

TRIPLE
LETTER
SCORE

TRIPLE
LETTER
SCORE

TRIPLE
LETTER
SCORE

DOUBLE
LETTER
SCORE

DOUBLE
LETTER
SCORE

DOUBLE
LETTER
SCORE

401

DOUBLE
LETTER
SCORE

DOUBLE
LETTER
SCORE

N₁ A₁ T₁ U₁ R₁ A₁ L₁

TRIPLE
WORD
SCORE

DOUBLE
LETTER
SCORE

DOUBLE
LETTER
SCORE

TRIPLE
LETTER
SCORE

TRIPLE
LETTER
SCORE

N₁

G₂

TRIPLE
LETTER
SCORE

DOUBLE
WORD
SCORE

TRIPLE
LETTER
SCORE

TRIPLE
LETTER
SCORE

DOUBLE
LETTER
SCORE

DOUBLE
WORD
SCORE

C₃ O₁ M₃ P₃ U₁ T₁ I₁ N₁ G₂

DOUBLE
WORD
SCORE

DOUBLE
WORD
SCORE

E₁

DOUBLE
WORD
SCORE

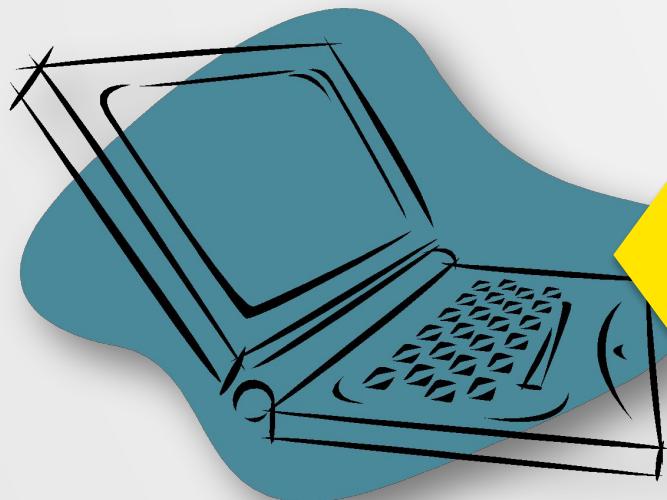
TRIPLE
WORD
SCORE

TRIPLE
WORD
SCORE

DOUBLE
LETTER
SCORE

TRIPLE
WORD
SCORE

What is natural language computing?



Getting computers
to understand
everything we say
and write.



In this class (and in the field
generally), we are interested
in learning the
statistics of language.

Increasingly, computers
give insight into how humans
process language, or generate
language themselves.

What is Natural Language Computing?

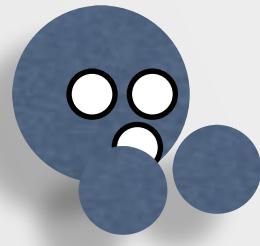
- The computer science (and statistics) behind **natural language processing (NLP)**, also known as **computational linguistics (CL)**.

- Applications
 - Text Classification
 - Automatic translation between languages
 - Automatic speech transcription
 - Spoken language understanding
 - Information Retrieval
 - Text/speech Summarization

Examples

What can natural language do?

A key component of **human-computer interaction**.



“translate *Also Sprach Zarathustra*”

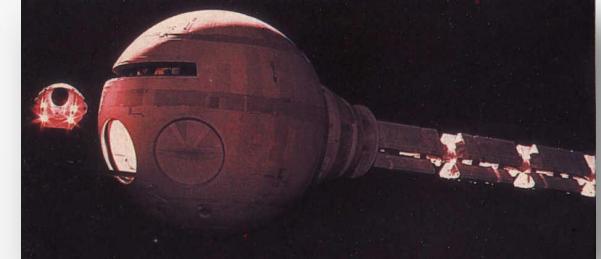
“take a

memo...”

“open the pod bay doors”

“how far until Jupiter?”

open (podBay.door);



“Can you summarize *2001: A Space Odyssey*?”

We've made progress, but why are these things *still* hard to do?

