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Abstract. When model-checking reports that a property hold®e vacuous if it has a subformula which is not relevant to
on a modelyvacuity detectiorincreases user confidence in its satisfaction, or if the property itself is a tautologyoré
this result by checking that the property is satisfied in the i versely, a property is satisfied non-vacuously if every pért
tended way. While vacuity detection is effective, it is a fela the formula is important — even a slight change to the formula
tively expensive technigue requiring many additional meode affects its satisfaction.
checking runs. We address the problem of efficient vacuity In this article, we focus on vacuity detection for SAT-
detection for Bounded Model Checking (BMC) of LTL prop- based Bounded Model Checking (BMC). Given a BMC prob-
erties, presenting three partial vacuity detection metfiasded |em with a particular bound, we wish to determine if the
on the efficient analysis of the resolution proof produced byproperty holds vacuously on the model up to this bound. In
a successful BMC run. In particular, we define a characterthis context, a naive method for detecting vacuity is to re-
istic of resolution proofs -peripherality— and prove that if  place subformulas of the temporal logic property with un-
a variable is a source of vacuity, then there exists a resolueonstrained boolean variables and run BMC for each such
tion proof in which this variable is peripheral. Our vacuity substitution. If the property with some substitution dtitilds
detection toolVaqTree, uses these methods to detect vacu-on the model, the property is vacuous. This naive approach is
ous variables, decreasing the total number of model-chgcki expensive, since in the worst case it requires as many model-
runs required to detect all sources of vacuity. checking runs as there are subformulas in the property. Our
goal is to reduce the number of model-checking runs required
to detect vacuity. We do this by detecting some vacuity thhou
novel and inexpensive techniques reported in this artiid,
_ complete the method by running the naive algorithm on the
1 Introduction remaining atomic subformulas. The key to our technique is
that SAT-based BMC can automatically provide useful infor-

Model-checking [7] is a widely-used automated techniquemMation (a resolution proof) beyond a decision whether the
for verification of both hardware and software artifactst tha Property holds on the model; we exploit such proofs for par-
checks whether a temporal logic property is satisfied by dial vacuity detection.
finite-state model of the artifact. If the model does notsfati In SAT-based BMC, the property and the behavior of the
the property, a counterexample, which can aid in debuggingmodel are encoded in a propositional theory, such that the
is produced. If the modeloessatisfy the property, no infor- theory is satisfiable if and only if the formula does not hold.
mation about why it does so is provided by the model-checkeMWhen the property does hold, a DPLL-based SAT solver can
alone. A positive answer without any additional informatio produce a resolution proof that deriviese from a subset of
can be misleading, since a property may be satisfied in a wathe clauses in the theory called the UNSAT core. Intuitively
that was not intended. For instance, a property “every retque the resolution proof provides an explanation of why the prop
is eventually acknowledged” is satisfied in an environmenterty is not falsified by the model, and the UNSAT core deter-
that never generates requests. mines the relevant parts of the model and the property [19].
Vacuity detectiofi2, 18,21, 1] is an automatic sanity check In this article, we develop three methods of increasing
that can be applied after a positive model-checking run-in or precision {rrelevance local irrelevance and peripherality)
der to gain confidence that the model and the property capto analyze the resolution proof to achieve partial vacuéy d
ture the desired behaviours. Informally, a property is $aid tection. These algorithms are used by our vacuity detection




tool, VaqTree, in order to reduce the number of model-checking
runs required to find all sources of vacuity, thus reducireg ex @ @

cution times. Irrelevance and local irrelevance detectiiggc

based on which variables appear in the UNSAT core, and in {r} {a}
which locations. However, as these methods only examine
the UNSAT core, their precision is limited. The periphera- Fig. 1: A Kripke structure.

lity algorithm examines thetructureof the resolution proof,
identifying as vacuous those variables that are not negessa

or central to the derivation dhlse. This method is as pre- hat th isfiesthe LTL f | = I
cise as can be achieved through analyzing a single resolutiolhat the tracer satisfiesthe ormuia ¢. For example,

proof, and its running time is linear in the size of the resolu ':Z.F@ if and_ onIy_n‘ there _eX|sts_ somi_asuch thatp_ hOId_S
tion proof and the number of variables in the property. Our®" 7 - The satisfaction relation= is defined inductively in

experience shows that local irrelevance is the ideal caelid a similar way for all operators and propositional variaies
for speeding up naive vacuity detection LTL. We refer the reader to [7] for a detailed description of

. M . the semantics of LTL.
The remainder of the article is organized as follows. Sec- ) s .
g A Kripke structureK satisfiesan LTL formulay if and

tion 2 presents some required background, followed, in Sec- .
tion 3 by our definition of vacuity, the naive algorithm for MY if 7 =« for all tracesw of K. The BMC problem
LTL vacuity detection using BMC, and an overview of work BMC’“(K’. ) s to determine whethel saﬂsﬁgs,o fo.r up to
in the vacuity detection field. Section 4 presents the thkee a k steps,.l.e., v_vhetheﬁ( ’:f“ - Thek—depth sat|sfact|qn rela-
gorithms that detect vacuity by analyzing a resolution froo tion ).:’“ |is defined '”d“Ct_'VG'y’ for example:, =), G if and
Tool support for our approach is described in Section 5. OU|Dnly it ':’“‘.1 ploralli < k. .
experimental results are presented in Section 6. We coaclud To determine whethek |=;, o, the problem is converted

with a summary, additional related work, and suggestions fotO a proposmon_al formula? (see [4,6,5]) which is satisfi-
future work in Section 7. able if and only if there exists a lengtheounterexample to

K [ . @ is then given to a SAT solver which decides its
satisfiability. The propositional encoding representstibe
havior of K up to k steps with gpath constraintC L, and
encodes all counterexamplesg®f lengthk in anerror con-
straint CL.. Therefore, if the theory’'Lx U CL, is satis-

In this section, we review bounded model-checking and resfiable, there is a path throughi which obeys the transition

2 Background

olution proofs. relation and falsifiesp. The value of each variableof K at
each time step is represented using new boolean variaples
2.1 Bounded Model-Checking (0 < i < k), calledtimed variables

The transition relation of a Kripke structure can be repre-
sented symbolically by a propositional formula over the-var
ablesV and primed variable¥”’ (which represent the vari-
ables in the next state). For example, in the model in Fig-
ure 1, the transition relation is represented by the formula
r = (pA—gAN—DP NG)V (—pAgA—p Ag). The path
constraint is obtained by substituting the timed varial¥gs
for V in R, and replacing’’ by the timed variables for the
next stepV;1. This is repeated for each< i < k, and the
resulting propositional formulas are conjoined along véth
formula representing the initial state [4]. In Figure 1k = 1,

Bounded model-checkin®MC) [4] is a method for deter-
mining whether a linear temporal logic (LTL) formu}sholds
on a finite state system represented by a Kripke strudiure
up to a finite number of steps. To solve an instance of th
BMC problem, denoted bBMC,. (K, ¢), it is required to de-
termine whethei =, ¢, wherel=;, is thek-depth satisfac-
tion relation Below, we give an informal overview of Kripke
structures, LTL formulas and BMC. More detailed definitions
can be found in [7,4].

A Kripke structureK has a finite set of state$, one of

which is considered to be the initial staig A transition re- CLk = (po A —qo) A ((po A =go A —p1 A q1)

lation R C S x S relates states to states. Each state is labeled

by the set of propositional formulas (or variables) thattinl V(=po Ao A =pL A ar))-

that state. Aun of K is a sequence of states starting with  The error constrainf’L,, is encoded according to a recursive
that obeysR. Each run has an associatiedce 7, wherer; procedure which removes the temporal and logical operators

is simply the set of propositional formulas that label tHe  from the property [4], e.g., the algorithm encodes= Gp,
state in the run. We write’ to denote the suffix of the trace wherep is a propositional variable, expanded upkte 2, by
beginning at. the formula—py V —p1 V —ps.

LTL formulas are built from propositional variables, the After the boolean formulas for the path and error con-
usual boolean operators/( A, —), and the temporal op- straints are calculated, they are converte@aomjunctive Nor-
eratorsG (“always”), F (“eventually”), U (“until”), and X mal Form (CNF) before being passed to a SAT solver. If
(“next™). Their semantics are defined on linear traces, sisch the solver reports that'L x U C'L. is unsatisfiable, it means
those produced by runs of a Kripke structure= ¢ means that there is no lengtk-counterexample t@; otherwise, a



(=r0) (ro V po) (=po V qo) (—=po V =qo) (po) 3 Defining Vacuity

I~
D . . , _— .
(po) ~ / This article uses the following definition of vacuity.
(g0)
(=po) Definition 1. Let K be a Kripke structurep be a formula
Po s.t. K = ¢, andp be a variabley is k-stepp-vacuousiff
0 K i ¢[p < x|, wherez is a variable not occurring i& or
in .

Fig. 2: A resolution proof for EAMPLE 2. ) .
If © is k-stepp-vacuous, we calb a k-step vacuous vari-

able A propertyy is k-step vacuous and only if ¢ contains
a k-step vacuous variable. Therefore, our techniques aim to

satisfying assignment is returned. When a DPLL-based SATind thek-step vacuous variables of The qualifier %-step”
solver processes an unsatisfiable theory, a resolutiosaderi is omitted in the remainder of the article but should be under
tion of false (or the empty clause) is implicitly constructed [10, Stood implicitly in the BMC context.

