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The linear dynamical system (LDS) is an important model of time-series data with many

practical applications in fields such as engineering and mathematical finance. One com-

monly used iterative algorithm for learning the parameters of the LDS is known as expec-

tation maximization (EM). EM has many desirably properties including a statistically

formulated objective function (the log-likelihood), the ability to find local optima, and a

graceful scaling of performance to high-dimensional time-series. Unfortunately it tends

to be slow for long time-series because each iteration involves inference over all of T

hidden states, where T is the length of the time-series.

This report develops two new algorithms, based on EM, for learning the parame-

ters of an LDS. Their development is motivated first by the existence of the so-called

“steady-state” approximation and second by the observation that the “M-step” of EM

only requires certain second-order statistics over the hidden states and not individual

estimates for each of them. The first algorithm, which we call Steady-State EM (SSEM),

uses the steady-state approximation to simplify inference of the hidden states, thereby

achieving greatly superior performance (asymptotically and in practice) over standard

EM. The second algorithm, which we call Approximate EM (AEM), introduces several

additional approximations in order to approximate the second-order statistics needed for

the M-step without performing inference for each hidden state and in time independent

of T. We show experimentally that SSEM and AEM achieve nearly identical solutions to

ii



those produced by standard EM, but with iterations that can be done much faster or in

constant time, respectively. To our knowledge AEM is the only algorithm capable of find-

ing closely approximated local optima of the log-likelihood function using constant-time

iterations.

iii



Contents

Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 Introduction 2

1.1 The Linear Dynamical System Model . . . . . . . . . . . . . . . . . . . . 2

1.2 Learning Algorithms for the LDS . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Sufficient Statistics for the M-step . . . . . . . . . . . . . . . . . . . . . . 7

1.5 The E-Step via Kalman Filtering/Smoothing . . . . . . . . . . . . . . . . 8

1.6 Steady State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.7 The Steady State Approximation of EM . . . . . . . . . . . . . . . . . . 11

1.8 A Faster Approximation of the E-step . . . . . . . . . . . . . . . . . . . . 12

2 Details of the New Algorithm 16

2.1 Three Simple Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Approximating the First-order Statistics . . . . . . . . . . . . . . . . . . 17

2.3 Approximating the Second-order Statistics . . . . . . . . . . . . . . . . . 18

2.4 Computing The Log-Likelihood . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Summary of Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Experimental Evaluation 32

3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

iv



3.3 Discussion of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Conclusions and Future Work 42

Bibliography 45

A Details of the Derivation of EM 48

A.1 Computing the EM Objective Function . . . . . . . . . . . . . . . . . . . 48

A.2 Derivation of the M-step . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

B Algorithms for Solving Various Matrix Equation 53

B.1 Solving the DARE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

B.2 Solving Lyapunov and Sylvester Equations . . . . . . . . . . . . . . . . . 54

B.3 Solving Equation (2.9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

v



1

Notation

In this report we will use the following non-standard/less-commonly-seen notation:

• a≤t will be short-hand for a1, a2, ..., at

• The transpose of a matrix A will be denoted by A′.

• The spectral radius of a continuous linear operator (or matrix) f will denoted by

ρ(f) where spectral radius is defined as:

ρ(f) = sup{|λ| : λ is in the spectrum of f }

• For lists of vectors {a1, a2, ..., aT} ⊂ <n and {b1, b2, ..., bT} ⊂ <m and k ≥ 0 we

define:

(a, b)k ≡
T−k∑
t=1

at+kb
′
t

• For a function f , fk will denote the function composed with itself k times

• We will use the shorthand (
∑m

t=n +
∑q

t=s) at to mean
∑m

t=n at +
∑q

t=s at

• A ⊗ B will be the Kronecker product of the matrices A and B and vec(A) the

vectorization of A



Chapter 1

Introduction

1.1 The Linear Dynamical System Model

Consider a sequence of real-valued multivariate data {yt ∈ RNy}Tt=1 exhibiting temporal

relationships (a “time-series”). The discrete-time Linear Dynamical System (LDS) is a

model of such time-series data that proposes a corresponding sequence of hidden states

{xt ∈ RNx}Tt=1 that encode the underlying phenomenon presumed to have generated the

data (also called the ‘output’). The model is conditioned on an observed input sequence

or “control signal” {ut ∈ RNu}Tt=1. In the time-invariant version, which is the only

one considered in this report, the hidden states evolve according to the following linear

dynamics:

xt+1 = Axt +But + εt (1.1)

where A ∈ RNx×Nx , B ∈ RNx×Nu and the error/noise terms {εt}Tt=1 are i.i.d. multivariate

normal with mean 0 and covariance matrix Q. This is called time invariant because the

parameter matrices A, B and Q do not depend on t.

