
CSC401/2511 Assignment 1 Tutorial 2
Winston (Yuntao) Wu

University of Toronto

1

University of Toronto

Overview

 Image Source1 Image Source2

2

University of Toronto

https://github.com/ollama/ollama
https://arxiv.org/pdf/2004.09297

Dataset (FPB)
Financial Phrase Bank:

Polar sentiment dataset of sentences from financial news

4k sentences from English language financial news rated by 5-8 annotators

The dataset can be accessed from /u/cs401/A1/data/fpb_dataset.parquet

3

University of Toronto

Dataset (WSJ89)
Wall Street Journal (1989):

2k articles from 1989 Wall Street Journal from the English Penn Treebank corpus. Dataset is at
/u/cs401/A1/data/wsj.gz

We tag each article by the sign of 5-day log return of S&P500 on previous day (). Tags are save in

/u/cs401/A1/data/wsj89_labels.parquet

wsj.gz File Structure

Sample article wsj89_labels.parquet

log
pt−1

pt−6

wsj1
├── 002
│ ├── wsj_0001.gz3
│ └── wsj_0002.gz4
| ...5
├── 016
│ ├── wsj_0100.gz7
│ ├── wsj_0101.gz8
│ ...9
...10

.START

After a bad start, Treasury bonds were buoyed
by a late burst of buying to end modestly
higher.

"The market was pretty dull" for most of the
day, said Robert H. Chandross, vice president
at Lloyds Bank PLC.
He said some investors were reluctant to plunge
into the market ahead of several key economic
indicators due this week, especially Friday's
potentially market-moving employment report.

4

University of Toronto

http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=

Step 1: Preprocess
Your tasks:

Process the raw wsj.gz file, by properly iterating through all the contained gz files and extract out the text.

Then merge wsj89_labels.parquet, using pd.merge(df1, df2, on="fn").

Cleanup texts:

Replace whitespace characters e.g. \n, \t

Use html.unescape to decode all html characters

Remove URLs, numerical values, multiple, leading/tailing white spaces. RegEx (re.sub) will be helpful

Lemmatize & remove stop words, puntuations, digits using spaCy.

5

University of Toronto

Step 1 Spacy
spaCy is a library for advanced Natural Language Processing in Python and Cython. It can be used for tagging,
parsing, named entity recognition, text classification and more. However, we only use its ability to obtain
lemmata, along with token type detection.

Note: Always take spaCy’s output to be correct when completing the tokenization and lemmatization.

lemma: an abstract conceptual form of a word that has been mentally selected for utterance in the early stages
of speech production.

E.g. lemma (best) = good (degree)

E.g. lemma (houses) = house (number/amount)

E.g. lemma (housing) = housing

Image Source

6

University of Toronto

https://spacy.io/usage/linguistic-features

Step 1 Running Code and Submission
After you complete the code in a1_preprocess.py, you can run the following code on the server to process
FPB and WSJ89:

Files to submit:

a1_preprocess.py

python3.12 a1_preprocess.py --filename_prefix wsj891
python3.12 a1_preprocess.py --filename_prefix fpb2

7

University of Toronto

http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=

Step 2: Vectorize (Statistical)
You will work with the following statistical vectorizers to extract features from FPB and WSJ89:

Count Vectorizer: max_features=1000, min_ngrams=1, max_ngrams=3 (Note: You may want to add 1e-8 in
the division for stability when computing frequency)

Tf-idf Vectorizer: max_features=1000, min_ngrams=1, max_ngrams=3

Sample output for vectorized text

Sample output for feature names

8

University of Toronto

Step 2: Vectorize (MPNET)
MPNET is a BERT-based model, which adopts pre-training on masked and permuted language modeling. You
will learn more details about transformer models in this course. Here, we use its basic functionality of text
embedding with transformers library.

You need to apply mean_pooling on the last hidden layer output (model_output[0]) to complete the
embedding. Only positions with attention_mask=1 should be included in the mean value. You should figure out
how to properly change the shapes.

Note: You should run this model on raw text, same as Llama3.1

Note: You can use GPU to run this model.

Note: your vectorized version should have feature size=768, the feature list should be
["feat_0","feat_1",...,"feat_767"]

load the model using transformers AutoClass1
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-mpnet-base-v2", 2
cache_dir="/u/cs401/A1/model_weights")3
model = AutoModel.from_pretrained("sentence-transformers/all-mpnet-base-v2", 4
cache_dir="/u/cs401/A1/model_weights")5

Tokenize text (with truncation) and forward the data1
encoded_input = tokenizer(text, padding=True, truncation=True, return_tensors='pt')2
model_output = model(**encoded_input)3

embeddings from model_output has shape (B, L, N)1
Attention masks has shape (B, L)2
B is batch size, L is sequence length, N is feature size3
torch.sum(token_embeddings * attention_mask, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)4

9

University of Toronto

http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=

Step 2 Running Code and Submission
After you complete the code in a1_vectorize.py, you can run the following code on the server to process
FPB and WSJ89:

Files to submit:

a1_vectorize.py

python3.12 a1_vectorize.py --filename_prefix wsj89 --vectorizer_type count1
python3.12 a1_vectorize.py --filename_prefix wsj89 --vectorizer_type tfidf2
srun -p csc401 --gres gpu python3.12 a1_vectorize.py --filename_prefix wsj89 --vectorizer_type mpnet --data_column text3
python3.12 a1_vectorize.py --filename_prefix fpb --vectorizer_type count4
python3.12 a1_vectorize.py --filename_prefix fpb --vectorizer_type tfidf5
srun -p csc401 --gres gpu python3.12 a1_vectorize.py --filename_prefix fpb --vectorizer_type mpnet --data_column text6

10

University of Toronto

http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=

Step 3.1: Classification with GaussianNB and MLP
In this part, you will use the GaussianNB and MLPClassifier from scikit-learn to perform classification.