27]. This resolution proof is used to verify thiatse can in- Definition 1 can be generalized to vacuity in arbitrary (not
deed be derived from@' L U CL, [28]. necessarily atomic) subformulas. This follows from the fac
that a subformula is vacuous iff it imutually vacuoug all of

its atomic propositions [13, Th. 9], and that the definitioan

be easily extended to mutual vacuity. A set of atomic propo-
sitions {p1, ..., pn } is mutually vacuous ifK | ¢[p1 «

X1y ey Pn — Zn], Where{zy, ..., z, } are new variables. For
example, ifp contains subformuld = p A ¢, andp andq
are mutually vacuous, then we can deduce thiatvacuous
as well.

Naive Vacuity Detection.Definition 1 suggests a sound and
complete algorithm for vacuity detection: for each proposi
tional variablep in ¢, run BMC ong[p <« z], wherez is a
variable that does not appearihandy. If K = ¢[p «— «]
Sor somep, theny is k-step vacuous. We refer to this algo-
rithm asnaive Its drawback is that it may require as many
model-checking runs as there are propositional varialsles i

2.2 Resolution Proofs

Resolution is an inference rule that is applied to proposéi
clauses to produce logical consequenceglauseis a dis-
junction of literals (boolean variables or their negatjof®r
example,(v1 V —wq V v5) is a clause stating that at least one
of vy, —vy or vs must be true. The resolution rule takes two
clauses, where one contains a litaraind the other —its nega-
tion —v, and produces a clause containing the union of th
two clauses’ literals minus and —v. For example, resolv-
ing (v1 V —wy V vs) and (ve V vg) produces theesolvent
(’Ul V vs V 'U(;).

p.

A resolution proof/7 is a directed acyclic graph whose e now review some of the alternative definitions of vacu-
nodes are labeled by propositional clausésrepresents a ity and their algorithms. The first attempt to formulate and
tree of resolutions between the clauses labeling its nodegtomate vacuity detection is due to Beer et al. [2]. They
Its roots are the nodes with no parents; otherwise, all nodesonsider a property to be vacuous ify contains a sub-
have exactly two parents. The nodes with no children ar§ormula such that replacing by any other formula does
called theleaves For example, the roots of resolution proof ot affect the satisfaction ab. Applying this definition di-
IT in Figure 2 areRoots(II) = {(-ro),(ro V po); (=Po V' rectly would require an infinite number of subformula re-
q0), (~PoV—90), (po) }, and the leaf of I is the empty clause, placements, precluding a practical implementation. Herev
i.e., Leaf(II) = false. Given a non-root node labeled by the Beer et al. show that to detect vacuity w.r.tsiagle occur-
clausec, and the labels of its parents, andc;, cis the re-  rence of a subformula in w-ACTL, it is sufficient to replace
solvent since it has been produced by resolvingndc; on 4, with only true andfalse. This was later extended to CTL*
some variablev. A resolution proofiI is a proof of unsat- by Kupferman and Vardi [18], and to the mogatcalculus
isfiability of a set of clausedl if and only if all roots of IT by Dong et al. [9]. Purandare and Somenzi [21] showed how
belong toA, and one of the leaves @1 is the empty clause. g speed up subformula vacuity by analyzing the parse tree of
For example, Figure 2 shows a resolution proof of the unsaty CTL property.

isfiability of Roots(II). If a propositional theory in CNF is Armoni et al. [1] generalized the above syntactic defini-
unsatisfiable, aUNSAT cords an unsatisfiable subset of its jgn of vacuity by introducing universal quantificatione.i.
clauses. Va - o[ « z]. Based on the domain af, three notions of
Given two disjoint sets of clausesandB, a variablev is vacuity are obtained, the most robust of which beirage
said to bdocal to A if and only if v appears i but does not  vacuity. Gurfinkel and Chechik [12] extended Armoni’s defi-
appear inB, andv is said to beglobal if it appears in both  nition of vacuity to CTL*, thus uniformly capturing CTL and
A and B. In Figure 2, if Roots(II) = AU B, whereA = LTL. Armoni et al. also analyzed the syntactic structure of
{(=r0), (roVpo), (—poV qo)} andB = {(—po V —qo), (po) }. the property in order to avoid checking the operands of sub-
thenrq is local to A, and the rest of the variables are global. formulas that are known to be vacuous. Such optimizations



complement our techniques, which focus on detecting vacuef vacuity, since another resolution proof, showing theppro
ousatomicsubformulas. erty to be vacuous, might exist.

In [20], Namjoshi has introduced a proof-based variant  In this section, we introduce three algorithms of increas-
of vacuity. Although it is callegroof vacuityin the original ~ ing precision for partial vacuity detection, based on exami
paper, we refer to it afrall-proof vacuity This definitionis  ing the UNSAT core (irrelevance and local irrelevance) and
based on the semantic proofsiéf= ¢ for a Kripke structure  the resolution proof produced by BMC (peripherality).

K and a formulap. Informally, a formulayp is forall-proof

vacuous in a subformula if ¢ is not used irany proof of 41 Examining UNSAT cores

K = . Of course, a formal definition depends on the exact

interpr_etatio_n of the_ n_o_tion of “proqf”. In comparis_on, WSSl iven a resolution proof thaBMC;,(K,
an “existential” definition of vacuity: a formula is vacuous
if there existsa proof that does not use a subformula. Inter-
estingly, we rely on syntactic (and not semantic) resotutio
proofs that may include “semantically-useless” resohsio
As a result, it is possible that a formutais vacuous in) in

a modelK, yet there is noesolution proofof bounded satis-
faction of K |= ¢ that does not us¢. More importantly, our
goal is to develop a method to efficiently detect vacuity for
LTL as it was defined by [2,3,1,12], whereas Namjoshi was
looking for an alternative definition of vacuity for branobi
time logic.

Our definition of vacuity is syntactic, and in this respect,
it is similar to the original definition of Beer et al. [2]. Hew Definition 2. Let K be a model, ang an LTL formula. As-
ever, Definition 1 is stronger, and is equivalent to the semansume that/l is an UNSAT core of BMG(K, ¢) witnessing
tic definition of Armoni et al. [1], as shown by Gurfinkel and that K =, ¢. Then, p is irrelevant with respect to
Chechik [12]. BMC.(K, ) andIT iff p; does not appear ifY for any time

instance.

) is unsatisfiable,

we can sometimes cheaply determine that the similar theory
BMC; (K, ¢[p < z]) is also unsatisfiable, and therefore, that
the property igp-vacuous. In this section, we consider how
to determine thaBMCy (K, ¢[p < z]) is unsatisfiable given
thatBMCy (K, ) is unsatisfiable, using only an UNSAT core.

4.1.1 Irrelevance

Intuitively, any variable that does not appear in the UNSAT
core does not contribute to the reason whkiolds onK, so
it can be considereidrelevant

- _ If a variable is irrelevant, it is also vacuous, as shown by
4 Exploiting Resolution Proofs the following theorem.

Theorem 1. If p is irrelevant with respect to BMZK, )
In Section 3, we discussed the existence of a sound and conand I7, thene is k-stepp-vacuous.
plete vacuity detection algorithm for BMC, which requires
as many model-checking runs as there are propositional varf "0 Let BMCy(K, ¢) = CLx U CLe and U be the UNSAT
ables in the property being checked. We propose a new vacifore returned by the SAT solver for BMC (K, ¢). Assume that
ity detection strategy: first detect partial vacuity usingsi- P S irelevantin BMC,.(K, ¢). So U does not contain any p; by
pensive techniques and then complete the analysis using eRefinition 2. Therefore, U € CLx U CL. implies U € C'Lx U
tra model-checking runs. Since we are interested in ramgaci CLelpi < @i [ 0 < i < k]. U is also an UNSAT core of
expensive model-checking runs by inexpensive partial vacuBMC«(K, ¢[p < 2]) s0 ¢[p « z] holds on K. Thus, ¢ is p-

ity detection methods, we limit ourselves to considering th Vacuous. - _ , o
output of the original model-checking run &MCy (K, ¢) Definition 2 provides an algorithm to detect some vacu-
i.e., CLx U CL,. This run provides us with a single reso- ©US variables. However, a variable can appear in the UNSAT

lution proof to analyze. Of course, in general, there may bet°'® and still be vacuous, as demonstrated by the following

many ways to derive the empty clause from different sub-X@mple.

sets ofBMCy (K, ). Any method that only examines one of EXAMPLE 1. Consider a Kripke structut& with variablesp
these derivations is inherently incomplete, in the senaé th andq given by the constraintnit = pAg¢q, R = p= ¢/,

a property may be-vacuous but there is no way of deter- which mean that the initial state is labeled by, ¢}, and
mining this based on a given resolution proof. For example the transition relation is expressed by the propositional f
consider a model that is composed of two completely disjointmulap = ¢’ over unprimed and primed variables. Let=
sub-models, running in parallel, i.é5, = K; || Ko. Suppose X (p V q) be the property to check: is p-vacuous since it is
that K, satisfiesGp, K, satisfiesGg, and that both do so satisfied simply becausgis true in any successor of the ini-
non-vacuously. Then the property= Gp vV Gq holds onK tial state. The CNF encoding of the one-step BMC problem
p-vacuously andj-vacuously. However, one of the possible is CLx = {(po A qo0), (po = ¢1)} = {(po), (q0), (—po,q1)}
resolution proofs showing that holds proves tha@Gp holds ~ CL. = {(-p1), (p1,~¢1)}. In this case, theniqgueminimal
non-vacuously o, . Thus, itis impossible to determine that UNSAT core contains all of the clauses of the problem except
 is vacuous irp from this proof. Any method based on ex- for (¢qo). Thus, allp; appear in the UNSAT core, anpcdcannot
amining only one resolution proof cannot prove the absencéde determined vacuous using irrelevance. O



(po) (=po,q1) (z1,—q1) (—z1) Theorem 2. If p is locally irrelevant with respect to
| / \ | BMC, (K, ¢) and T, theny is k-stepp-vacuous.
@ ~_ o Proof: Let BMC(K, ¢) = CLx U CL. and U be the UN-
0O SAT core returned by the SAT solver for BMC (K, ). Assume
that p is locally irrelevant in BMC (K, ¢). So for all p;, either
Fig. 3: A resolution proof for EAMPLE 1. p; does not appear in U, or p; is local to CL. " U = U. or
to CLxk NU = Uk by Definition 3. Let U., be U. with each
occurence of p; replaced by x,. Since each p; that has been
replaced is local to U., and Ux UU,. = U is unsatisfiable, then
Uk UU, is also unsatisfiable. Since U,y C C'Le[ps < 2 | 0 <
i < k], the set of clauses CLx U CLc[p; — z; |0 <1i < k] is
unsatisfiable as well. Therefore, K =5 ¢[p < z] holds, so ¢
is p-vacuous. O
Unfortunately, if a variable is not locally irrelevant in
an UNSAT core, the formula can still hevacuous, as shown

This example shows that even if we are to look at every
UNSAT core of a BMC problem, irrelevance is still unable to
detect existing vacuity.