The output y is generated linearly from the hidden states according to:

yt = Cxt +Dut + δt (1.2)

where C ∈ RNy×Nx , D ∈ RNy×Nu and the error/noise terms {δt}Tt=1 are also i.i.d. multi-

2
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variate normal (and independent of {εt}Tt=1) with mean 0 and covariance matrix R. To

complete the model we also specify the distribution on x1, the initial state, as multivariate

normal with mean π1 and covariance matrix Π1.

The joint probability of the outputs and hidden states conditioned on the model

parameters θ ≡ {A,B,C,D,Q,R, π1,Π1} and inputs u is:

p(x, y|θ, u) = p(x1|θ)

(
T∏
t=1

p(yt|xt, θ, u)

)(
T−1∏
t=1

p(xt+1|xt, θ, u)

)
(1.3)

where,

p(yt|xt, θ, u) = n(yt;Cxt +Dut, R),

p(xt+1|xt, θ) = n(xt+1;Axt +But, Q),

p(x1, θ) = n(x1; π1,Π1)

and n(z; ẑ,Σ) denotes the multivariate normal probability density function for z with

mean ẑ and covariance matrix Σ.

Sometimes referred to as the “Kalman filter” or linear state space model, the LDS

is arguably the most commonly used time-series model for real-world engineering and fi-

nancial applications. This is due to its relative simplicity, it’s mathematically predictable

behavior, the existence of many physical systems that are known to be accurately mod-

eled by it, and the fact that exact inference and prediction can done efficiently.

1.2 Learning Algorithms for the LDS

The objective function maximized during maximum likelihood learning is the log proba-

bility of the observation sequence y conditioned on the input u and the model parameters

(also known as the log likelihood function). This can be obtained from the previous joint

probability by integrating out the hidden states: log p(y|θ, u) = log
∫
x
p(x, y|θ, u). While

the gradient and Hessian of this function are very difficult to compute, it is relatively

simple to compute the log joint probability and it’s expectation given y for a particular
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setting of the parameters. The Expectation-Maximization algorithm (EM), which was

first applied to LDS parameter learning by Shumway and Stoffer (1982), can indirectly

optimize the log-likelihood by iteratively maximizing this later quantity, which we denote:

Qn(θ) ≡ Eθn [log p(x, y|θ, u)|y] =

∫
log p(x, y|θ, u)p(x|y, θn, u) dx (1.4)

The EM algorithm iteratively alternates between two phases called the “E-step” and

the “M-step”. For a given estimate of the parameters θn, the E-step computes the

statistics over y and u which appear in the expression for Qn(θ), allowing it to be easily

evaluated and optimized with respect to θ in the M-step. The M-step then computes the

new parameter estimate θn+1 as:

θn+1 = arg max
θ
Qn(θ) (1.5)

From (1.3), the joint probability p(x, y|θ, u) of observations and hidden states is mul-

tivariate normal and thus by standard results, the conditional distribution p(x|θn, y, u)

is also multivariate normal. Moreover there is a reasonably efficient algorithm known as

Kalman filtering and smoothing for inferring this distribution for a given setting of the

parameters in time O(TN3
x) (where we assume for simplicity that Nx ≥ Ny, Nu).

The EM algorithm is guaranteed to converge to a local maximum of the log-likelihood

function (Dempster et al., 1977). However, the convergence rate is typically linear and so

very many iterations can be required. This can be a problem for long time series because

each iteration of EM involves recursive inference computations for all T hidden states.

One alternative learning algorithm to EM, known as subspace-identification, (a.k.a.

4SID, see Overschee and Moor, 1991) works by reducing the LDS learning problem to

that of solving a large SVD, subject to some approximations. Because it is non-iterative,

4SID tends to be much more computationally efficient than EM. However, because it

implicitly optimizes a sum of squared prediction-error objective function instead of the

log likelihood (which are similar but not strictly the same) and implicitly uses a primitive

inference procedure for the hidden states, 4SID is not statistically optimal. In particular,
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hidden state point estimates lacking covariance information are found by conditioning on

only the past i data points, where i is a parameter known as the “prediction horizon”. In

contrast, the EM algorithm estimates hidden states with mean and covariance informa-

tion, conditioned on the entire observation sequence and the current estimate of θ. 4SID

also tends to scale poorly to very long and high-dimensional time-series.

The general finding is that EM, when initialized properly, will find parameter settings

with better log likelihoods and prediction errors than those found by 4SID. However,

because of its speed, ability to estimate the dimension of the hidden state space (i.e.

Nx), and the fact that it optimizes an objective which is similar to EM’s, 4SID is often

considered an ideal method for initializing iterative learning algorithms such as EM.

See Smith and Robinson (2000) and Smith et al. (1999) for theoretical and empirical

comparative analyses of 4SID and EM.