Use default parameters for GaussianNB. It should be fast (within 1 second)

To speed up convergence of the MLPClassifier, remember to set the alpha parameter to 0.05. Count
and Tf-idf vectorizers generate a sparse matrix of 1000 features, it will take a long time for MLP to
converge on CPU.

Properly split the data by train_test_split(self.X, self.y, train_size=train_size,
random_state=401). The random state is important. You need to have the same split for comparison with
Llama3.1. Do not change it.

11

University of Toronto

Step 3.2: Classification with Top Features
For this part, please simply follow the instruction in the handout.

You need to provide the list of most important features, and train the best model on these important features.

In addition, you need to name the features extracted by Count and Tf-idf vectorizers using
feature_names.json. For example, if you have feature indices: [64, 128, 256, 512, 1024]. You should
extract out the corresponding n-gram list from feature_names.json. The feature names could be market,
eur mn, decrease, profit, disclose.

Then also briefly comment on why those features may be important.

Note: the important features may be the same for Count and Tf-idf vectorizers. You can explain in one file why
they may be important, and mention in the other file that the question has been answered. It will be manually
checked by grading TAs.

Example output: Useful Function
5 p-values: [a, b, c, d, e]
50 p-values: [50 values]
Accuracy for full dataset: acc float
Top-5: { 5 indices }

X_new = SelectKBest(f, k=5).fit_transform(X, y)1
X_new.get_support()2

12

University of Toronto

http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=

Step 3.3: Classification with Cross Validation
Generate a 5-Fold split on the entire dataset:

Then train both models (GaussianNB and MLPClassifier) on five folds, get accuracies array on test sets and
-value for independent T-test (to test whether there is a statistically significant difference between the means
in two unrelated groups.)

Example output:

kf = KFold(5, shuffle=True)1
kf.split(X, y) # this gives [(train_idx1, test_idx1),...,(train_idx5, test_idx5)]2

p

Fold 0 Accuracies: [model 0 acc, model 1 acc]
Fold 1 Accuracies: [model 0 acc, model 1 acc]
Fold 2 Accuracies: [model 0 acc, model 1 acc]
Fold 3 Accuracies: [model 0 acc, model 1 acc]
Fold 4 Accuracies: [model 0 acc, model 1 acc]
p-values: [p-val]

Image Source

13

University of Toronto

http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
https://www.researchgate.net/figure/Example-of-a-5-fold-cross-validation_fig18_343837646

Step 3 Running Code and Submission
After you complete the code in a1_classify.py, you can run the following code on the server to process FPB
and WSJ89:

Note: This will generate 18 files in total (2 dataset, 3 vectorizers each, 3 tasks for each vectorizer and each
dataset)

Files to submit:

a1_classify.py

All 18 generated files. In a1_classify_xx_top_feats_{count/tfidf}.txt, report the top 5 feature
names with comments

a1_compare.txt: A brief analysis comparing the performance of Llama 3.1 to traditional vectorization and
classification methods.

Note: The current Llama 3.1 on teach.cs server may fail on texts that are too long because of constrained GPU
VRAM. You can truncate the text to below 512 tokens and report the results. Document the change.

python3.12 a1_classify.py --filename_prefix wsj89 --vectorizer_type count1
python3.12 a1_classify.py --filename_prefix wsj89 --vectorizer_type tfidf2
python3.12 a1_classify.py --filename_prefix wsj89 --vectorizer_type mpnet3

4
python3.12 a1_classify.py --filename_prefix fpb --vectorizer_type count5
python3.12 a1_classify.py --filename_prefix fpb --vectorizer_type tfidf6
python3.12 a1_classify.py --filename_prefix fpb --vectorizer_type mpnet7

14

University of Toronto

http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=
http://localhost:5258/?print-pdf=

Notes
You should only modify code in specific sections where we highlight with ``Your code goes here’’ and TODO
blocks. No additional libraries should be imported, unless we announce otherwise.

The performance of llama will vary across different selection of data points. It is possible to have a very
low/very high accuracy on 25 samples. What we look for is your analysis on how it performs and what the
potential reasons are.

You do not need to worry about the following warnings from python or any warnings filtered in the code:

Torch User Warning: Can’t initialize NVML, and any warnings associated with CUDA when running on
CPU machines

Pandas Future Warning: Setting an item of incompatible dtype is deprecated

The provided runtime statistics are only an estimation. The actual runtime of the programs depends on your
implementation, the server load, and many other factors.

You should not have to download any models. Make sure you properly set the cache_dir for mpnet, and use
the correct python version (python3.12).

When accuracy/precision/recall/frequency cannot be properly calculated due to zero denominator, default
output to 0.

15

University of Toronto