A little deeper

- Language has ***hidden structures***, e.g.,
 - How are **sounds** and **text** related?
 - e.g., why is this: not a 'ghoti' (*enough*, *women*, *nation*)?
 - How are words **combined** to make sentences?
 - e.g., what makes '*colourless green ideas sleep furiously*' **correct** in a way **unlike** '*furiously sleep ideas green colourless*'?
 - How are words and phrases used to produce **meaning**?
 - e.g., if someone asks '*do you know what time it is?*', why is it **inappropriate** to answer '*yes*'?
 - We need to organize the way we think about language...

Categories of linguistic knowledge

- **Phonology**: the study of patterns of speech sounds.
e.g., “read” → /r iy d/
- **Morphology**: how words can be changed by inflection or derivation.
e.g., “read”, “reads”, “reader”, “reading”, ...
- **Syntax**: the ordering and structure between words and phrases (i.e., grammar).
e.g., *NounPhrase* → *article adjective noun*
- **Semantics**: the study of how meaning is created by words and phrases.
e.g., “book” →
- **Pragmatics**: the study of meaning in contexts.
e.g., explanation span, refutation span

Ambiguity – Phonological

- **Phonology:** the study of patterns of speech sounds.

<p>Problem for <i>speech synthesis</i></p>	“read”	→ /r iy d/	as in ‘I like to read ’
	“read”	→ /r eh d/	as in ‘She read a book’
	“object”	→ /aa ¹ b jh eh ⁰ k t /	as in ‘That is an object ’
		→ /ah ⁰ b jh eh ¹ k t /	as in ‘I object !’
<p>Problem for <i>speech recognition</i></p>	“too”	← /t uw/	as in ‘ too much’
	“two”	← /t uw/	as in ‘ two beers’

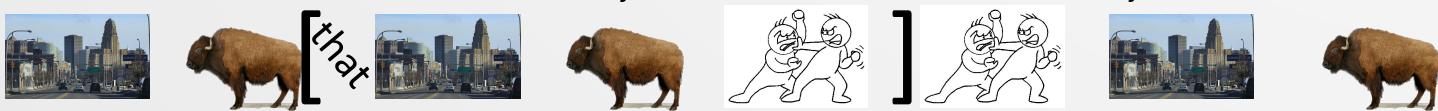
- Ambiguities can often be **resolved** in context, but not always.
 - e.g., /h aw t uw r eh¹ k ah ?? n ay² z s (b/p) iy ch/
 - ‘*how to recognize speech*’
 - ‘*how to wreck a nice beach*’

Resolution with syntax

- If you hear the sequence of speech sounds

*/b ah f ae l ow b ah f ae l ow b ah f ae l ow b ah f ae l ow ...
b ah f ae l ow b ah f ae l ow b ah f ae l ow b ah f ae l ow/*

which word sequence is being spoken?

- “Buff a low buff a lobe a fellow Buff a low buff a lobe a fellow...”
- “Buffalo buff aloe buff aloe buff aloe buff aloe ...”
- “Buff aloe buff all owe Buffalo buffalo buff a lobe ...”
- “Buff aloe buff all owe Buffalo buff aloe buff a lobe ...”
- “**Buffalo** **buffalo** **Buffalo** **buffalo** **buffalo** **buffalo** **Buffalo** **buffalo**”


- It's obvious (to us) that the last option is most likely because we have knowledge of **syntax**, i.e., grammar.

NLP as artificial intelligence

NLP involves **resolving ambiguity** at all levels.

- Reasoning with **linguistic** knowledge
- Reasoning with **world** knowledge
- We sometimes represent the former with *grammars*

We tend to use numerical parameters
(probabilities?) to distinguish competing
hypotheses.

- E.g., is Google a **noun** or a **verb**?
- Examples where Google is a noun (“Google makes Android”)
does not mean Google is never a verb (“Google his name”).
- $P(\text{noun}|\text{Google}) > P(\text{verb}|\text{Google}) > 0.$

Aside – Chatbots

- ELIZA (Weizenbaum, 1966): simple pattern matching to imitate a psychiatrist.
- Surprisingly effective despite **unsophisticated methods**.
- e.g.,

User: Men are all alike.