Another classical algorithm for LDS learning is known as Prediction Error Minimiza-

tion (PEM). PEM optimizes a sum of squared prediction error objective function by

direct application of iterative non-linear optimization methods. Computing the gradient

of the PEM objective function is very difficult and practical implementations use tech-

niques such as finite-differences to achieve reasonable performance. When implemented

with Newton or quasi-Newton methods, PEM requires significantly less iterations than

EM to converge since EM’s convergence is linear while Newton and quasi-Newton meth-

ods give quadratic and superlinear convergence respectively. However, the performance

of such implementations of PEM tend to scale very poorly with the dimension of y, and

for very long time-series the per-iteration cost can become prohibitive. For example, the

implementation of PEM included with MATLAB’s System Identification Toolbox breaks

down for even modestly high-dimensioned data (e.g. Ny = 10).
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1.3 Contribution

The main contribution of this report is the development of a new algorithm, based on

EM, for learning the parameters of an LDS. It is motivated both by the existence of

the well-known “steady-state” approximation, which simplifies inference of x, and by the

observation that the M-step requires only a small set of expected second order statistics

(sums over t of products of x, y and u) that could possibly be approximated without

doing inference for each xt, as is traditionally done.

Under the steady-state approximation, the recursive equations (known as the Kalman

recursions) normally used to perform the inference of x may instead be used to derive

equations that express the required second order statistics in terms of similar statistics

that differ only in that they have larger “time-lags” (which we define as the difference

in time index between the two terms of the products being summed). Such statistics

can be expressed in terms of others with even larger time-lags, and so on. Eventually,

statistics with very large time-lags may be approximated by their expectations under the

(currently learned) model. Our experiments will show that the resulting approximate EM

algorithm (which we will call AEM) performs nearly as well as EM given the same number

of iterations, despite its use of approximations. But since the work required per iteration

of AEM does not depend on T , AEM can be much more computationally efficient than

EM when T is large. Thus AEM is a fast alternative to EM, which unlike 4SID, is able

to find locally optimal estimates of the parameters (subject to a mild and adjustable

approximation). It is particularly useful for learning from very long timeseries, where

the performance gain can mean the difference between minutes and hours of training

time.
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1.4 Sufficient Statistics for the M-step

As a consequence of the linear and Gaussian nature of the LDS model, the function Qn(θ)

can be written in terms of θ and sufficient statistics that are first and second order in x,

y and u (and are highly non-linear in θn). With these statistics computed, optimizing

Qn(θ) with respect to θ reduces to a straightforward application of matrix calculus and

is similar to linear regression with an unknown covariance (see the appendix for details).

The following statistics form a complete list of those needed to compute and optimize

Qn(θ) (where (a, b)k ≡
∑T−k

t=1 at+kb
′
t):

(y, y)0, (y, u)0, (u, u)0, uTu
′
T , Eθn [(y, x)0 | y, u], Eθn [(u, x)0 | y, u]

Eθn [(u, x)1 | y, u], Eθn [(x, x)0 | y, u], Eθn [(x, x)1 | y, u], Eθn [x1 | y, u],

Eθn [x1x1
′ | y, u], Eθn [xTxT

′ | y, u], uTEθn [x′T | y, u]

where we have used the obvious identity (a, b)0 = (b, a)′0 to eliminate statistics that are

the transpose of ones already in the list.

For the sake of brevity we will use the standard notation for the remainder of this

report:

xkt ≡ Eθn [ xt | y≤k, u≤k ]

V k
t,s ≡ Covθn [ xt, xs | y≤k, u≤k ]

ỹt ≡ yt − Eθn [ yt | y≤t−1, u≤t ]

St ≡ Covθn [ ỹt | y≤t, u≤t ]

By breaking down the second order statistics as the sum of the covariance and the

product of the means, according to:

Eθn [xtx
′
s | y≤k, u≤k ] = xTt x

T
s + V T

t,s
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the statistics that depend on θn may be rewritten as:

(y, xT )0, (u, xT )0, (u, xT )1, (xT , xT )0 +
T∑
t=1

V T
t,t, (xT , xT )1 +

T−1∑
t=1

V T
t+1,t,

xT1 , xT1 x
T
1

′
+ V T

1,1, xTTx
T
T

′
+ V T

T,T , u1x
T
1

1.5 The E-Step via Kalman Filtering/Smoothing

The Kalman recursions are a set of recursive relations that define a computational pro-

cedure for exact inference of the distribution over the hidden states x in the LDS model.

The standard approach to computing the M-statistics is to apply this procedure to find

xTt , V T
t,t, V

T
t+1,t for each value of t in succession and then compute the required sums. This

has time complexity O(TN3
x). Using the steady-state approximation, which we discuss

in the next section, we can reduce this to O(TN2
x) and in the next chapter we will show

how with the addition of some more approximations we can reduce this even further to

O(klimN
3
x) where klim is a constant such that klim << T .

