
Beyond Fixed Grid: Learning Geometric Image
Representation with a Deformable Grid

Supplementary Material

Jun Gao1,2,3, Zian Wang1,2, Jinchen Xuan4, and Sanja Fidler1,2,3

1University of Toronto, 2Vector Institute, 3NVIDIA, 4Peking University
{jungao, zianwang, fidler}@cs.toronto.edu

1600012865@pku.edu.cn

In the supplementary material, we provide additional details for our appli-
cations in Sec. 1, ablation studies in Sec. 2, as well as additional experimental
results in Sec. 3.

1 Applications Details

We here provide details for our boundary-based object annotation approach.
Details for other applications were presented in the main paper.

1.1 Boundary-based Object Annotation Method

Following the notation introduced in the main paper, we search a closed path
that has minimal distance transform energy in the deformed grid. The distance
transform is a distance map which labels each pixel of the image with the distance
to the nearest boundary pixels. We first use PSP-Deeplab to extract the feature
map, and apply two 3×3 conv filters with batch normalization and relu activa-
tion to predict the distance transform map. The model is trained with L2 loss.
Note that the PSP-Deeplab encoder is shared among DT preditor, Curve-GCN
predictor and grid decoder. We denote the path as: Q = {vQ1

, vQ2
, · · · , vQM

},
where vQi are the vertices in the grid, and two consecutive vertices need to be
connected with an edge in the grid. Suppose Curve-GCN [8] predicts M control
points, which we denote as cp1, cp2, · · · , cpM . For every control point cpi, we
first find its top-k nearest vertices, vcp1

i
, vcp2

i
, · · · , vcpk

i
, in the deformed grid.

For each vertex, we compute its distance transform energy via bilinear sampling
using the vertex’s position in the predicted distance transform energy map. We
then snap each control point to the vertex that has minimal distance transform
energy among its top-k closest vertices. Specifically:

vQi
= arg min

v
cpk

i

DT (vcpk
i
). (1)

To search a path from vQi
to vQ(i+1)%M

, we use the Dijkstra Algorithm1. Specif-
ically, we first construct the same graph as for the deformable grid. To get the

1 https://en.wikipedia.org/wiki/Dijkstra%27s algorithm

2 J. Gao et al.

energy of each edge, we compute the average distance transform energy of the
uniformly sampled points along the edge. We then use the Dijkstra Algorithm
to find the minimal energy path between two points. Computing the path this
way introduces minimal computational overhead on top of the runtime of Curve-
GCN, since the number of grid’s vertex is relatively small.

2 Ablations

In this section, we ablate different choices for the grid topology, different loss
combinations and different image encoders for superpixel experiments.

2.1 Experimental Settings

Datasets: We train all our models on Cityscapes-Multicomp dataset [2], which
are demonstrated in the main paper. We use the same training, validation and
testing split as in CurveGCN [8] and DELSE [11].

Training Details: We set the hyperparameters as follows: λrecons, λarea, and λlap
are set to 0.5, 0.02, 0.02, respectively. The δ is set to δ = 0.001 ∗ 20

grid-size . We
experiment with grid size set to 30× 30. When the one-hot segmentation mask
is available, we multiply the values in one-hot mask by 0.5 when appending
them to RGB values, which is first scaled to [0, 1]. We train all models using the
Adam [5] optimizer with 1e-4 learning rate and 5e-4 weight decay.

Evaluation Metrics: Since we ablate variants of the deformable grid, we utilize
metrics typically employed by superpixel methods. Specifically, we report the
Boundary Precision (BP), Boundary Recall (BR), and Achievable Segmentation
Accuracy (ASA). The ground truth is the human annotated segmentation mask
that is stretched according to the (stretched) bounding box. All the metrics are
averaged over all test images. The pixel tolerance for BP and BR is set to 3.

2.2 Experimental Results

The quantitative results are reported in Table 1.

