

CSC 401/2511: Natural Language Computing

Instructors: Ken Shi and Gerald Penn
Email: {kenshi,gpenn}@cs.toronto.edu
Lectures: M 10h-11h, MB 128
W 10h-11h, SF 1105
Tutorials: F 10h-11h, BR 200
Web-page: <http://www.cs.toronto.edu/~kenshi/csc401/>
Forums: Piazza
Office hours: MW 11am-12pm, PT 283

This course presents an introduction to natural language computing in applications such as neural language models, information retrieval and extraction, intelligent web searching, speech recognition, and machine translation. These applications will involve various statistical and machine learning techniques.

Prerequisites: CSC207/ CSC209/ APS105/ APS106/ ESC180/ CSC180 and STA237/ STA247/ STA255/ STA257/ STAB52/ ECE302/ STA286/ CHE223/ CME263/ MIE231/ MIE236/ MSE238/ ECE286 and a CGPA of 3.0 or higher or a CSC subject POSt. MAT 223 or 240, CSC 311 (or equivalent) are strongly recommended.

Evaluation policies

CSC401/2511 students will be marked on three homework assignments and a final exam. The relative proportions of these marks are as follows:

Assignment 1	20%	language: Python
Assignment 2	20%	language: Python
Assignment 3	20%	language: Python
Ethics surveys	1%	(2 surveys 0.5% each)
Final exam	39%	

All assignment submission code must run on the teaching machines.

Note that a 24-hour ‘silence policy’ will be in effect – we do not guarantee that the instructors or TAs will respond to your request within 24 hours before an assignment’s due time.

Lateness

A 10% deduction is applied to late homework one minute after the due time. Thereafter, an additional 10% deduction is applied every 24 hours up to 72 hours late at which time the homework will receive a mark of zero. No exceptions will be made except in emergencies, including medical emergencies, at the instructor’s discretion.

Final exam

The final exam will be a timed 3-hour test. A grade of 50% or higher on the final exam is required to pass the course. In other words, if you receive a grade lower than 50% on the final exam then your final grade in the course will be no higher than 47%, regardless of your performance in the rest of the course.

Academic offences

No collaboration on the homeworks is permitted. The work you submit must be your own. ‘Collaboration’ in this context includes but is not limited to sharing of source code, correction of another’s source code, copying of written answers, and sharing of answers prior to or after submission of the work (including the final exam). Failure to observe this policy is an academic offense, carrying a penalty ranging from a zero on the homework to suspension from the university. The use of AI writing assistance (ChatGPT, Copilot, etc) is allowed only for refining the English grammar and/or spelling of text that you have already written. Submitting any Python code generated or modified by any AI assistants is strictly prohibited. See the academic integrity page of the University of Toronto at <https://www.academicintegrity.utoronto.ca/>.

Readings

Optional	Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. MIT press, 2016 <i>Deep Learning</i> , 1 st ed.. <i>Available at:</i> https://www.deeplearningbook.org/
Required	Christopher D. Manning and Hinrich Schütze (1999) <i>Foundations of Statistical Natural Language Processing</i> , MIT Press. <i>Available free at:</i> http://go.utlib.ca/cat/10552907
Required	Daniel Jurafsky and James H. Martin (2021) <i>Speech and Language Processing</i> , 3 rd ed.. <i>Available free at:</i> https://web.stanford.edu/~jurafsky/slp3/

See website for additional readings.

Planned topics

1. Introduction to corpus-based linguistics
2. *N*-gram models and linguistic features, word embeddings
3. Entropy and information theory
4. Intro to deep neural networks and neural language models
5. Machine translation (statistical and neural) (MT)
6. Transformers, attention based models and variants
7. Large language models (LLMs)
8. Acoustics and phonetics
9. Speech features and speaker identification
10. Dynamic programming for speech recognition.
11. Speech synthesis (TTS)
12. Information Retrieval, Summarization

Planned course calendar

See Academic dates & deadlines for undergraduate students and Sessional dates for graduate students for any changes.

5 January	First lecture
18 January	Last day to add CSC 401
19 January	Last day to add CSC 2511
5 February	Assignment 1 due
27 February	Last day to drop CSC 2511
16–20 February	Reading week – no lectures or tutorial
16 March	Last day to drop CSC 401
5 March	Assignment 2 due
1 April	Last lecture
2 April	Assignment 3 due
9–30 April	Final exam period

See course website for details and updates.