The complete set of recursions (Ghahramani and Hinton, 1996) consists of a forward

pass (commonly referred to as filtering) and a backwards pass (commonly referred to as

smoothing). The forward filtering pass infers the distribution for each hidden state xt

conditioned on all past data y≤t (and u≤t). This can be described as a two stage process.

In the first stage, the mean and covariance of predictions from strictly older data (y≤t−1)

of xt and yt are computed as:

V t−1
t,t = AV t−1

t−1,t−1A
′ +Q (1.6)

xt−1t = Axt−1t−1 +But (1.7)

St = CV t−1
t,t C ′ +R (1.8)

ỹt = yt − Cxt−1t −Dut (1.9)

where x01 = π1 and V 0
1,1 = V1.
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In the second stage, the predictions for xt are “corrected” based on the values of yt

and ut according to:

Kt = V t−1
t,t C ′S−1t (1.10)

V t
t,t = V t−1

t,t −KtCV
t−1
t,t (1.11)

xtt = xt−1t +Ktỹt (1.12)

where Kt is known as the Kalman gain matrix.

In a similar fashion to the second stage of Kalman filtering, the backwards smooth-

ing pass integrates information from future observations into the mean and covariances

estimates of xt, resulting in estimates that are conditioned on the complete time-series

(y≤T ). The backwards recursions are:

Jt−1 = V t−1
t−1,t−1A

′(V t−1
t,t )−1 (1.13)

V T
t−1,t−1 = V t−1

t−1,t−1 + Jt−1(V
T
t,t − V t−1

t,t )J ′t−1 (1.14)

V T
t,t−1 = V T

t,tJ
′
t−1 (1.15)

xTt−1 = xt−1t−1 + Jt−1(x
T
t − xt−1t ) (1.16)

where the smoothing matrix Jt plays a similar role to that of Kt.

1.6 Steady State

The Kalman recursions compute the covariance matrices between hidden state vectors

according to recursive formulas. Notably, these recursions depend only on the model

parameters and are independent of the particular values of y and u.

From (1.6), (1.8), (1.10) and (1.11) we can express V t
t+1,t+1 directly in terms of V t−1

t,t

as:

V t
t+1,t+1 = f(V t−1

t,t ) (1.17)

where,

f(X) = A
(
X −XC ′(CXC ′ +R)−1CX

)
A′ +Q
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Similarly, from (1.14) we can express V T
t−1,t−1 directly in terms of V T

t,t and quantities

computed by the forward recursions:

V T
t−1,t−1 = gt(V

T
t,t) (1.18)

where,

gt(X) = V t−1
t−1,t−1 + Jt−1(X − V t−1

t,t )J ′t−1

and Jt−1 is expressible in terms of quantities from the forward recursions according to

(1.13)

For well-behaved values of the model parameters, f i(X) and git(X) will converge as

i→∞. When this happens (to within a reasonable precision) the system is said to have

reached a steady state. In particular, V t
t+1,t+1 converges to a constant matrix Λ1

0 for large

enough t. Similarly, V T
t,t converges to Λ0 for values of t reasonably far away from 1 and

T . This convergence is exponentially fast (but with a potentially small base) and has

been studied extensive in the filtering and control theory literature (e.g. Goodwin and

Sin, 1984). Note that the superscripts and subscripts for the steady-state matrices have

significance as part of a more general notation: Λj
i is the steady state of V t−j

t,t−i and Λi is

the steady state of V T
t,t−i.

To find the steady-state matrix Λ1
0 we can compute f i(0) by iteratively applying f

until convergence is obtained, or we can attempt to solve the equation X = f(X). This

type of equation is known as a discrete algebraic Riccati equation (DARE) and there

are several efficient algorithms for solving it. One of these algorithms, known as the

“doubling algorithm”, is discussed in the appendix.

The steady-state values of St, Kt, Jt and V t
t,t, which we denote S, K, J and Λ0

0

respectively, may be computed from Λ1
0 via (1.8), (1.10), (1.13) and (1.11):

S = CΛ1
0C
′ +R K = Λ1

0C
′S−1

Λ0
0 = Λ1

0 −KCΛ1
0 J = Λ0

0A
′(Λ1

0)
−1



Chapter 1. Introduction 11

Note that gt depends on t only because it contains various quantities computed by

the forward recursions. However, once the steady state of f is reached we may replace

these with their steady-state counterparts so that the dependence on t vanishes. The

resulting function, which we denote by g (without a subscript) is:

g(X) = Λ0
0 + J(X − Λ1

0)J
′ (1.19)

As before we can compute the steady state Λ0 of V T
t,t by solving the equation X =

g(X). This equation is known as a Lyapunov equation and may be viewed as a special

case of the DARE, although there are simpler algorithms for solving it. See the appendix

for further details.