4.1.2 Local Irrelevance

Variables which do not appear in the UNSAT core are vac- X
uous. The converse is not true: vacuous variables may alsY the following example.

appear in the UNSAT core. Intuitively, these variables areExaAMPLE 2. Consider a Kripke structure with atomic propo-
not the central reason why holds onK. For example, the sitionsr, p andqg whose initial state is given by the constraint:
clauses of”' L x may resolve against each other, representinglnit = —r ApAq. The formulap = —pV ¢ is p-vacuous in
some simplification and unification of parts of the model, be-the initial state. Let us assume that the zero-step BMC prob-
fore resolutions withC L. clauses are performed. If a variable lem is encoded in CNF as follows:

is resolved upon using only teL i clauses or only th€'L,,

clauses, it is potentially vacuous. By looking at the UNSAT CLx = (—70)(ro V po)(—po V qo)
core, it is possible to anticipate whether a variable wilt no
be involved in resolutions betwe&nl ;- andC' L. using the CLe = (po)(—po V o)

following definition. There are several resolution proofs that can establish un-

Definition 3. Let K be a model, ang an LTL formula. As-  satisfiability ofC'L x U C'L.; one such proof is shown in Fig-
sume thatl7 is an UNSAT core of BMG(K, ¢) witness-  ure 2.1n none of the proofs jslocally irrelevant with respect
ing K =5 . Then,p is locally irrelevantwith respect to 10 CL. andC L.

BMCy(K, ¢) and!T iff for each time instancé eitherp; does The problem with local irrelevance is that it is impossible

not appear irf7 or p; is local to eithelCL. N IT or CLx NII. to tell if a variable is going to be used in a resolution jogin

) ] ) C Ly andCL, clauses based on the UNSAT core along]
In EXAMPLE 1, p is locally irrelevant sincey; only oc-

curs in the clauses df taken fromC L., while py only ap-

pears inU within C' L clauses. Moreover, the UNSAT core 4.2 Peripherality

of the original problem can be converted to an UNSAT core of

the new theory, thus proving thatis vacuous. Specifically, In Section 4.1, two vacuity detection methods based on ex-
U ={(po), (=po,q1), (—p1), (p1,—q1)} is the UNSAT core  amining the variables in the UNSAT core were found to fall
of the original problem, so substitutingfor p in the clauses  short of completeness. It was seen that even if every passibl

of U that came fronC'L, gives resolution proof could be analyzed, irrelevance and laeal i
, relevance still might fail to detect existing vacuity. Hevee
U" = {(po), (=po, 1), (ma1), (21, ~a1)}- extend the analysis to the resolution proof's structuree Th
This is a subset of resulting peripherality algorithm is superior, since ibgan-
tees vacuity will be found if all possible resolution proafe
BMC, (K, ¢[p < x]) = {(po), (90), (=0, 1), (-21), considered.
(1, ~q)}, The limitations of detecting vacuity based only on the

UNSAT core were demonstrated irxEMPLE 2. By exam-

so it is a candidate for the new UNSAT core. The substitutionining the resolution proof in Figure 2, we see that although
may have prevented the resolutions necessary to derive thg appears both iU Ly clauses and irC'L,. clauses, it is
empty clause. However, Figure 3 shows a proof #iatis always resolved “locally”. That is, if we resolve two classe
also unsatisfiable. In this case, it was possible to substitu ¢, = (..., p;,...) andcs = (..., =p;, ...), p; and—p; must have
for p; in the clauses coming froi L. in the original UNSAT  been preserved from their original source in some set of root
core and create an UNSAT core BMCy (K, ¢[p < «]). In clauses. If all the originating root clauses belongtbx or
fact, this observation applies to all cases of local irratme  all belong toC' L., thenp; is being resolved on locally. In this
by Theorem 2. Therefore, Definition 3 specifies an algorithmcase, we can replagg in either set of clauses without af-
to detect some vacuous variables. fecting their unsatisfiability. For example, in Figurepgd,can



L(c) : clausec, variable p — {*0’,'A",'B’,‘AB’ }

— if ¢ € Roots(IT) then

‘0 ifpdec

Lie)=qA if peccAhced

‘B if pecAhceB

— elseifcis a clause resulting from resolvirg andcz on variablev, i.e.,c = Jv - ¢c1 A c2, then
— if v # p, then

oy if L(c1) = L(c2) =0
‘AN if Fi,5-Lic)) =A AL(c;)) C{A,'0'}
‘B'  if Ji,5- L(c;) ='B" A L(cj) C{B",'0}
‘AB’ otherwise

— elseifv = p, then

L) = {‘@' if L(c1) = L(ca)

‘AB’ otherwise

Fig. 4: Labeling function for the peripherality algorithm.

BMC(K, ¢). p is peripheralin ¢ iff for each time instance
0 iflgec i, p; is peripheral in/7 with respect ta”' L, andC' L.
if c € Roots(II) Nl € ¢
S(l,c1)US(l,c2) if c1 ande, are parents
ofc ANl€c Theorem 3. Let I be a proof of unsatisfiability of
BMCy (K, ¢). If a variablep of o is peripheral inll, theny
is k-stepp-vacuous.

S(lc) = If a variable is peripheral, it is vacuous by Theorem 3.

Fig. 5: Definition ofS (I, ¢).
Proof: Let BMCk(K, ¢) = CLx UCL. and U be the UN-
SAT core returned by the SAT solver for BMC (K, ). Assume
] i ) ) that p is peripheral in BMCy (K, ¢). Let U., be the result of re-
be replaced i L. by a new unconstrained variahig. This placing each p; with z; in CL. N U. Then (CLx NU) U U, is

intuition is formalized below. still unsatisfiable, since every resolution on z; must be local to

Given a resolution proof/, a variablel, and a clause, CL.NU, and every resolution on p; must be local to CLx NU
we denote by5(/, ¢) the set of all root clauses that have con- py the peripherality of p;. Since U.s C CLe[pi — z: | 0 <i <

tributed the variablé to c. S(/, ¢) is defined recursively as 1 o1, UCL.[p; — 2: | 0 < i < k] is unsatisfiable as well.
shown in Figure 5. A root clausg is an element of(/, ¢) if n

; . : : Therefore, K = ¢[p < z], and ¢ is p-vacuous. |
it contains a variabléand there exists a path from to c that In Figure 2, althouglp is not locally irrelevant inp, it
does not contain a resolution énWe can now defin@eri-  is peripheral, and thereforeis p-vacuous. This also demon-

pherality of variables, which captures the conditions when astrates that peripherality is a strictly stronger noticarttocal
global variable may not be central to the reason wiyolds  jrrelevance. Theorem 4 shows that under our constrairgs thi

on K. is the strongest result that we can hope to establish.

Definition 4. Let A and B be dlSJO|nt sets of clauses such Theorem 4. Assum@ is k-stepp-vacuous inK. Then, there

thatC = AU B is UnsatiSﬁable, andll be a resolution prOOf exists a resolution prod['] of unsatisfiabi"ty OBMCk(K, 90)
establishing unsatisfiability af'. Then a variablé is periph-  sych thap is peripheral inI1.

eral with respect toA and B iff for every resolution onl

between clauses andcs, Proof: Assume that ¢ is p-vacuous. Then, the BMC problem

BMC.(K, p[p < z]) = CLxk UCL.[p; < x; | 0 <14 < k] is un-

S(l,e1)US(lep) C A satisfiable, and there exists a resolution proof IT establishing

this. We show that such a proof can be transformed to a proof

or of unsatisfiability of BMC (K, ¢) = CLx U CL. in which each
S(l,e1) US(l,¢2) C B. p; is peripheral with respectto CLx and CL..

Let II be a resolution proof of BMCy(K, ¢[p < z]).