ELIZA: In what way?

User: They're always bugging us about something or other.

ELIZA: Can you think of a specific example?

User: My boyfriend made me come here.

ELIZA: Your boyfriend made you come here. (Jurafsky and Martin, 2009)

Course outline (approximate)

- Introduction, lexical distributions, language modelling, lexical embeddings
- Features and classification *
- Entropy and information theory *
- Neural language models *
- Machine translation **
- Large language models *
- Acoustics and signal processing *
- Automatic speech recognition **
- Speech Synthesis **
- Information retrieval **

* techniques

** applications

What we will not cover

- Interpretability of language models...*
- Advanced lexical semantics*
- Question answering (including ChatGPT)*
- Information extraction*
- Parsing/generation of natural language*%
- Advanced speech recognition and synthesis¶
- Cognitively based methods§^
- Semantic inference, % semantic change/drift^
- Understanding dialogues and conversations¶
- Advanced ethics for NLP\$

* csc 485 / 2501. % csc 2517. ¶ csc 2518. § csc 2540. ^ csc 2611. \$csc 2528.

Preview: Machine translation

美国关岛国际机场及其办公室均接获一名自称沙地阿拉伯富商拉登等发出的电子邮件，威胁将会向机场等公众地方发动生化袭击後，关岛经保持高度戒备。

The U.S. island of Guam is maintaining a high state of alert after the Guam airport and its offices both received an e-mail from someone calling himself the Saudi Arabian Osama bin Laden and threatening a biological/chemical attack against public places such as the airport .

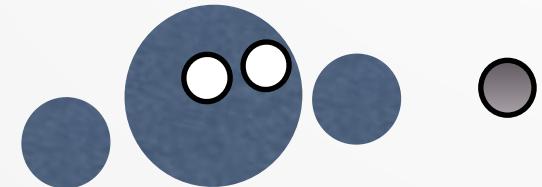
- For years, the holy grail of NLP.
- Requires both **interpretation** and **generation**.
- Over \$60B spent annually on human translation in 2022
 - projected to reach \$96B by 2032
- Machine translation: \$1.1B. \$3B by 2027.
- 1 in every 4M words of content is translated into at least one other language.