Different Grid Topologies: We first ablate different topologies that are listed in
the main paper. For a fair comparison, we set the grid size of topology-a to be
43×43, which gives 42×42 = 1764 number of grid cells (treated as superpixels),
and set the grid size of topology-b to be 22× 22, which gives 21× 21× 4 = 1764
number of grid cells, while topology-c and topology-d have 29 × 29 × 2 = 1682
number of grid cells. Topology-d achieves the best performance in terms of BR-1,
BP-1, BP-2, BP-3 and ASA, which is the main choice of topology for all other
experiments.

Deformable Grid 3

Grid Size N Enc. Layer + mask + recons. Top-a Top-b Top-c Top-d BR-1 BR-2 BR-3 BP-1 BP-2 BP-3 ASA

30x30 5 X X X 90.44 99.97 100.00 4.36 7.31 10.20 98.55
30x30 5 X X X 96.98 99.98 100.00 4.84 8.08 11.19 98.62
30x30 5 X X X 95.90 99.99 100.00 4.66 7.77 10.77 98.66
30x30 5 X X X 97.32 99.99 100.00 5.03 8.34 11.51 98.72
30x30 5 X X 95.55 99.99 100.00 4.43 7.41 10.30 98.50
30x30 5 X X 94.77 99.99 100.00 4.36 7.29 10.13 98.44
30x30 3 X X X 96.32 99.99 100.00 4.77 7.94 10.99 98.60
30x30 3 X X 94.98 99.99 100.00 4.40 7.36 10.22 98.45
30x30 1 X X X 95.71 99.99 100.00 4.58 7.63 10.58 98.52
30x30 1 X X 94.75 99.99 100.00 4.37 7.29 10.13 98.44

Table 1: Ablation study on different variants of our Deformable Grid. “Top-
” here denotes the choice of topology, and “N Enc Layer” reports which layer from
ResNet we employ as the encoder.

Different Loss Combinations: We ablate the use of the differentiable reconstruc-
tion loss as well as the use of the segmentation mask in the differentiable variance
loss. Adding the differentiable reconstruction loss helps to align grid edges with
image boundaries. The segmentation mask provides strong signal for learning
the semantic boundaries.

Different Encoders: To ablate different image encoders, we choose different out-
put layers in ResNet as the feature map for the grid decoder. Specifically, we
experimented with layer1, layer3 and layer5. The deformable grid model achieves
competitive performance with shallow feature maps. With deeper neural net-
works, the segmentation masks help more, as the network typically learns the
semantics in deeper layers, and thus has better semantic boundary alignment
(as opposed to exploiting image gradients alone).

3 Experimental Details

3.1 Superpixels

In this section, we frist provide details of experiments in the main paper, and
further show superpixel experiments using another network structure as the
image encoder as well as adding supervisory loss in the form of a one-hot mask.

Datasets As each image in the BSDS500 [1] is provided with multiple ground-
truth annotations, following SSN [4], we treat each annotation as an independent
sample for both training and evaluation. In total, we have 1633 training pairs
and 1063 test pairs of images and annotations.

Network Architecture: We use a shallow network, AffinityNet from SEAL [10] as
the image encoder. For each vertex in the grid, we use bilinear sampling to extract
the feature from the feature map using vertex’s position in the image plane. Our
grid decoder is a 4-layer Graph Convolutional Network [6,8] that predicts the
offset for each vertex. We train the network purely with unsupervised losses,
where the pixel feature f uses only RGB colors.

4 J. Gao et al.

Training Details: We train the models from scratch. The number of grid cells K
is set to 3200. We train the network using Adam [5] optimizer with 1e-4 learning
rate and 5e-4 weight decay. Hyperparameters λrecons, λarea, and λlap are set to
0.5, 0.025, 0.025, respectively. We apply random image cropping, reflections and
resizing as data augmentation to train our model. For supervised agglomerative
clustering, we average the RGB and learned distances by weights of 0.6 and 0.4
respectively. We then run hierarchical merge on the combined distances of cells.