Within the BMC setting, we have the following definition: We transform II into a resolution proof II' such that

(@) Roots(IT'") C CLx UCLe[p; < z; | 0 < i < k], and (b) IT’

Definition 5. Let K be a model,¢ be an LTL for-  hasno clauses that contain both p; and z; for some 0 < i < k.
mula, BMG; (K, ¢) be a CNF encoding of a BMC problem Let Ux = Roots(II) N CLk, and CL. = CL.[p; < z; |
for K = ¢, and II be a proof of unsatisfiability of 0 <i < k]. Note thatif p; occurs in any clause of Uk, it is local



to Uk . Let L be the set of all local variables of Ux, C = 3L-Uk
be a formula resulting from existentially eliminating these local
variables, and CNF (C') be the CNF encoding of C'. Clearly, for
any 0 < i < k, p;, does not appear in C. The set of clauses
CNF (C)UCL, is unsatisfiable. Thus, there exists a resolution
proof IT" establishing this such that Roots(II") C CL. U
CNF (C). Since Ux = C, for each clause c € C there exists a
resolution proof I1. such that Leaf (I1.) = ¢ and Roots(Il.) C
Uk . By combining the proofs {II. | c € CNF(C)} and II", we
obtain a proof IT’ of unsatisfiability of Ux UC L. that does not
contain a clause with variables x; and p;.

Let IT"” be a proof obtained from I’ by replacing each x;
with p;, for 0 < i < k. Then, II"” is a proof of unsatisfiability
of BMC (K, ) in which all p; are peripheral. O

This is one of the main contributions of this article: if a

As L(cg) # ‘AB’, pg is peripheral, s@ is peripheral.

It is also possible to simultaneously keep track of the la-
bels for all CNF variables so that only a single pass through
11 is needed. The time complexity of the peripherality algo-
rithm is linear in the size of the resolution proof.

Theorem 5. For a resolution proofil that BMG, (K, ¢) is
unsatisfiable, determining which variables ofare periph-
eral can be done in time linear in the sizel@f

Proof: To determine which variables of ¢ are peripheral, the
labeling algorithm defined in Figure 4 must be run once on IT
for each variable p in . The labeling algorithm passes through
the resolution proof, visiting each node once in breadth-first
order. A constant amount of work must be done at each node
in order to determine the current node’s label based on the

variable appears in all proofs, but is detected as periﬂ)hera}abe|s of its two parents. Therefore, one run of the labeling

in at least one of these proofs, it is vacuous. Conversedy, if
variable appears in all proofs but is not peripheral in any of

them, it is definitively not vacuous.

Peripherality of a variable can be detected by traversing,; the size of 17 is O(
the resolution proof from the roots to the leaf, keepingkrac

of the source of the variable in each clauselllfis a reso-

algorithm takes O(m) time, where m is the number of nodes in
I1. To run the labeling algorithm on all variables in ¢ requires
O(m x n) time, where n is the number of variables in I1. In
m X n), because each of the m nodes
can have a clause of length at most n. O
In this section, we defined three methods of detecting

lution proof whose root clauses are divided into two disjoin yacuity based on examining the UNSAT core and the reso-

sets,AU B, then the labeling functiobh is defined recursively
as shown in Figure 4, whekeis used to represent a clause.

lution proof produced by BMC. Our evaluation of these al-
gorithms w.r.t. precision and execution times can be foand i

This labeling function defines an algorithm for detecting pe gection 6.

ripherality.

The effectiveness of our algorithms depends on the struc-

A CNF variablev is peripheral iff the label of the empty tyre of the resolution proof found by the SAT solver. It might

clause is not ‘AB’. Thus, to detect whether a formuas
p-vacuous, we need to check that all CNF variablesorre-

be possible to make them more effective by modifying the
SAT solver to guide it to a particular kind of a proof (e.g., by

sponding t (see Section 2) are peripheral. This can be dong:hanging the decision order heuristic), or to output mitip
by applying the labeling function described in Figure 4 with proofs (if possible). Both of these are likely to signifidgnt

A=CLg,andB = CL. for eachp;.

By applying this labeling function to the proof shown in

Figure 2, we can determine that variapl&éom EXAMPLE 2
is peripheral. Since there is only one time stejs, peripheral
iff po is peripheral.

— First, we name the root clauses, for later reference:

c1 = (—ro) Po & c1 e
c2 = (10 V po) Do € 2 cp €A
Cc3 = (ﬁpo \Y qO) Po € c3 c3€eA
ca = (=po V —qo0) Do € ¢4 cs €B
cs = (po) Do € 5 cs € B

— Second, we identify the derived clauses:

66261/\02,'0:7"0
cr =C NC3,V=Do

s =crNcg, V=qo
Ccg =cgNcs, UV =Do

— Third, we apply the labeling function, as shown in Fig-

ure 4:
Lier) =00 Lics) = A v+ po
L(co) ='A L(cr) ="0" v=po
L(c3) =N L(cs) =B v # po
L(cy) =B L(cg) =0 v=pg
L(cs) =B’

change performance characteristics of a fine-tuned SAEsolv
For these reason, we have concentrated on using the original
resolution proof as is.

5 The Tool: VaqTree

We have implemented the algorithms presented in Section 4
in a vacuity detection tool calledaqTree. To our knowledge,
this is the first vacuity detection tool for BMC.

The inputs toVaqTree are a model (encoded using the
specification language of NuSMV [5]) and an LTL property.
The tool generates the vacuity results for each variabkemte
in the property. Vacuity detection MagTree proceeds in two
phases: a “partial pass” that applies one of our methods, and
a “model-checking pass” that completes the analysis using
additional model-checking runs. The component diagram for
VaqTreeis shown in Fig. 6. The four components interact se-
guentially:

SMV — CNF Translator receives as input a SMV file
containing a model and a property, which are translated into
two separate CNF files, one containi6d.x and the other
CL., respectively. This translation is done using NuSMV,
where we modified its BMC package so as to get the transla-
tion as two files£ 40 lines added to themcBmcNonlInc.c
file).
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Fig. 6: VaqTree components.

Proof-outputting SAT solver generates the resolution Currently, VagTree is limited to proofs with up to 2.5 mil-
proof (I1) for CLx U CL.. We use MiniSat [10] as it can lion resolutions. InS 4, this corresponds to a test case from
explicitly generate resolution proofs when checking $atis  the asynchronousbp4 model (roughly 30 boolean variables,
bility. Instead of using MiniSat’s binary proof format, we-d  with & = 19). Our full results are available in Table 1. Below,
veloped our own XML format which allows easier proof pre- we discuss results obtained with each benchmark individu-
processing and facilitates future incorporation of othaf S  ally.
solvers.

Proof Pruner receivesC' L, C' L. andIl and applies dif-
ferent preprocessing techniquedIpproducing a proof from 6.1 Results obtained withi 4
which extraneous chains of resolution have been removed and
root clauses are annotated to include their origifL ¢ or

CL.). This is a new component, written in Java (around 700" "' R
lines of code). pci, andprod-cell from the NUSMYV distribution (107 prop-

Proof Analyzer receives proofs that have been prepro- €ri€s) andoyFGS04from [15] (14 properties). On average,

cessed using theroof Pruner component and produces a list the Properties in the suite have 2 temporal operators (from
of variables found to be vacuous, and a list of variables thaf"® Sét G. F, U and X), with a maximum of 4 operators, and
need to be tested using the naive method. This is a new conficlude both liveness and safety. 99 of the properties éxhib
ponent, written in Java (around 1.3k lines of code). The Proo Yacuity, and 22 do not. o
Analyzer outputs the vacuity results for each timed vagabl ~ Scatter plots in Figure 7 compare the execution times of
p;. This information gives aexplanation of non-vacuityn- ~ VagTree(parametrized with irrelevance, local irrelevance, and
dicating which time steps have been important for decidingP€ripherality), with naive detection for this benchmarkek

whether a given variable was vacuous, thus facilitating de-cution times for naive detection include CNF theory genera-
bugging. tion and satisfiability testing for each variable of the pdp.

Execution times folaqTree include the time for the partial

pass and the subsequent model-checking pass. Each point in
6 Practical Experience the plot represents a single test case. The X-axis repgesent

the time (in seconds) taken by naive detection. The Y-axis

We have runVaqTree on two benchmark suites. To evalu- represents the time (in seconds) takerMagTree when pa-
ate the overall performance of the tool and the effectivenesrameterized by each of our methods. Points below the diag-
of our partial vacuity detection methods, we have createcPnal indicate wher&/aqTree was faster than naive detection;
a benchmark suité 4 using various models and properties Points near the diagonal indicate cases where the parsal pa
from the NUSMV distribution. To evaluate the scalability of found a small percentage of the vacuous variables.
the tool to industrial models, we have created a benchmark Figure 8 shows that afi4, VagTreewith irrelevance finds
suite Sz from the models in the IBM Formal Verification the fewest vacuous variables among our partial methods, as
Benchmarks Library [14]. These models came with ratherexpected from the discussion in Section 4. Although Fig-
simple properties (one temporal operator), and (as exgecteure 7(b) and (c) look similar, the numbers (see Table 1) show
from an industrial benchmark) did not exhibit a high degreethat local irrelevance is faster than peripherality in 9&%he
of vacuity. Thus, we used this suite to measure the “worstcases. This is consistent with the additional work perigher
case” behavior of the tool, i.e., the amount of overhead indity must perform to analyze the proof tree. A detailed com-
curred by our methods when no vacuity is found. parison of local irrelevance and naive detection shows that
In the benchmarks, each test case consists of a middel VagTree with local irrelevance was faster or comparable to
a propertyy, and a bound: such thatM |, ¢. Note that  naive detection in 95% of the test caséaqTree with local
finding an appropriate bouridis orthogonal td:-vacuity de- irrelevance was faster than naive detection in 70 (58%)ef th
tection, which explains why our evaluation does not conside test cases, out of which 30 cases were twice as fast, and 20
the time needed to finél. The experiments were performed cases were faster by an order of magnitude. In the remaining
on a Linux machine with a 2.8GHz P4 CPU, and 1GB of 51 cases, local irrelevance was at most 3% slower in 86% of
RAM, with up to 700MB of RAM available to each process. these cases.