Preview: Speech recognition

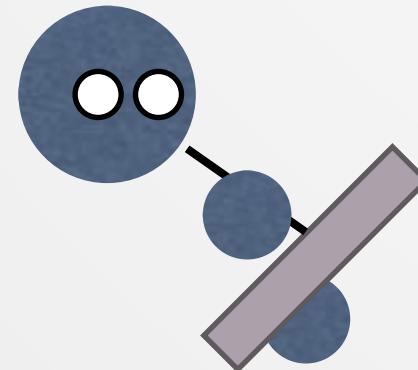


Buy ticket...
AC490...
yes

Dictation

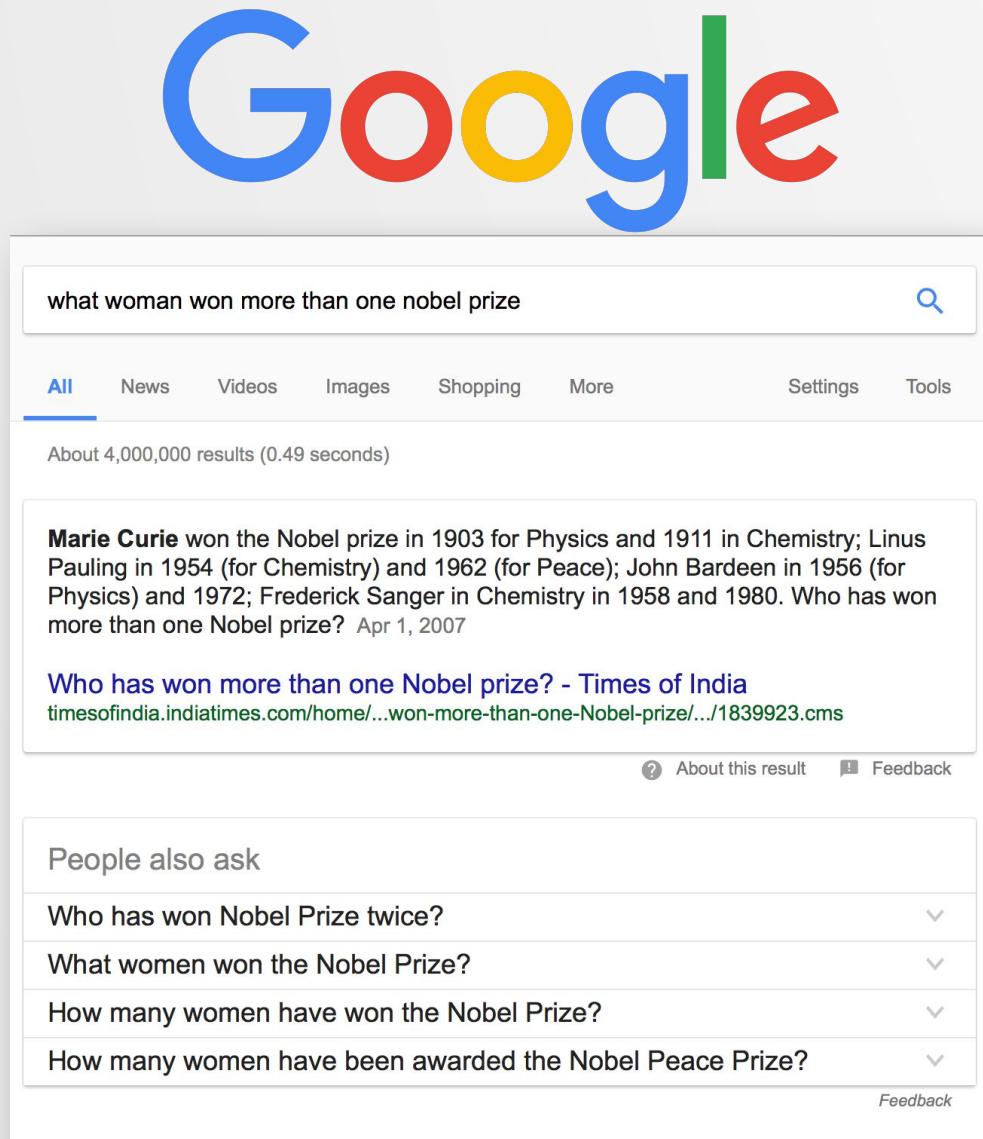


Telephony



Multimodal interaction

Preview: Information retrieval



Google search results for "what woman won more than one nobel prize". The search bar shows the query. Below it, a snippet of text from a Times of India article discusses Nobel laureates like Marie Curie, Linus Pauling, and John Bardeen. A "People also ask" section at the bottom provides related search terms.

what woman won more than one nobel prize

All News Videos Images Shopping More Settings Tools

About 4,000,000 results (0.49 seconds)

Marie Curie won the Nobel prize in 1903 for Physics and 1911 in Chemistry; Linus Pauling in 1954 (for Chemistry) and 1962 (for Peace); John Bardeen in 1956 (for Physics) and 1972; Frederick Sanger in Chemistry in 1958 and 1980. Who has won more than one Nobel prize? Apr 1, 2007

