JHO,
Help Conquer Cancer "o« 1

Update May 2008

Thank you for your continuing support of the Help Conquer Cancer project. We are grateful for all the
computing power you donate to this and other exciting and useful research at WCG. We do benefit

. _..:Dl..
from it greatly, but we also participate in WCG as an Integrative Discovery Team: x et '“' SaF |
It is a TEAM effort (Together Everyone Accomplishes More) that will help us to solve these complex

problems.

Since the launch of Help Conquer Cancer project in November 2007, WCG members contributed almost
12,000 years of run time, averaging about 54 years a day.

Reminder about the complexity of protein crystallization
Crystallization is a multi-parametric process with three classical steps: nucleation, growth and cessation
of growth. Technical difficulties in protein crystallization are due to mainly two reasons:

1. Alarge number of parameters affect the crystallization outcome, including purity of proteins, super-
saturation, temperature, pH, time, ionic strength and purity of chemicals, volume and geometry of
samples;

2. We only partially understand correlations between the variation of a parameter and the propensity
for a given macromolecule to crystallize.

Conceptually, protein crystal growth can be divided into two phases: search and optimization. Search

phase determines a subset of all possible crystallization conditions that yield promising crystallization
outcome. These conditions are varied during the optimization phase to produce diffraction-quality
crystals. Neither of the two phases is trivial to execute. If we consider only 20 possible conditions, each
having 20 possible values, the result would be 1.04858E+26 possible experiments; impossible to test
exhaustively. Even a broad search phase may not produce any promising conditions, and many of the
promising leads may elude optimization strategies.

High-throughput screening (HTS) can speed up the search phase, and has the potential to increase
process quality. Automated image analysis and classification achieves two important goals: it improves
throughput and generates consistent and objective results. Objective image classification is a necessary
input to data mining and reasoning, which is essential to elucidate knowledge from large number of
successful and failed crystallization experiments. These results will help understand protein chemistry
and lead to achieving our overall goal — to improve number and quality of protein structures
determined. We hypothesize that (1) comprehensive and probabilistic image classification will increase
both specificity and sensitivity of the process, and (2) systematic image analysis combined with data
mining and reasoning will lead to improved understanding the chemistry of protein crystallization, and
thus will also increase number of solved structures from the HTS pipeline.
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The challenge is the wide diversity of crystals ', as shown in Figure 1. To cope with this diversity, we must
use multiple algorithms to identify crystals reliably, i.e., with high sensitivity and specificity.
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FIGURE 5.23: There ave mamy diverse forms and shapes of miceocrystals,

FICURE £.22: Examples of diversity by which crystal forme appear.  yhich makes their identification challenging.
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Figure 1 Diverse crystal forms.

Image classification challenge
Individual images have to be first analyzed to determine their morphologic features, and then use
combination of these features to classify them into a predefined set of categories, as shown in Figure 2.
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Figure 2 Image classification process.

Phase 1

During the first phase of the project, we processed a well-characterized set of images. We are in the
process of optimizing features across wide range of individual image categories.

e Truth data set: 165,416 images, classified by 3 experts into 10 categories;
e Image analysis: 12,375 features on 90 million images.

Using the WCG computing capacity, all feature extraction for hand-scored image data has been
completed by January 2008. While we are determining the best subset of features to use, we continue
feature extraction for all unscored data. Our preliminary results show that this comprehensive approach
is useful and necessary since the relationship among features, their parameters, and image classes is not
linear. Although it is not practical to wait till 2013 to compute features for all 86 million images, the only
sensible option is to determine the best feature subset on a well-characterized set of hand-scored
images, which covers a large number of diverse image classes. This computation has been finished in
January 2008, enabling us to perform the following feature selection:

e Assess the value of all computed features;

e Compute information content of single features (mutual information between feature & image
class);

e Calculate information content of feature pairs (mutual information between feature-feature pair
& image class);

e Compute information content per CPU-second (feature utility);

e Evaluate information density across feature-parameter space;

e Select “optimal” subset of features for image classification, i.e., the most informative features,
with preference for less computationally intensive features when possible without decreasing
accuracy.
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Computed features will be used to identify essential combination of features that will lead to accurate
image classification (such as a 3-class classification in Figure 3), i.e., classification that achieves both high
sensitivity and specificity.

clear precipitate crystal

Figure 3 Image classes across the truth data set.

As shown in the examples below, we can optimize which features and which parameters are useful for
predicting image class (see Figure 4, 5). But the process is challenging as features and parameters highly
depend on the image class. Thus, we need to consider feature and parameter optimization per class as
well, as shown in Figure 6.
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Optimizing the feature set

Figure 4 Correlation of individual features across all image categories
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Figure 5 Optimizing parameters for individual features across all image categories. Heat maps indicate
mutual information (measured in bits) between features (plotted in parameter space).
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Figure 6 Effect of parameter changes to the information contents of image features. Heat maps
indicating mutual information (measured in bits) between features (plotted in parameter space) and
specific crystallization outcomes (clear, precipitate, crystal) is shown. Note how different regions of
each feature family’s parameter space are sensitive to different crystallization outcomes. Peaks in these
plots indicate candidate features for HCC Phase II."

Preliminary image classifiers
We have used a set of handpicked 74 features from peaks in the clear, precipitate and other mutual
information plots to built two preliminary classifiers, using a Naive Bayes model:

e three-way: clear, non-crystal precipitate, other;
e ten-way: clear, phase separation, phase + precipitate, skin, phase + crystal,
precipitate, precipitate + skin, precipitate + crystal, crystal, garbage.

Using the training set of images and a leave-one-out cross-validation, we have measured how accurate
each classifier is in identifying image from individual categories, i.e., what is the sensitivity and
specificity of each classifier.
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Figure 7 Naive Bayes classifiers for 3 and 10 classes.

Future directions

e Improve image analysis to achieve high specificity and sensitivity in multi-class experiment
categorization, and improve scalability to near real time.

e Protein crystallization principles derived from the crystallization database by data mining.
e Identify potentially successful conditions for proteins that were not yet crystallized.

e Crystallization optimization plans derived by combining case-based reasoning system and data
mining.

As a result, more structures will be determined for larger number of important cancer proteins.
Thank you,

C. A. Cumbaa and I. Jurisica

"Jurisica, 1., D. A. Wigle. Knowledge Discovery in Proteomics, Mathematical & Computational Biology Series,
Volume 8, Chapman & Hall/CRC Press, 2006.
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" Cumbaa, C. A., and I. Jurisica. Crystallization image analysis on the World Community Grid. NIH PSI Bottlenecks
Meeting, Bethesda, MD, March 2008.