oThis benchmark suite consists of 5 modelsp4, msi_wtrans,
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There are 10 cases whevaqTreewith peripherality took  cantly lower than any other test case with large proofs and
much longer than naive detection. All of these cases are fromvithout vacuity.
the abp4 model, and while th_ey have the largest resolution  \yie now turn to measuring the effectiveness of our meth-
proofs of the benchmark suite (between 300,000 and 2M,ys ysing the number of vacuous variables found during the
clauses), other 300,000-clause test cases did not yield pOQyartia| pass as a metric (see the scatter plots in Figuren). T
performance. We conjecture that the poor performance is dugmper indicates how many additional model-checking runs
to a low clause/variable ratio [22] which favours naive dete 56 needed to complete vacuity detection. Since our partial
tion in cases where vacuity is not present. Intuitively, & 10 ethods can be ordered by increasing precision, Figure 8(a)
ratio indicates that the SAT instance is underconstraiaed, compares irrelevance and local irrelevance, Figure 8(b) — |
so a solution (if it exists) can be found quickly. On the other ., irrelevance and peripherality, and Figure 8(c) — pesiph
hand, finding a proof ofinsatisfiabilityin a model with few iy and naive detection. Each point in the plot represerseta
constraints can be more difficult. Naive detection on a non-yf et cases — a larger point means a larger set. The axes show
vacuous property requires solving satisfiable SAT inst8nce e nymper of vacuous variables detected by each method.
since replacing variables falsifies the property. Howeper,  pgints helow the diagonal indicate where the X-axis method
ripherality on a non-vacuous property requires time linéargetacts more vacuous variables than the Y-axis method. The
in the size of the resolution proof obtained from the origi- plots show that local irrelevance is clearly more effectian

nal model-checking run. If all of these SAT instances have g, ajevance. Contrary to our expectations, peripherality-
low clause/variable ratio, naive detection can be muclefast formed exactly as local irrelevance in all but 5 cases. Tlods

than peripherality. This situation was only observed on th

' ' > on €5 irrelevance appears to be more cost-effective. Fig(ae 8
abp4 model, with clause/variable ratio of 1.5-1.8 — signifi-

shows that our techniques are effective when compared with
naive detection: peripherality reduced the number of extra



model-checking runs by 40% in 54 out of 99 cases that exsame vacuous variable as irrelevance, plus an additional va
hibited vacuity. uous variable. It takes 88.41 seconds to run the completing
pass, so the total time required by local irrelevance is@8.7
seconds. Finally, peripherality took 0.74 seconds to eecu
the partial pass and found the same two vacuous variables; it
also required 88.41 seconds to run the completing pass, tak-
This benchmark suite consists of 13 models from the IBMing a total of 89.15 seconds to produce complete results for
Formal Verification Benchmarks Library [26] (18 properjies test cas&Ss 16.

The properties have a single temporal operator (G or F), and  Qur results clearly show that proof sizes for $yebench-
include both safety and liveness. 12 of the properties éxhib mark can be handled byaqTree. Interestingly, these are in
vacuity, and 6 do not. To evaluate the scalabilityafTree to  the same range as proof sizes&y. This could be explained
industrial models, we must first determine a reasonabledounpy the fact that even though these models are more complex,
such thatM =, . For this benchmark, we picked depth the properties are simpler.

k = 20, which is in line with the bounds used for analyzing  gcatter plots in Figure 9 compare the execution times of
these models in [26, Sec. 2]. At this some of the models \aqTree parametrized with local irrelevance and periphera-
where too large to analyze using VaqTree, and some of théy, \yith naive detection for this benchmark. Executionéis
properties did not hold. This is why we only report data for 56 measured as described in Section 6.1, and the graphs are
13 models from this benchmark. interpreted in the same way as those in Figure 7. Sge

Table 1 shows detailed results of our experiments. In thishad low vacuity, we did not expect our techniques to find it
table, column “Benchmark” indicates the benchmark the testyithout the help of naive detection. However, graphs in Fig-
case belongs to; “Test case” is the case’s unique identifiefre 9 show that our techniques do in fact detect vacuity, as
inside the benchmark, “Model” is the SMV model tested; indicated by the points that appear below the diagonal. Both
“# var. in M" is the number of variables in the modek™  |ocal irrelevance and peripherality detect the same amafunt

is the number of steps used to run BMC; “op.4f shows  yacuity inSg, but local irrelevance is slightly faster than pe-
the property operators (e.@G means that two G operators ripherality.

appear in the property); “# var. ip” is the number of atomic
variables present in the property; “# vac. vars.” is the num-

6.2 Results obtained withz

Surprisingly, peripherality introduces a low overhead in
) ; o this benchmark — points over the diagonal are near it, unlike
ber of vacuous variables; e_md # resolfift is the number what we see in Figure 7. To explain this behavior, we hypoth-
of resolutions in the resolution proof. The next three cmsm. esized that in non-vacuous cases with low clause/variable r

report the time needed for model-checking: “Gen. CNF” i ¢ anq |arge proofs, peripherality is much slower thanaai
the time NuSMV took to generate the corresponding CNFye0ction. Insys, we found that 15 of the test cases have a

theory; “Test SAT” and "GenlI” are the time MiniSat took |5, ;se/variable ratio between 2.62-3.66, much higherttian
to test satisfiability and generate the corresponding wesol |44ing encountered if 4. The remaining three cases had ra-
tion proof respectively; and “Total” is the sum of the presso tios in the same range as thbp04 model. However, two of
three columns. these produce trivial proofs, and the last one exhibits igacu

For the naive method, we report the total times for theThese results empirically support our hypothesis.
CNF theory generation (“Gen. CNF") and for satisfiability

testing (“Test SAT”). One CNF theory is produced per atomic
variable. For irrelevance, local irrelevance and periglitgy 6.3 Conclusions
we report how many vacuous variables were found by the
partial pass (“# vac. vars. found”), how loMgqTree took to
do the corresponding analysis (“Anal.”) and how much time In summary, we observed that local irrelevance performs bes
was needed to do the completing pass (“Extra runs”). out of our proposed partial methods, finding most vacuity in
For example, test cas®s 16 analyzes an eight-variable, the least amount of time. In 95% of both benchmark suites,
one temporal operator (G) property of &M _FV_200223  we foundVaqTree with local irrelevance to be at most 3%
model (which has 103 variables). All eight of these variable slower, and usually much faster, than the naive detection. |
are vacuous. The resolution proof generated when20 has  several tests of th§ 4 benchmark, peripherality was notice-
7,618 resolutions. This property was checked in 11.29 secably slower than naive detection. On the industrial benckma
onds. Naive vacuity detection required eight model-chagki Sz, the overhead produced by peripherality was negligible.
runs, taking 115.68 seconds to generate the correspondingterestingly, this suggests that peripherality may beable
CNF theories and 2.36 seconds to test their satisfiabibty, r alternative to local irrelevance on industrial models. Wenp
quiring a total of 118.04 seconds. Irrelevance took 0.36 secto investigate this further in the future. Thus, we belidvatt
onds to find one of the vacuous variables during the partiaboth local irrelevance and peripherality can be used tocgspee
pass. It then took 103.01 seconds to carry out the completup naive detection. We plan to enhance our methods by devel-
ing pass, so the total time required by irrelevance to find alloping a heuristic based on the clause/variable ratio anof pro
eight vacuous variables is 103.37 seconds. Local irrel®an size that indicates when naive detection should be appiied i
took 0.35 seconds to analyze the resolution proof, findieg th stead.
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7 Summary and Related Work fiable, an interpolant is a set of clauses whose variables
appear in bot and B, such thatB U C is unsatisfiable and

In this article, we showed how to exploit the UNSAT core 4 = C'[16]. Intuitively, if C'is minimal, thenC'is the reason
and resolution proof produced by a successful run of BMmcwhy A U B is unsatisfiable. This intuition suggests that if an
for vacuity detection. We introduced three vacuity detecti interpolant of CLx andC'L. could be found, then all vari-
methods that can be applied with little overhead after one2bles not appearing in it could be considered vacuous. How-
model-checking run in order to quickly identify vacuousivar €Ver, we did not include this technique in our empirical eval
ables and reduce the number of additional model-checkingtion, as our interpolant generator was comparatively estow
runs required. Two of these methods, irrelevance and local Another means of speeding vacuity detection for BMC is
irrelevance, exploit the UNSAT core, and the third, periphe t© iteratively check thé-step vacuity of each variable starting
rality, is based on analyzing the resolution proof. We kailt With & = 0. SinceK ¥y, o[p — x| implies K ¥, ¢[p — ]
tool VaqTree, which is based on these methods, and showedor all k2 > k1, if a variable is proven non-vacuous at some
that it is effective for speeding up vacuity detection. stepk, then it can be omitted from subsequent checks of
Related work on vacuity detection has been described ifigherk. This method is orthogonal to our techniques, and
Section 3. Additionally, our work is related to research in the vacuity detection at each step could be carried out by
declarative modeling. In particular, our use of the UNSAT VaqTree.
core to detect vacuity was inspired by [23], which addresses
the problem of identifying overconstraint in declarativedn  AcknowledgementsA preliminary version of this article has ap-
els. While similar in spirit to vacuity detection in model cite  peared in [24]. We are grateful to anonymous referees for helping
ing, declarative models have no explicit transition relati  improve the presentation and technical clarity of this article. This
instead, transitions are expressed with constraints Bj7ah  work was supported in part by NSERC, OGS, and IBM.
overconstraint occurs when the model satisfies a safety prop
erty because all violations of the formula have been aceiden
tally ruled out by the declared constraints. In order to clete
sych overconstraints, [23] introduces the ideqcma extrac- 1. R. Armoni, L. Fix, A. Flaisher, O. Grumberg, N. Piterman,
t|or_1: declarative models are reduced tO.SAT instances, from 5 Tiemeyer, and M. Vardi. “Enhanced Vacuity Detection in
which an UNSAT core can be extracted if the property holds. | inear Temporal Logic’. InProceedings of the 15th Interna-
If a constraint’s clauses do not appear in the UNSAT core,  tional Conference on Computer Aided Verification (CAV:03)
the constraint is calletrelevant and is a source of overcon- volume 2725 of_ecture Notes in Computer Scienpages 368—
straint (similar to Definition 2). The cone-of-influence hec 380, 2003.
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Table 1: Statistics for vacuity detection experiments on NuSMV distobutind other examples.