Finally we may compute the steady-state value of V T
t,t−1, which we denote by Λ1, from

Λ0 and (1.15) as Λ1 = Λ0J
′.

1.7 The Steady State Approximation of EM

One way to dramatically simplify the EM algorithm is to replace the t-dependent matrices

in both the E and M steps with their steady-state values. As we saw in the previous

section, there are computationally efficient methods for finding these that are independent

of T .

In other words we approximate:

Kt ≈ K, Jt ≈ J, V T
t,t ≈ Λ0, V T

t+1,t ≈ Λ1

so that the Kalman recursions reduce to:

xt−1t = Axt−1t−1 +But (1.20)

xtt = xt−1t +K(yt − Cxt−1t −Dut) (1.21)

xTt−1 = xt−1t−1 + J(xTt − xt−1t ) (1.22)

and the covariance matrices are replaced with their steady-state values in the computation

of the second-order statistics required by the M-step.
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Because we only have to compute matrix-vector multiplications for each value of

T , the time complexity of a single iteration under this scheme is just O(TN2
x). And

fortunately, the approximations being made are relatively mild since the t-dependent

matrices only deviate significantly from their steady-state values when t is close to either

1 or T . For large values of T this will represent an insignificant portion of the time-series

and hence only introduce a minimal distortion into the objective function. Moreover, it

is common-place in engineering applications to assume that an LDS has already reached

steady state in order to simplify the computations needed for inference/prediction.

Other researchers (e.g. Fukumori et al., 1993) have used a steady-state approxima-

tions of the t-dependent matrices in Kalman filter/smoother to improve the efficiency of

forecasting and prediction algorithms (where the model parameters are known). But the

idea of using them to efficiently approximate the E-step in the EM algorithm appears to

be novel.

1.8 A Faster Approximation of the E-step

The main contribution of this report is an algorithm for computing, in time independent

of T , a robust approximation to the statistics required by the M-step. It exploits the fact

that, under the steady-state approximation, the Kalman recursions for computing the

means are identical for each t (i.e. the filtering and smoothing matrices are constant),

allowing them to be approximately computed in parallel.

As a gentle introduction to our approach we will first show how the ideas we have

outlined result in a much simpler computational scheme for a toy version of the problem

we are trying to solve. In particular, suppose we wished to compute
∑T

t=1 x
t
t, which

is a simple first-order statistic over x. We could run the steady-state (or conventional)

Kalman filter to compute xtt for each t and then take the sum (this is analogous to what is

traditionally done in the E-step). However, if we already have access to
∑T

t=1 yt,
∑T

t=1 ut,
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x11 and xTT there is a more efficient way to compute this statistic.

In the interest of simplicity we will rewrite the Kalman filtering equations (1.21),

which hold for 2 ≤ t ≤ T , as:

xtt = Axt−1t−1 +But−1 +K(yt − CAxt−1t−1 − CBut−1 −Dut)

= Hxt−1t−1 +Kyt + Lut−1 −KDut (1.23)

where we have defined H ≡ A − KCA and L ≡ B − KCB. Summing both sides for

t = 2, 3, ...T we have:

T∑
t=2

xtt =
T∑
t=2

(Hxt−1t−1 +Kyt + Lut)

= H
T∑
t=2

xt−1t−1 +K
T∑
t=2

yt + L
T∑
t=2

ut−1 −KD
T∑
t=2

ut

which we can rewrite as:

T∑
t=1

xtt − x11 = H

(
T∑
t=1

xtt − xTT

)
+K

(
T∑
t=1

yt − yT

)
+ L

(
T∑
t=1

ut − uT

)

−KD

(
T∑
t=1

ut − u1

)

Then solving for
∑T

t=1 x
t
t we have:

T∑
t=1

xtt = (I −H)−1

[
−HxTT +K

(
T∑
t=1

yt − yT

)
+ L

(
T∑
t=1

ut − uT

)

−KD

(
T∑
t=1

ut − u1

)
+ x11

]

While the computation of
∑T

t=1 yt and
∑T

t=1 ut requires 2T steps, we can pre-compute

them before we know the parameters. And x11 can be computed with a constant number

of vector multiplications via the Kalman filter recursions. xTT is more difficult, but we

can reasonably approximate it by running the steady-state Kalman filter starting from

t = T − k with xT−kT−k = 0 where k is some constant “lag” factor. The use of k is similar

to the use of the horizon parameter in the 4SID algorithm. However, unlike with 4SID
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we are only applying the crude filtering approximation to one term of the sum
∑T

t=1 x
t
t

(namely at t = T ).

