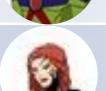
and	514,946	yet	5,040	considering	174	forasmuch as	0
that	134,773	since	4,843	lest	131	however	0
but	96,889	where	3,952	albeit	104	immediately	0
or	76,563	nor	3,078	providing	96	in as far as	0
as	54,608	once	2,826	whereupon	85	in so far as	0
if	53,917	unless	2,205	seeing	63	inasmuch as	0
when	37,975	why	1,333	directly	26	insomuch as	0
because	23,626	now	1,290	ere	12	insomuch that	0
so	12,933	neither	1,120	notwithstanding	3	like	0
before	10,720	whenever	913	according as	0	neither nor	0
though	10,329	whereas	867	as if	0	now that	0
than	9,511	except	864	as long as	0	only	0
while	8,144	till	686	as though	0	provided that	0
after	7,042	provided	594	both and	0	providing that	0
whether	5,978	whilst	351	but that	0	seeing as	0
for	5,935	suppose	281	but then	0	seeing as how	0
although	5,424	cos	188	but then again	0	seeing that	0
until	5,072	supposing	185	either or	0	without	0

Appendix – Penn TreeBank PoS tags

Tag	Description	Example	Tag	Description	Example
CC	coordin. conjunction	<i>and, but, or</i>	SYM	symbol	<i>+, %, &</i>
CD	cardinal number	<i>one, two, three</i>	TO	“to”	<i>to</i>
DT	determiner	<i>a, the</i>	UH	interjection	<i>ah, oops</i>
EX	existential ‘there’	<i>there</i>	VB	verb, base form	<i>eat</i>
FW	foreign word	<i>mea culpa</i>	VBD	verb, past tense	<i>ate</i>
IN	preposition/sub-conj	<i>of, in, by</i>	VBG	verb, gerund	<i>eating</i>
JJ	adjective	<i>yellow</i>	VBN	verb, past participle	<i>eaten</i>
JJR	adj., comparative	<i>bigger</i>	VBP	verb, non-3sg pres	<i>eat</i>
JJS	adj., superlative	<i>wildest</i>	VBZ	verb, 3sg pres	<i>eats</i>
LS	list item marker	<i>1, 2, One</i>	WDT	wh-determiner	<i>which, that</i>
MD	modal	<i>can, should</i>	WP	wh-pronoun	<i>what, who</i>
NN	noun, sing. or mass	<i>llama</i>	WP\$	possessive wh-	<i>whose</i>
NNS	noun, plural	<i>llamas</i>	WRB	wh-adverb	<i>how, where</i>
NNP	proper noun, singular	<i>IBM</i>	\$	dollar sign	<i>\$</i>
NNPS	proper noun, plural	<i>Carolinas</i>	#	pound sign	<i>#</i>
PDT	predeterminer	<i>all, both</i>	“	left quote	<i>‘ or “</i>
POS	possessive ending	<i>’s</i>	”	right quote	<i>’ or ”</i>
PRP	personal pronoun	<i>I, you, he</i>	(left parenthesis	<i>[, (, {, <</i>
PRP\$	possessive pronoun	<i>your, one’s</i>)	right parenthesis	<i>],), }, ></i>
RB	adverb	<i>quickly, never</i>	,	comma	<i>,</i>
RBR	adverb, comparative	<i>faster</i>	.	sentence-final punc	<i>. ! ?</i>
RBS	adverb, superlative	<i>fastest</i>	:	mid-sentence punc	<i>: ; ... – -</i>
RP	particle	<i>up, off</i>			

Example – Hero classification

Training data

Hero	Hair length	Height	Age	Hero Type
Aquaman	2"	6'2"	35	Hero
Batman	1"	5'11"	32	Hero
Catwoman	7"	5'9"	29	Villain
Deathstroke	0"	6'4"	28	Villain
 Harley Quinn	5"	5'0"	27	Villain
Martian Manhunter	0"	8'2"	128	Hero
 Poison Ivy	6"	5'2"	24	Villain
Wonder Woman	6"	6'1"	108	Hero
Zatanna	10"	5'8"	26	Hero

Test data

Red Hood

2"

6'0"

22

?