Bench{Tes Model (M)  #var|k| op. # varl# vac| # resol Model Checking Naive Irrelevance Local Irrelevance (LI) Peripherality (P)
mark [case| in M| |ineg|ing|vars.| inII|[ Gen] Tes{Gen] Total][ Gen|[ Tes{ Totall[ # [Anal| Extra| Totall| # [Anal| Extra] Totall| # Anal| Extra| Total
vac. vac. vac.
CNF (S)SAT (s)I (s (S)|CNF (S)SAT (s (s)| vars. (sjruns (s (s)| vars. (s)runs (s (s)| vars. (s)runs (s (s
found found found
Sa |1 pci 40 13 GU| 4 1 19797 469 0.23 59 10.82| 20.66 2.7723.43] 0 0.34 23.4323.77| O 0.34 23.4323.77] 0 0.8]1 23.43 24.24
Sa |2 pci 40 13 GU| 4 | 3 1649 5.13 0.14 5.64 10.91| 11.7% 1.30Q 13.0%| 3 0.26 0 0.26| 3 0.26 g 0.26| 3 0.37 0 0.37
Sa |3 pci 40 13GU| 4 | 3 1644 5.09 0.13 5.32 10.54| 12.03 2.14 14.17| 3 0.26 0 0.26| 3 0.2 g 0.23| 3 0.37 g 0.37
Sa | 4 pci 40 13 GU| 3 1 7725 480 0.18 5.69 10.63| 12.68 1.73 14.41| 0O 0.29 1441 147| O 0.29 14.4114.70| 0 0.50 14.41 14.91
Sa |5 pci 40 13 GU| 3 1 7555 4.76 0.18 5.59 10.49| 12.3¢ 1.5 13.92| 0 0.28 13.9214.20| 0 0.28 13.9214.20| 0 0.50 13.92 14.47
Sa | 6 pci 40 1I3GU| 4 | 3 1709 4.66 0.12 5.69 1.19 12.85| 3 0.2 0 0.23| 3 3 0.39 g 0.39
Sa | 7 pci 40 13 GU| 4 | 3 1708 4.67 0.14 5.42 1.40 13.08| 3 0.25 0 0.23| 3 3 0.37 g 0.37
Sa |8 pci 40 13GU| 5| 3 4283 4.9 0.22 5.59 2.89 28.74| 2 0.27 17.6017.87| 2 2 0.47 17.60 18.07
Sa |9 pci 4013 FU| 4 | 3 158 4,92 0.13 5.73 0.74 21.04| 3 0.19 0 0.18| 3 3 0.22 g 0.27
Sa |10 pci 40 13 FU| 3 | 2 163 4.78 0.13 5.49 0.85 16.1%| 2 0.19 0 019 2 2 0.23 g 0.23
Sq |11 pci 40 13FUX 4 | 3 165 47 0.13 54 0.79 21.57| 3 0.18 0 0.18| 3 3 0.23 g 0.23
Sa |12 pci 40 13 FU| 4 | 3 162 483 0.14 5.41 1.01 21.2¢| 3 0.18 0 0.18 3 3 0.23 0 0.23
Sa |13 pci 40 13 FU| 4 | 3 160 5.04 0.13 5.44 0.73 21.12| 3 0.19 0 0.19| 3 3 0.23 g 0.23
Sa |14 pci 40 13FUX 5 | 4 164 4.79 0.14 5.34 2.34 28.1%| 4 0.19 0 019 4 4 0.23 g 0.23
Sa |15 pci 40 13FUX 5 | 4 162 4.70  0.13 5.40 1.54 27.00| 4 0.19 0 019 4 4 0.22 g 0.27
S4 |16 pci 40 13 G, X | 26 | 19 | 17747 4.96 0.88 6.78 f 35.14172.61| 8 0.41 115.16115.57| 8 8 of
Sa |17 pci 40 13 G,X| 26 | 19 | 26814 4.86 1.11 6.87 36.13170.42| 8 0.46 114.63115.09 8 8
Sa |18 pci 40 13 G, X | 26 | 19 1.24 7.87 B 42.23190.1¢| 8 0.60 130.62131.22| 8 8
Sa |19 pci 40 13 G, X | 26 | 19 2.7210.48 [ 41.05174.72 8 0.74 118.51119.2%| 8 8
S4 |20 pci 40 |7\GU| 5| 3 0.08 3.26 0.64 9.37| 2 0.24 599 6.23] 2 2
Sq |21 pci 40 [4|GX| 26 | 24 0.058 2.03 1.46 18.12| 19 0.2 4.8 5.11| 19 19
Sa |22 pci 40 |4|GX | 26 | 24 0.055 2 1.5 18.17| 19 0.26 5.17 5.43| 19 19
Sa |23 prod-cell 39BIGF| 4| 4 0.61 6.59 0.94 41.31| 4 0.39 0 039 4 4
Sa |24 prod-cell 39 BIGF| 6| 6 0.38 5.2( 1.80 79.47| © 0.63 79.4780.12| O 1
Sa |25 prod-cell 39RBIGF| 7| 7 0.32 4.87 1.7987.11 1 0.5 74.66 75.21| 1 1
Sa |26 prod-cell 39 B3GF| 6 | 6 0.19 4.12 1.8777.2¢6| 0 0.44 77.26 77.70| O 0
Sa |27 prod-cell 39BIGF| 5| 5 0.28 4.64 1.24 64.09| 0 0.42 64.09 6451 0 1
Sa |28 prod-cell 39BIGF| 4| 4 0.16 4.18 1.2941.90| O 0.41 41904231 0 0
Sa |29 prod-cell 39 BIGF| 8| 8 0.23 4.54 1.99102.28| 0 0.52 102.2302.7%| 0 0
Sa |30 prod-cell 39BYJGF| 5| 5 0.35 4.31 3.61 59.48| 0 0.41 59.4859.89| 0 0
S4 |31 prod-cell 39 B30GF| 4 | 4 1.01 6.47 252 46.39| O 0.51 46.3946.90| 0 1
Sa |32 prod-cell 39BIGF| 4| 4 0.69 6.22 3.18 46.53| 0 0.71 46.5347.24| 0 0
Sa |33 prod-cell 39 BQGF| 6 | 6 0.86 6.93 240 76.77| O 0.58 76.77177.3% 0 0
Sa |34 prod-cell 39BYIGF| 5| 5 0.3Q 4.98 6.69 61.49| 5 0.41 0 041 5 5
S4 |35 prod-cell 39 BGF| 5| 5 0.99 6.81 4.40Q 57.0%| 0O 0.73 57.0857.78| O 0
S4 |36 prod-cell 39 3GF| 8 | 8 0.35 4.64 2.92121.33 0 0.52 121.33121.8% 0 1
Sa |37 prod-cell 39BIGF| 9| 9 0.40 5.91 5.90114.05| 0 0.67 114.0%114.72| 0 0
Sa |38 prod-cell 39BYIGF| 5| 5 0.37 5.04 2.24 57.09| 0 0.53 57.0957.62| 0 0
Sa |39 prod-cell 39BYIGF| 5| 5 0.48 5.29 1.9 55.76| O 0.5 55.76 56.31| 0 0
S4 |40 prod-cell 39 B0GF| 4 | 4 0.44 5.15 1.50 43.24| O 0.54 43.2443.73| 0 0
Sa |41 prod-cell 39 [302G,2F 10 | 10 0.209 4.71 3.00151.20| O 0.53 151.2(151.73 O 0
Sa |42 prod-cell 39BIGF| 8| 8 0.72 6.03 3.03126.57| O 0.54 126.57127.11| 0 0
Sa |43 prod-cell 39RQOGF| 4| 4 0.11 2.81 0.35 17.72| 0 0.38 17.7218.10| O 1
Sa |44 prod-cell 39 RQGF| 6 | 6 0.13 2.7 0.69 29.76| 0 0.42 29.76 30.18| O 0
Sa4 |45 prod-cell 39 20GF| 7 | 7 0.12 2.69 0.6 31.77| 1 0.3§ 27.3527.73| 1 1
Sa |46 prod-cell 3920 GF| 6 | 6 0.14 3.31 0.46 26.30| 4 0.36 8.63 8.99| 4 4
Sa |47 prod-cell 39ROGF| 5| 5 0.13 2.91 0.74 23.86| 1 0.34 19.60 19.94| 2 2
S4 |48 prod-cell 39 20GF| 4 | 4 0.08 2.49 0.56 15.72| 0 0.33 15.72 16.0%| O 0
Sa |49 prod-cell 39 20 GF| 8 | 8 0.16 2.95 0.87 33.60| 0 0.48 33.60 34.08| O 0
S4 |50 prod-cell 39 2GF| 5| 5 0.42 4.48 0.50 19.8%| 0 0.5 19.85 20.40| O 0
Sa |51 prod-cell 39R0GF| 4 | 4 0.18 3.23 0.66 15.73| 2 0.36 8.14 850| 4 4
Saq |52 prod-cell 39 20GF| 4 | 4 0.16 2.84 0.52 17.33] O 0.40 17.3317.73] O 0
S4 |53 prod-cell 39 ROGF| 6 | 6 0.15 3.33 0.52 27.72| 6 0.34 0.34| 6 6
S4 |54 prod-cell 39 20GF| 5| 5 0.109 2.74 1.24 20.9¢| 3 0.33 8.80 9.13| 4 4
S4 |55 prod-cell 39 2GF| 5| 5 0.22 3.81 1.03 22.21| 0 0.43 22.2122.64| 0 0
Continued on Next Page. ..