Thus after pre-computing
∑T

t=1 yt and
∑T

t=1 ut , computing
∑T

t=1 x
t
t for different

parameter settings can be done in constant time (relative to T ). An intuitive explanation

for why this works is that we are exploiting the linearity of the first-order relation (1.23)

to perform the filtering operation for each state in parallel.

Unfortunately, when we try to apply this technique to second-order statistics we find

that it doesn’t directly yield an algorithm to efficiently compute them. Instead, it allows

us to express the statistics we need in terms of related statistics that have a larger time-

lag (which we define to be the value of k when the statistic is expressed with the notation

(·, ·)k). In general, we can derive formulas that express a statistic of time-lag k in terms

of already known or precomputed statistics (such as (u, y)k) and an unknown statistic of

time-lag k+ 1. Then by approximating certain statistics of large time-lags with carefully

chosen conditionally unbiased estimators we can eventually express everything we need

as the solution to a finite set of matrix equations and recursive relations (the number of

which are independent of T ). These matrix equations and relations can then be solved

efficiently by methods similar to those used to compute the steady-state covariances,

yielding an efficient algorithm.

The time-lag threshold at which we will approximate statistics will be denoted by

klim and is a meta-parameter of our algorithm which determines the trade off between

the quality of its approximation and its computational efficiency. Under this scheme the

set of pre-computed statistics we need will be just (y, y)k, (u, y)k, (y, u)k and (u, u)k for

0 ≤ k ≤ klim + 1. In general, the optimal choice of klim will not depend on T and in

practice, klim << T . The per-iteration time-complexity of our algorithm is O(klimN
3
x)

which critically doesn’t depend on T . Only the pre-computation of the required statistics

over y and u during the one-time initialization phase of our algorithm depends on T . And

in practice this pre-computation can be done much faster than even a single iteration of
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standard EM.



Chapter 2

Details of the New Algorithm

2.1 Three Simple Identities

First we will present two identities that re-express general first order relations between

lists of vectors as second order relations. Suppose that a, b and ci are lists of vectors

indexed over 1...T such that at =
∑

iAic
i
t+ni
∀U ≤ t ≤ W where ni, U and W are

integers such that this expression is well-defined (i.e. all indices are in range), and Ai are

appropriately sized matrices. Note that (1.23) is a first-order relation of this form.

If the additional condition ni ≥ −k ∀i is satisfied then we have:

(a, b)k =
∑
i

Ai

(
(ci, b)k+ni

−

(
U−k−1∑
t=1

+

T−k−ni∑
t=W−k+1

)
cit+k+ni

b′t

)
+

(
U−k−1∑
t=1

+
T−k∑

t=W−k+1

)
at+kb

′
t

(2.1)

and similarly if the condition ni ≤ k ∀i is satisfied,

(b, a)k =
∑
i

(
(b, ci)k−ni

−

(
U+ni−1∑
t=1

+

T−k+ni∑
t=W+ni+1

)
bt+k−ni

cit
′
)
A′i +

(
U−1∑
t=1

+
T−k∑

t=W+1

)
bt+ka

′
t

(2.2)

Finally we have the trivial identity,

(a, b)0 = (b, a)′0 (2.3)

For the interest of simplicity in our derivations we will rewrite the Kalman smoothing

16
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recursion (1.22), which holds for 1 ≤ t ≤ T − 1, as:

xTt = xtt + J(xTt+1 − Axtt −But) = JxTt+1 + Pxtt − JBut (2.4)

where we have defined P ≡ I − JA.

We will derive our approach to computing the second-order statistics required by

for the M-step entirely from the simplified Kalman recursions (1.23) and (2.4), and the

previous three identities.

2.2 Approximating the First-order Statistics

It will turn out that in order to make use of (2.1) and (2.2) we first need to compute the

first order statistics xtt and xTt for the leading and trailing klim + 1 time-steps (xT1 and xTT

are also required for the M-step). These computations can be done approximately for the

leading time-steps by applying steady-state Kalman filtering/smoothing to the sub-series

y1, y2, ..., yklag , where klag ≥ klim + 1 is a constant s.t. klag << T , and using π1 for the

mean of the initial state distribution. For the trailing time-steps we can use a similar

approach applied to the sub-series yT−klag , yT−klag+1, ..., yT but instead approximate the

initial distribution as having mean 0 (since no other obvious candidate is available).

Both of these computations can be considered approximate in several senses. For

t ≤ klag, while xtt are computed properly (subject to the steady-state approximation) we

are essentially approximating xTt ≈ x
klag
t . And for t ≥ T − klag both xtt and xTt are being

computed without conditioning on yt for t < T−klag. Nevertheless, these approximations

are similar to those used by 4SID except that we are only using them to compute the

conditional means for the first and last klim states.
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2.3 Approximating the Second-order Statistics

2.3.1 Computing (u, x∗)k

In order to make use of our “(·, ·)k” notation for second-order statistics we define x∗t ≡ xtt

for the remainder of this document.