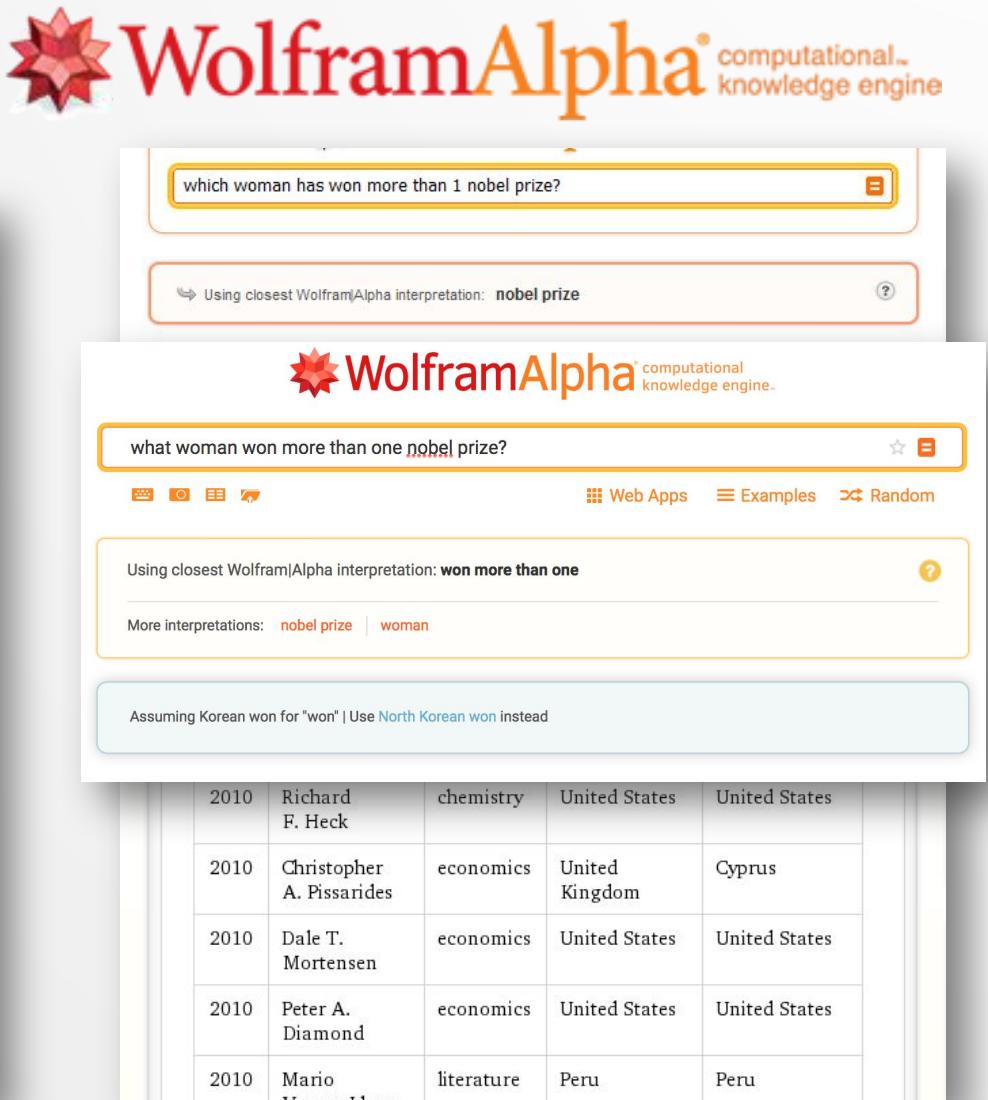
Who has won more than one Nobel prize? - Times of India
timesofindia.indiatimes.com/home/...won-more-than-one-Nobel-prize/.../1839923.cms

>About this result Feedback

People also ask

- Who has won Nobel Prize twice? ▼
- What women won the Nobel Prize? ▼
- How many women have won the Nobel Prize? ▼
- How many women have been awarded the Nobel Peace Prize? ▼

Feedback



WolframAlpha search results for "what woman has won more than 1 nobel prize". The search bar shows the query. Below it, a snippet of text from a Times of India article discusses Nobel laureates like Marie Curie, Linus Pauling, and John Bardeen. A "People also ask" section at the bottom provides related search terms.

which woman has won more than 1 nobel prize?

Using closest WolframAlpha interpretation: nobel prize

Web Apps Examples Random

what woman won more than one nobel prize?