Table 1 — Continued

Bench{Tes Model (M)  #var|k| op. # varl# vac| # resol Model Checking Naive Irrelevance Local Irrelevance (LI) Peripherality (P)
mark [case| in M| |ineg|ine|vars.| inII|[ Gen] Tes{Gen] Total][ Gen|[ Tes{ Totall[ # [Anal| Extra| Totall| # [Anal| Extra] Totall| # Anal| Extra| Total
vac. vac. vac.
CNF (S)SAT (s)I (s (S)|CNF (S)SAT (s (s)| vars. (sruns (s (s)| vars. (s)runs (s (s)| vars. (s)runs (s (s
found found found
Sa |56 prod-cell 39RQGF| 8 | 8 20607 446 0.27 3.73 8.46| 41.14 1.2042.34| 0 0.43 42.3442.79 2 0.43 31.13 31.58] 2 1.50 31.13
Sa |57 prod-cell 39 20 GF| 9 | 9 10923 3.9 0.09 268 6.67| 41.01 0.7341.74| 2 0.39 32.2232.61 3 0.39 27.71 28.1] 3 1.0 27.71
Sa |58 prod-cell 39RQGF| 5| 5 11214 3.83 0.1Q 2.4 653 21.29 0.3621.6% 1 0.3 17.4417.79| 2 2 0.77 13.13
Sa |59 prod-cell 39ROGF| 5| 5 9252 4.03 0.08 2.69 6.82| 21.12 0.34 21.46| 1 0.34 17.2917.63| 2 2 0.69 12.89
S |60 prod-cell 39ROGF| 4| 4 16124 3.83 0.13 3.03 7.01| 16.43 0.4016.83 1 0.40 12.76 13.16| 2 2 0.8 8.52
Sa |61 prod-cell 39 [202G,2F 10 | 10 | 14767 489 0.11 3.54 8.54| 51.70 1.09 52.79| 3 0.41 36.8937.30| 4 4 1.39 31.2
S4 |62 prod-cell 39 20 GF| 8 | 8 15334 4.58 0.14 2.97 7.69| 39.2% 0.89 40.14| O 0.42 40.14 40.56| O 0 1.25 40.14
Sa |63 prod-cell 39 10GF| 4 | 4 2254 0.89 0.03 1.26 2.18 3.72 0.1Q 3.82| 3 0.26 1.01 1.27| 3 3 0.39 1.01
Sa |64 prod-cell 39 [10 G, 6 | 6 2304 0.92 0.03 1.26 2.21 7.6 014 7.79| 0 0.27 7.79 8.06| 0 0 049 7.79
Sa |65 prod-cell 39NQGF| 7| 7 5345 3 0.04 1.32 2.3 6.71 0.23 6.94| 1 0.29 594 6.23] 1 1 049 5.94
S4 |66 prod-cell 391 GF| 6 | 6 5274 0.8§ 0.04 1.2 2.17 555 0.18 5.73| 6 0.29 0 0.28| 6 6 0.49 a
Sa |67 prod-cell 391 GF| 5 | 5 532( 1.02 0.04 1.41 2.47 481 0.16 497 5 0.28 0 028 5 5 0.47 0
Sa |68 prod-cell 39 10GF| 4 | 4 3798 0.91 0.03 1.27 2.21 3,57 012 3.69| 2 0.27 1.8 2.13| 2 2 0.43 1.86
Sa |69 prod-cell 39 10GF| 8 | 8 2764 0.99 0.03 1.26 2.28 752 023 7783 1 0.26 6.78 7.04| 1 1 042 6.78
Sa |70 prod-cell 3910GF| 5| 5 5232 1.20 0.04 1.33 2.57 463 0.13 478 1 0.28 3.82 4.10| 2 2 0.48 2.86
Sq |71 prod-cell 39 1GF| 4 | 4 4068 1.35 0.03 1.27 2.65 3.87 0.10 3.97| 2 0.27 2.16 243| 3 3 0.44 0.95
Sa |72 prod-cell 39 10GF| 4 | 4 2756 0.96 0.03 1.27 2.26 3.64 013 3.77| 1 0.26 2.82 3.08 1 1 0.40 2.82
Sa |73 prod-cell 39 10GF| 6 | 6 4425 0.84 0.04 1.30 2.18 547 0.19 5.66| 2 0.28 3.74 4.02| 2 2 0.46 3.74
Sa |74 prod-cell 3910GF| 5| 5 3802 0.92 0.04 1.28 2.24 453 017 4.72| 4 0.27 1.01 1.28] 4 4 0.43 1.01
Sa |75 prod-cell 3910GF| 5| 5 2802 0.91 0.03 1.44 2.38 453 0.14 467 2 0.26 2.8Q0 3.06| 2 2 041 2.80
S4 |76 prod-cell 39 1 GF| 8 | 8 37372 1.16 0.03 1.3 2.55 7.72 021 793 5 0.28 296 3.24| 6 6 0.46 1.98
Sa |77 prod-cell 39 1I0GF| 9| 9 3010 1.50 0.03 1.28§ 2.81 8.93 0.22 9.13| 6 0.27 3.12 3.39| 7 7 0.45 1.94
Sa |78 prod-cell 3910GF| 5| 5 2585 0.86 0.03 1.2 2.14 498 0.14 512 2 0.26 293 3.19| 2 2 0.409 2.93
Sa |79 prod-cell 3910GF| 5| 5 2556 1.06 0.03 1.30 2.39 470 0.12 482 2 0.26 2.98 3.24| 2 2 0.409 2.98
Sa |80 prod-cell 39 10GF| 4 | 4 5317 1.26 0.04 1.27 2.57 3,53 0.12 3.63| 4 0.29 0 029 4 4 0.46 a
S4 |81 prod-cell 39 [102G,2F 10 | 10 2497 3.1 0.06 1.29 4.5 9.68 0.27 9.95| 3 0.26 6.97 7.23| 4 4 0.42 4.94
Sa |82 prod-cell 39 10GF| 8 | 8 2348 0.8 0.033 1.2 2.16 752 0.22 7.74| 3 0.27 4.84 511| 3 3 0.41 4.84
Sa |83 abp4 1319 GF| 1 | 0 [1289374 2.79 10.7334.14 47.66 293 1.79 472/ 0 551 4.7210.23 0 0 98.62 4.72
Sa |84 abp4 13 19 G,F| 3 | 2 [1050234 3.14 6.4529.43 39.02 8.43 20.76 29.19| 0 5.07 29.19 34.26| 0 0 67.54 29.14
S4 |85 abp4 13 19 GF| 3 | 2 [2246095 2.99 19.0349.63 71.65 8.81 26.4335.24| 0 8.23 33.7842.01| O 0 K12.30 33.79
S4 |86 abp4 13 19G,2F| 2 | O | 79570% 3.07 5.0421.28 29.3¢ 554 6.29 1183 0 2.69 25.6428.33 0 0 37.21 25.64
Sa |87 abp4 13 17 GF| 1 | 0 |379311 2.39 2.5311.55 16.49 293 1.79 472/ 0 142 472 6.14| 0 0 8.41 4.72
S |88 abp4 13 17G,2F| 2 | 0 | 335307 2.27 2.11 9.23 13.61 5.66 12.4418.10| 0 1.30 18.119.40/ O 0 8.06 18.1
Sa |89 abp4 13 17 G,F| 3 | 2 | 36294 2.39 1.79 9.41 13.54 8.43 20.76 29.19| 0 1.37 29.19 30.56| 0 0 10.69 29.19
S4 |90 abp4 13 17 GF| 4 | 2 | 92968 242 5.6121.78 29.81| 12.32 18.24 30.5¢| O 2.98 30.56 33.54| 0 0 39.3% 30.5
Sa |91 abp4 13 17 G,F| 3 | 2 [234255 3.12 22.5949.16 74.81 8.68 25.10 33.78| O 6.8 33.78 40.66| O 0 408.34 33.78
Sa |92 abp4 13 17G,2F| 2 | 0 | 64742 2.57 3.1316.04 21.74 5.6 20.04 25.64| 0 2.19 20.0422.23 0 0 25.91 20.04
Sa |93 toyFGS04 15118 F 6 | 6 29 18.88 0.2 5.27 24.41| 114.78 0.76115.54| 3 0.23 57.3957.62| 3 3 0.29 57.39
Sa |94 toyFGS04 151118 F | 12| 12 30 19.13 0.16 5.28 24.57| 224.79 1.40226.19| 6 0.26 132.4332.69| 6 6 0.33 132.4
Sa |95 toyFGS04 151118 F 6| 0 31 18.35 0.15 5.17 23.67| 126.28 32.03158.3]1] 0O 0.22 158.31158.53 0 0 0.29 158.3
Sa |96 toyFGS04 15118 F | 4 | O 30 18.57 0.14 5.45 24.16| 75.18 22.26 97.44| 0 0.22 97.4497.66| O 0 0.27 97.44
Sa |97 toyFGS04 15118 G | 4 | O 8072 14.14 0.21 3.3 17.63 57.91 10.60 68.51| 0 0.33 68.5168.84| 0 0 0.6Q 68.51
S4 |98 toyFGS04 15114 G | 6 | O 79853 14.47 0.21 3.63 18.3]| 88.94 11.48100.42] 0 0.34 100.42100.7¢| O 0 0.68 100.4%
Sa |99 toyFGS04 15118 F 6 | 6 29 19.80 0.1§ 5.61 25.56| 111.91 0.66112.57| 2 0.21 75.08 75.29| 2 2 0.27 75.08
S4 |100 toyFGS04 151(9| F 6 | 6 29 11.86 0.07 2.69 14.58| 68.38 0.30 68.63| 3 0.21 34.3334.54| 3 3 0.27 34.33
Sa |101 toyFGS04 151|9| F | 12| 12 30 11.9¢ 0.068 2.65 14.68| 141.41 0.70142.1}1| 6 0.22 70.9271.14| 6 6 0.29 70.92
Sa |102 toyFGS04 151|9| F 6|0 31 11.89 0.07 2.52 14.48| 67.9%5 6.33 74.28| 0 0.21 74.28 74.49| 0 0 0.27 74.28
S |103 toyFGS04 15119 F | 4 | O 30 11.8¢ 0.07 2.57 14.50| 50.1% 3.90 54.0%| 0 0.21 54.0854.26| 0 0 0.26 54.05%
Sa |104 toyFGS04 151|19| G | 4 | O 407%| 10.76 0.07 1.57 12.40| 54.11 1.62 55.73| 0 0.29 55.7356.02| 0 0 0.44 55.73
S4 |105 toyFGS04 151|9| G | 6 | O 4115 10.74 0.07 1.59 12.40| 81.59 2.4384.02| O 0.29 84.0284.31| 0 0 0.47 84.02
S |106| toyFGS04 151|19| G | 6 | 6 29 13.13 0.07 2.57 15.77| 74.49 0.31 74.80 2 0.21 50.14 50.35| 2 2 0.26 50.14
Sa 107 msi.wtrans 3040 G | 5| 3 6! 21.8% 0.20 8.39 30.44| 120.1% 65.7(185.8% 3 0.21 112.59112.80| 3 3 0.24 112.5
S |108 msi.wtrans 30 40 F 5| 4 6! 23.53 0.20 9.15 32.88| 120.16 73.28193.44| 3 0.2 120.3Q1.20.50, 3 3 0.25 120.3
S4 [109 msiwtrans 30 40 F 6 | 4 6 21.5¢6 0.21 8.46 30.23| 156.61 93.2349.84| 4 0.21 0.21| 4 4 0.24
S4 |110 msiwtrans 30 20 F 2|0 6. 528 0.20 4.01 9.49| 12.91 20.6333.54| 0 0.13 33.54 33.69| 0 0 0.18 33.5
S |111 msi.wtrans 30 20 F 2|10 6! 5.13 0.09 3.79 9.0 11.58 19.82 31.40| 0 0.15 31.40 31.5%| 0 0 0.19 31.4
Continued on Next Page. ..