A comprehensive evaluation is also provided. We use a modified version of the
PSPNet architecture [12] as our feature extractor. Specifically, the layer1, layer2,
layer3 and layer4 feature maps from the ResNet backbone [3] and the feature
map from the PSP module all go through one convolution layer to reduce the
number of feature channel to 64. We then perform bilinearly upsampling to the
original image size and concatenate all these feature maps to get a feature map
of size 320 × w × h, where w × h is the size of the image. We apply another
convolution layer to the concatenated features to get the pixel-wise feature map.
The grid decoder is the same as described in the main paper.

For the supervised setting, when the annotated masks for training images are
provided, we also learn the affinity for use with agglomerative clustering. We first
obtain the feature for each grid cell using the mean feature of every pixel inside
the cell. For each two cells, we concatenate their features and pass them through
a 4-layer fully-connected network to predict the affinity between two cells. The
network is trained using Binary Cross Entropy Loss, and the ground truth is 1
if two cells have same annotation, otherwise 0. We evaluate all methods using
BP, BR and ASA, and we show the results when the tolerance is set to 1, 2 and
3 pixels.

3.2 Object Instance Annotation

We use an eight-layer GCN for the grid decoder to predict grid deformation.
The feature map is the final feature of our image encoder. We use the same
hyperparameters settings as provided in Sec. 2. We set k = 2 when running
experiments for the grid size 20 × 20, and k = 3 for the grid size 30 × 30 and
40 × 40. For the comparisons with pixel-wised methods on Cityscapes-stretch,
we use grid size 30× 30.

Training Details: We predict grid deformation on the 224×224 image plane. As
the ground truth segmentation masks are provided, we append a one-hot mask to
the RGB values when calculating the differentiable variance and reconstruction
loss to better align the grid with semantic boundary. Following DELSE [11]
and DEXTR [9], we initialize the image encoder using pretrained weights from
COCO [7]. We simultaneously train all the modules using Adam [5]. Detailed
hyperparameter settings are provided in the supplementary material. For grid-
20, we use top2, for grid-30/40 we use top3 with 1e− 4 learning rate and 5e− 4
weight decay. The λrecons, λarea, λlap are set to 0.5, 0.02, 0.02, respectively.

Deformable Grid 5

3.3 Learnable Downsampling

Experiment Details: For the proof of concept, we use a modified ResNet50, which
is a more lightweight network compared to current SOTA models, to build the
model shown in the main paper. The shallow CNN encoder consists of the conv1
layer and the first two bottlenecks in layer1. It is shared by the segmentation
branch and grid deformation branch. The deep CNN after pooling consists of
the other three ResNet conv blocks and one conv1x1 classifier. All downsampling
modules are removed except for the layer2 block. The stride of conv1 is set to
1. The grid decoder consumes the shallow feature map and shares the same
architecture as pervious experiments. We resize the full image to 512x1024 as
input, and produce a shallow feature map at the same resolution. Each square
on the deformed grid contains two triangle cells. To ensure fair comparison, each
triangle cell corresponds to one pixel on the new feature map, e.g. a grid with
33x33 vertices will generate a feature map of 32x64.

The predicted semantic heatmaps are pasted back to original image coordi-
nate and was trained with cross entropy loss. We use mean IoU over 19 classes
and boundary F scores with threshold as 4 and 16 pixels to evaluate model per-
formance. The model takes full image as input and produces a shallow feature
map with resolution as 512x1024. The baseline methods are directly doing fea-
ture pooling on the shallow feature map, while our grid pooling methods operates
on deformed triangle cells.

4 Additional Qualitative Results

4.1 Superpixel

We show additional quantitative results in Fig. 1, with comparisons presented
in Fig. 2, 3, and 4 for pixel tolerance in BR and BP set to 1, 2, and 3 pixels,
respectively. Comparing performance of the AffinityNet vs PSPNet, having a
deeper network helps to learn the semantics of the boundaries. Comparing su-
pervised and unsupervised settings, adding human annotation also helps learning
the semantics.