Using closest WolframAlpha interpretation: won more than one

More interpretations: nobel prize | woman

Assuming Korean won for "won" | Use North Korean won instead

	2010	Richard F. Heck	chemistry	United States	United States	
	2010	Christopher A. Pissarides	economics	United Kingdom	Cyprus	
	2010	Dale T. Mortensen	economics	United States	United States	
	2010	Peter A. Diamond	economics	United States	United States	
	2010	Mario Vargas Llosa	literature	Peru	Peru	

Aside – Spoken Information Retrieval

Overview: NLP

- Is natural language processing (the discipline) hard?
 - **Yes**, because **natural language**
 - is highly ambiguous at all levels,
 - is complex and subtle,
 - is fuzzy and probabilistic,
 - involves real-world reasoning.
 - **No**, because **computer science**
 - gives us many powerful statistical techniques,
 - allows us to break the challenges down into more manageable features.
- Is Natural Language Computing (the course) hard?
 - More on this soon...

NLP in Industry

wattpad

Google Receptiviti

BETA
hakia
search for meaning



Maluuba
A Microsoft company

cymfony
harnessing Influence 2.0™

Nielsen
BuzzMetrics

umbria

collective intellect

YAHOO!

Microsoft

amazon

PEARSON
Knowledge Technologies

J.I.
AND ASSOCIATES®

WINTERLIGHT LABS

NUANCE

THOMSON
REUTERS®18

SURGICAL SAFETY
TECHNOLOGIES

IBM

at&t

WolframAlpha® computational knowledge engine

UNIVERSITY OF
TORONTO

Natural language computing

- Instructor: Ken Shi and Gerald Penn
(kenshi, gpenn@cs, M 11-12 in PT 271)
- Meetings: MW (lecture), F (tutorial) from 10h to 11h
- Languages: English, Python.
- Website: ~~Quercus~~, www.cs.toronto.edu/~kenshi/csc401/
- You: Understand basic **probability**, can **program**,
or (grads) can pick these up as we go.
- Syllabus: Key **theory** and **methods** in statistical natural
language computing.
Focus will be on ***neural models, language models,***
and their ***applications***.

Evaluation policies

- General: Three assignments : **20%** (each)
Final exam: **39%**
Two ethics surveys : **0.5%** (each)
- Lateness: **10%** deduction applied to electronic submissions that are 1 minute late.
Additional **10%** applied every 24 hours up to 72 hours total, at which point grade is **zero**.
- Final: If you **fail** (< 50%) the final exam, then you **fail** the course.
- Ethics: Plagiarism and unauthorized collaboration can result in a grade of **zero** on the homework, **failure** of the course, or **suspension** from the University.