Applying (2.2) to (1.23) we have that for k ≥ 0 and b an arbitrary indexed list of

vectors:

(b, x∗)k = (b, x∗)k+1H
′ + ((b, y)k − b1+ky′1)K ′ + (b, u)k+1L

′

− ((b, u)k − b1+ku′1)D′K ′ + b1+kx
∗
1
′ (2.5)

By taking b = u this identity can be used to recursively compute (u, x∗)k for each

0 ≤ k ≤ klim provided we have access to (u, x∗)klim+1 (or an approximation of it) as a

starting point for the recursion.

2.3.2 Approximating (u, x∗)klim+1

When we develop our approximation for (y, x∗)klim+1 (in subsection 2.3.5) we will use the

fact that yt+1 can be estimated (in an unbiased way) from previous values of y and we will

apply this approximation to second-order statistics of time-lag klim+ 1. We can compute

such estimates because the LDS model specifies a distribution over y, conditional on

u and θ. But it specifies no such distribution on u and so we can make no analogous

unbiased estimate for ut+1 by conditioning on past data.

One approximation we can use is (u, x∗)klim+1 = (u, x∗)klim which may be reasonable

if ut+1 ≈ ut for most values of t. To make use of this approximation we solve (2.5) for

k = klim and b = u, substituting (u, x∗)klim+1 for (u, x∗)klim on the left hand side. This

gives:

(u, x∗)klim+1 ≈ [ ((u, y)klim − u1+klimy′1)K ′ + (u, u)klimL
′

− ((u, u)klim − u1+klimu′1)D′K ′ + u1+klimx
∗
1
′](I −H ′)−1
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A simpler alternative, which works almost as well in practice, is to use (u, x∗)klim+1 ≈

0.

2.3.3 Computing (x∗, u)k

Using (2.3) we have:

(x∗, u)0 = (u, x∗)′0 (2.6)

Then applying (2.1) to (1.23) we have for k ≥ 1 and b an arbitrary indexed list of

vectors:

(x∗, b)k = H
(
(x∗, b)k−1 − x∗T b′T−k+1

)
+K(y, b)k + L

(
(u, b)k−1 − uT b′T−k+1

)
−KD(u, b)k

(2.7)

Taking b = u this can be used to recursively compute (x∗, u)k for 0 ≤ k ≤ klim.

2.3.4 Computing (y, x∗)k

Taking b = y, identity (2.5) can be used to recursively compute (y, x∗)k for each 0 ≤

k ≤ klim provided we have access to (y, x∗)klim+1 (or an approximation of it) as a starting

point for the recursion.

2.3.5 Approximating (y, x∗)klim+1

We desire an approximation to (y, x∗)klim+1 that is in some sense conditionally unbiased

and available from the other statistics we have computed (or will compute).

Since xt−kt−k ≡ Eθn [ xt−k | y≤t−k, u≤t−k ] is only a function of y≤t−k and u≤t−k we

may move it outside of the expectation in the following computation (which is valid for

1 ≤ t ≤ T − 1):

Eθn [ yt+1x
∗
t−k
′ | y≤t, u≤t+1 ] = Eθn [ yt+1 | y≤t, u≤t+1 ]x∗t−k

′

= (Cxtt+1 +Dut+1)x
∗
t−k
′

= (CAxtt + CBut +Dut+1)x
∗
t−k
′
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where the parameter value (θn) used to take the outer expectations is the same one used

to compute the terms xji and also corresponds to C and A as they appear here. It should

be noted that this proof assumes that the yt are generated by our model with parameters

θn. In other words, the quality of the approximation depends on how well the model

(with the current parameter estimates) explains the data.

Thus the approximation:

yt+1x
∗
t−k
′ ≈ (CAxtt + CBut +Dut+1)x

∗
t−k
′

is conditionally unbiased.

Taking k = klim and summing both sides we have:

(y, x∗)klim+1 ≈ CA
(
(x∗, x∗)klim − x∗Tx∗T−klim

′)
+ CB

(
(u, x∗)klim − uTx∗T−klim

′)+D(u, x∗)klim+1

Before we can apply this approximation we must first be able to compute (x∗, x∗)klim .

However, it will turn out that the relations we have derived above will allow us to compute

and solve a matrix-equation for (x∗, x∗)klim .

Note that we could have used an approximation analogous to either of those consid-

ered in subsection 2.3.2 for (u, x∗)klim+1. However, we have found that this works poorly

in practice unless ρ(H)klim ≈ 0, in which case it (provably) doesn’t matter what approx-

imation we use. But when ρ(H)klim was sufficiently large, of all approximation we tried

only the one we develop above led to symmetric estimates of the covariance matrices Q

and R in the M-step.