4.2 Object Annotation

We present additional qualitative results of our deformable grid in Fig. 5, 6, 7, 10,
and 9, showcasing the predicted grid deformation on both CityScapes and cross
domain datasets (ADE, KITTI, Card.MR, SSTEM). For boundary-based seg-
mentation method, we show additional qualitative results in Fig. 11, and 13. We
show qualitative results for the pixel-based segmentation approach in Fig. 12.

4.3 Learnable Downsampling

We show qualitative comparison of the grid pooling methods and image coordi-
nate pooling baselines with feature downsampling ratio as 1/8. The qualitative

6 J. Gao et al.

SLIC SNIC SEAL DG DG – Merging

Fig. 1: Superpixel Segmentation: We compare our results to existing superpixel
baselines. For our method we show the Deformable Grid (DG) using AffinityNet as the
backbone, and results after clustering (right column). [Please zoom in]

0.60 0.65 0.70 0.75 0.80 0.85 0.90
Boundary Recall

0.10

0.12

0.14

0.16

0.18

Bo
un

da
ry

 Pr
ec

isi
on

400 600 800 1000 1200 1400 1600
Superpixel Num

0.10

0.11

0.12

0.13

0.14

0.15

0.16

0.17

Bo
un

da
ry

 Pr
ec

isi
on

400 600 800 1000 1200 1400 1600
Superpixel Num

0.65

0.70

0.75

0.80

0.85

0.90

Bo
un

da
ry

 R
ec

all

400 600 800 1000 1200 1400 1600
Number of Superpixels

0.935

0.940

0.945

0.950

0.955

0.960

0.965

0.970

0.975

AS
A

DGAff Unsup
DGAff Sup
DGDeep Unsup
DGDeep Sup
SLIC
SNIC
SEAL

Fig. 2: Superpixel Segmentation: From left to right: BP-BR, BP, BR and ASA, The
pixel tolerance is set to 1 pixel. DGAff denotes Deformable Grid (DG) with Affinity
Net, and DGDeep denotes DG with Deeplab.

0.80 0.85 0.90 0.95 1.00
Boundary Recall

0.14

0.16

0.18

0.20

0.22

0.24

Bo
un

da
ry

 P
re

cis
io

n

400 600 800 1000 1200 1400 1600
Superpixel Num

0.14

0.16

0.18

0.20

0.22

Bo
un

da
ry

 Pr
ec

isi
on

400 600 800 1000 1200 1400 1600
Superpixel Num

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

Bo
un

da
ry

 R
ec

all

400 600 800 1000 1200 1400 1600
Number of Superpixels

0.935

0.940

0.945

0.950

0.955

0.960

0.965

0.970

0.975

AS
A

DGAff Unsup
DGAff Sup
DGDeep Unsup
DGDeep Sup
SLIC
SNIC
SEAL

Fig. 3: Superpixel Segmentation: From left to right: BP-BR, BP, BR and ASA,
The pixel tolerance is set to 2 pixel.

0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00
Boundary Recall

0.18

0.20

0.22

0.24

0.26

0.28

Bo
un

da
ry

 P
re

cis
io

n

400 600 800 1000 1200 1400 1600
Superpixel Num

0.18

0.20

0.22

0.24

0.26

Bo
un

da
ry

 Pr
ec

isi
on

400 600 800 1000 1200 1400 1600
Superpixel Num

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Bo
un

da
ry

 R
ec

all

400 600 800 1000 1200 1400 1600
Number of Superpixels

0.935

0.940

0.945

0.950

0.955

0.960

0.965

0.970

0.975

AS
A

DGAff Unsup
DGAff Sup
DGDeep Unsup
DGDeep Sup
SLIC
SNIC
SEAL

Fig. 4: Superpixel Segmentation: From left to right: BP-BR, BP, BR and ASA,
The pixel tolerance is set to 3 pixels.