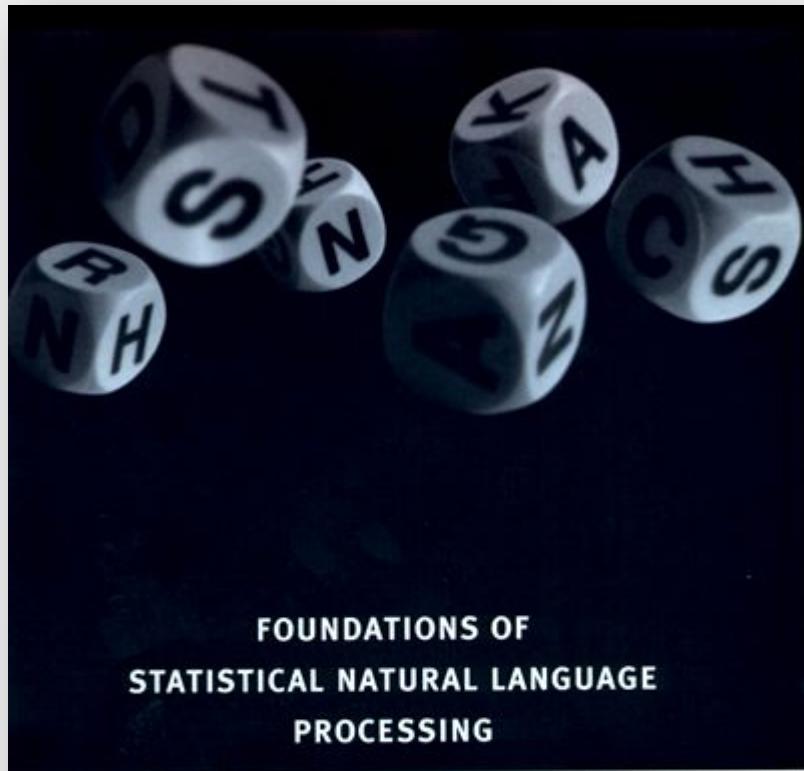
Assignments

- Assignment 1: Corpus statistics, sentiment analysis
 - task: analyze sentiment of financial reportage
 - learn: statistical techniques, features, classification.
- Assignment 2: Neural machine translation
 - task: translate between languages
 - learn: neural seq2seq and neural language models.
- Assignment 3: Automatic speech recognition
 - task: detect lies in speech
 - learn: signal processing, phonetics, dynamic algo's.

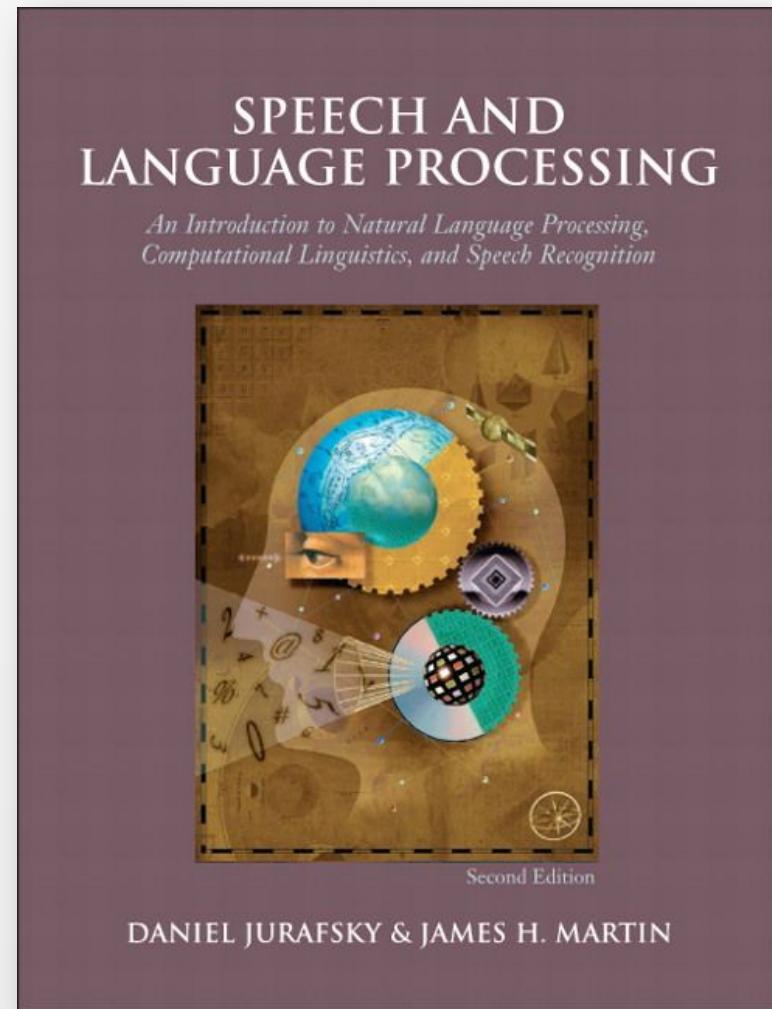
Assignment 1 – Financial sentiment

- Involves:
 - Working with real news data
(e.g., Wall Street Journal),
 - Part-of-speech tagging (more on this later),
 - Large Language Models
 - Classification.
- **Announcements:** Piazza forum, email.
- Start early.

Reading



23



Assignment 1 and reading

- **Assignment 1** available soon (on course webpage)
 - Due 5 February
 - TA:
Winston Wu winstonyt.wu@mail.utoronto.ca
 - First tutorial: this Friday, 9th January
- **Reading:**
 - Manning & Schütze: Sections 1.3–1.4.2,
Sections 6.0–6.2.1.