Table 1 — Continued

Bench{Tes Model (M)  #var|k| op. # varl# vac| # resol Model Checking Naive Irrelevance Local Irrelevance (LI) Peripherality (P)
mark [case| in M| |ineg|ine|vars.| inII|[ Gen] Tes{Gen] Total][ Gen|[ Tes{ Totall[ # [Anal| Extra| Totall| # [Anal| Extra] Totall| # Anal| Extra| Total
vac. vac. vac.
CNF (S)SAT (s)I (s (S)|CNF (S)SAT (s (s)| vars. (sruns (s (s)| vars. (s)runs (s (s)| vars. (s)runs (s (s
found found found

Sa 112 msiwtrans 3020 G | 6 | O |374744] 4.68 10.2]21.20 36.09] 32.04 26.13 0 1.7 58.1759.9% 0 1.80 58.1759.97| 0 16.42 58.17 74.59
S4 |113 msiwtrans 3020 G| 6 | O ) 9.7619.65 2 28.217 0 1.48 57.1958.67| 0 151 57.1958.70| 0 11.99 57.19 69.18
Sa |114 msi.wtrans 3020 G | 5| 3 0.1Q 3.85 15.65 3 0.16 26.7%26.91| 3 0.16 26.7%26.91| 3 0.19 26.7% 26.94
S |115 msi.wtrans 30 20 F 5| 4 0.11 3.94 16.62 3 0.16 27.2%27.41] 3 0.13 27.2%27.40| 3 0.19 27.2% 27.44
Sa |116 msi.wtrans 30 20 F 6 | 4 0.1Q 3.91 18.6( 4 0.19 0 019 4 0.19 g 0.19| 4 0.22 g 0.27
Sa 117 msi.wtrans 30 G| 2| 0 0.11 3.64 11.84 0 0.24 21.1321.37| O 0.24 21.1321.37| O 0.35 21.13 21.49
S4 |118 msiwtrans 3020 GF| 1| O 0.10 3.94 8.2( 0 0.22 13.93 14.15| 0 0.23 13.93 14.16| O 0.30 13.93 14.23
Sa |119 msiwtrans 30RQGF| 1| O 0.21 3.94 12.09 0 0.22 17.8818.10| 0 0.22 17.8818.10| 0 0.29 17.88 18.17
Sa |120 msi.wtrans 30RQGF| 2| O 0.1Q 0.47 18.96 0 0.22 31.3531.57| 0 0.22 31.3%31.57| 0 0.32 31.3% 31.67
Sa 121 msi.wtrans 30 RQGF| 8| 0O 12.4924.41 30.27 0 1.79 72.1873.97 0 1.80 72.1873.98 0 16.16 72.18 88.34
Si | 1||IBM_FV_200203| 11120 G | 8 | 8 0.09 3.9 0.67 7 0.3 4.67 5.02| 7 0.33 4.67 5.03| 7 0.74 4.67 5.41
Si | 2 || IBM_FV_200204| 22320 G | 4 | 3 0.92 5.71 3.83 0 0.59 33.49 34.08| 0 0.59 33.4934.08 0 1.67 33.49 35.16
S | 3 || IBM_FV_200205| 31020 G | 2 1 0.6210.02 1.31 1 0.44 12.2112.6% 1 0.44 12.2112.65 1 1.02 12.21 13.23
S | 4 || IBM_FV_200209 | 23320 F 91 9 017 O 1.22 9 0.17 0 017 9 0.17 g 0.17| 9 0.17 g 0.17
Sp | 5 || IBM_FV_200210| 22420 G | 3 | 2 8.4846.09 93.27 0 0.7 259.1259.8| 0 0.7 259.1259.8| 0 2.33 259.1261.4
Si | 6 || IBM_FV_200210| 22420 G | 4 | 3 30.2156.61 199.24 0 1.12 418.9%120.11| O 1.12 418.9%20.11] O 5.4 418.9%124.79
Sp | 7 || IBM_FV_200210| 22420 G | 4 | 4 0.9740.84 211.2 3 0.32 112.58 112.9| 3 0.32 112,58 112.9| 3 0.61 112.5¢113.19
Sp | 8 || IBM_FV_200210| 22420 G | 2 | O 9.2246.75 76 165.1 0 0.99 273.86274.8% 0 0.99 273.8¢274.8% 0 3.7 273.8¢277.5¢
Sp | 9 || IBM_FV_200210| 22420 G | 2 1 65.4379.32 110.2 103.81 0 1.09 214.02215.11| 0 1.12 214.0215.14| 0 4.5 214.0218.52
Sp |10|[IBM_FV_200217.1j158420 G | 2 | O 1.1514.23 3 2.3 0 1.07 78.13 79.2| O 1.08 78.1379.21| 0 2.47 78.13 80.4
Sr |11||IBM_FV_200217.2158320 G | 1 | O 0.8613.68 1.35 0 0.88 40.17 41.03| O 0.88 40.17 41.03| O 1.74 40.17 41.91
Sp |12||IBM_FV_200217.2158320 G | 2 1 0.923.99 1.71 0 0.89 78.78 79.67| O 0.89 78.78 79.67| 0 1.98 78.78 80.76
Sp |13|| IBM_FV_200219| 12120 G | 1 | O 6.4913.31 5.52 0 0.39 15.1715.56| 0 0.4 15.1715.57| O 0.83 15.1 14
Sp |14|| IBM_FV_200221| 7920 G | 1 | O 5.6111.98 7.61 0 0.37 16.29 16.66| 0 0.37 16.29 16.66| 0 0.71 16.2 17
Sp |15|| IBM_FV_200222| 10420 G | 1 | O 7.7417.84 3 24.47 0 0.53 39.239.73] 0 0.53 39.239.73] 0 1.2 39.2 404
Si | 16| IBM_FV_200223| 10320 G | 8 | 8 0.6911.29 B 2.36 1 0.36 103.01103.37| 2 0.3 88.4188.76| 2 0.74 88.41 89.15
Sp 17| IBM_FV_200227| 43 20 G | 8 | 6 4.5415.99 24.43 25.01 0 1.77 49.4451.21| O 1.78 49.4451.22| 0 24.5 49.44 73.94
Sp |18||IBM_FV_2002312 22720 G | 17 | 17 019 0 ? 2.5 17 0.19 0 0.19] 17 0.19 g 0.19] 17 0.19 0.19