semantic segmentation results on Cityscapes are shown in Fig. 14, and 15. Com-
pared to directly apply feature pooling in the image coordinates, grid pooling
methods predict tighter boundary and are better at retrieving tiny instances,

Deformable Grid 7

Fig. 5: Deformed Grid: We show examples of predicted grids on the Cityscapes
dataset. Blue line is CurveGCN’s prediction and orange line is searched minimal energy
path.

while the baselines tend to predict over-smoothed boundaries. This shows that
the geometry-aware property of deformable grid also benefits the feature space.

8 J. Gao et al.

Fig. 6: Deformed Grid: We show examples of predicted grids on the ADE dataset.
Blue line is CurveGCN’s prediction and orange line is searched minimal energy path.

Deformable Grid 9

Fig. 7: Deformed Grid: We show examples of predicted grids on KITTI. Blue line is
CurveGCN’s prediction and orange line is searched minimal energy path.

10 J. Gao et al.

Fig. 8: Deformed Grid: We show examples of predicted grids on Rooftop. Blue line
is CurveGCN’s prediction and orange line is searched minimal energy path.

Deformable Grid 11

Fig. 9: Deformed Grid: We show examples of predicted grids on SSTEM. Blue line
is CurveGCN’s prediction and orange line is searched minimal energy path.

Fig. 10: Deformed Grid: We show examples of predicted grids on Card.MR. Blue
line is CurveGCN’s prediction and orange line is searched minimal energy path.

12 J. Gao et al.

Fig. 11: Qualitative results on Cityscapes-Multicomp Validation sets. We use
boundary-based deformable grid here.

Deformable Grid 13

Fig. 12: Qualitative results on Cityscapes-Stretch Validation set. We use pixel-
based deformable grid here.

14 J. Gao et al.

Fig. 13: Qualitative results on cross domain datasets: From left to right column:
Medical, KITTI, Rooftop, ADE. We use boundary-based deformable grid here.

Deformable Grid 15

Deformed Grid Ground Truth

Our Prediction Baseline

Deformed Grid Ground Truth

Our Prediction Baseline

Fig. 14: Qualitative comparison of Grid Average Pooling and Average Pooling.

16 J. Gao et al.

Deformed Grid Ground Truth

Our Prediction Baseline

Deformed Grid Ground Truth

Our Prediction Baseline

Fig. 15: Qualitative comparison of Grid Max Pooling and Max Pooling.

Deformable Grid 17

References

1. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical
image segmentation. IEEE transactions on pattern analysis and machine intelli-
gence 33(5), 898–916 (2010)

2. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,
Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene
understanding. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 3213–3223 (2016)

3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

4. Jampani, V., Sun, D., Liu, M.Y., Yang, M.H., Kautz, J.: Superpixel samping net-
works. In: ECCV (2018)

5. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

6. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

7. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: ECCV (2014)

8. Ling, H., Gao, J., Kar, A., Chen, W., Fidler, S.: Fast interactive object annotation
with curve-gcn. In: CVPR. pp. 5257–5266 (2019)

9. Maninis, K.K., Caelles, S., Pont-Tuset, J., Van Gool, L.: Deep extreme cut: From
extreme points to object segmentation. In: CVPR (2018)

10. Tu, W.C., Liu, M.Y., Jampani, V., Sun, D., Chien, S.Y., Yang, M.H., Kautz,
J.: Learning superpixels with segmentation-aware affinity loss. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. pp. 568–576
(2018)

11. Wang, Z., Acuna, D., Ling, H., Kar, A., Fidler, S.: Object instance annotation with
deep extreme level set evolution. In: CVPR (2019)

12. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In:
CVPR (2017)

	Deformable Grid: Structured Geometric Image Representation