2.3.6 Computing (x∗, y)k

Using (2.3) we have:

(x∗, y)0 = (y, x∗)′0 (2.8)

Then taking b = y, identity (2.7) can be used to recursively compute (x∗, y)k for

0 ≤ k ≤ klim.
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2.3.7 Computing (x∗, x∗)klim

In the previous sub-sections we derived recursions for approximately computing (y, x∗)k

and (x∗, y)k given the value of (x∗, x∗)klim . In this sub-section we will show that the ap-

proximations already given for (y, x∗)klim+1 and (u, x∗)klim+1 determine a unique solution

for (x∗, x∗)klim which can (with some mathematical difficulty) be computed efficiently.

First we make explicit the dependency on (x∗, x∗)klim of (y, x∗)k and (x∗, y)k. For

0 ≤ k ≤ klim we have:

(y, x∗)k = (y, x∗)†k + CA(x∗, x∗)klimH
klim+1−k ′

(x∗, y)k = (x∗, y)†k +Hklim+1+k(x∗, x∗)′klimA
′C ′

where (y, x∗)†k and (x∗, y)†k are the values of (y, x∗)k and (x∗, y)k as computed by the

recursions given in the previous sub-sections but starting with (x∗, x∗)klim = 0 in the

approximation for (y, x∗)klim+1. This can be easily seen by tracing through said recursions

and proved by a simple induction.

Taking b = x∗ and k = klim + 1 in identity (2.7), substituting our approximation for

(y, x∗)klim+1 and simplifying we have:

(x∗, x∗)klim+1 = A
(
(x∗, x∗)klim − x∗Tx∗T−klim

)
+B

(
(u, x∗)klim − uTx∗T−klim

)
Taking b = x∗ and k = klim in (2.5), substituting the above expressions for (x∗, x∗)klim+1

and (x∗, y)klim and isolating the terms involving (x∗, x∗)klim we have:

(x∗, x∗)klim = A(x∗, x∗)klimH
′ +H2klim+1(x∗, x∗)klim

′A′C ′K ′ +G (2.9)

where,

G ≡ (−Ax∗Tx∗T−klim
′+B

(
(u, x∗)klim − uTx∗T−klim

)
)H ′ +

(
(x∗, y)†klim − x

∗
1+klim

y′1

)
K ′

+ (x∗, u)klim+1L
′ −
(
(x∗, u)klim − x∗1+klimu

′
1

)
D′K ′ + x∗1+klimx

∗
1
′

In principle we can solve this for (x∗, x∗)klim by re-writing it as:

(I ⊗ I −H ⊗ A− (KCA⊗H2klim+1)TNx,Nx) vec((x∗, x∗)klim) = vec(G)
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where TNx,Nx is a “transposition operator” defined by: TNx,Nx vec(Z) = vec(Z ′) for an

Nx-by-Nx matrix Z.

Unfortunately this approach is very inefficient and numerically unstable for even mod-

estly large values of Nx since the linear system is N2
x by N2

x . A more feasible possibility

would be to iterate (2.9) until it converges to its fixed point, but this can require very

many iterations in practice.

Since only simpler forms of this type of equation (e.g. Sylvester equations) have

efficient exact algorithms in the literature we need to develop a specialized algorithm to

solve this equation. Fortunately, we have found such an algorithm, a description and

derivation of which is given in the appendix.

2.3.8 Computing (x∗, x∗)k

Using (x∗, x∗)klim as a starting point we can recursively compute (x∗, x∗)k for 0 ≤ k ≤

klim − 1 using identity (2.7) with b = x∗.

2.3.9 Computing (xT , x∗)k

Applying (2.1) to (2.4) we have that for k ≥ 0 and b an arbitrary indexed list of vectors:

(xT , b)k = J(xT , b)k+1 + P
(
(x∗, b)k − x∗T b′T−k

)
− JB

(
(u, b)k − uT b′T−k

)
+ xTT b

′
T−k (2.10)

By taking b = x∗ this identity can be used to recursively compute (xT , x∗)k for each

0 ≤ k ≤ klim − 1 provided we have access to (xT , x∗)klim (or an approximation of it) as a

starting point for the recursion.
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2.3.10 Approximating (xT , x∗)klim

Like before we compute the conditional expectation:

Eθn [ xTt x
∗
t−k
′ | y≤t, u≤t ] = Eθn [ xTt | y≤t, u≤t ]x∗t−k

′

= Eθn [ Eθn [xt|y, u] | y≤t, u≤t ]x∗t−k
′

= Eθn [ xt | y≤t, u≤t ]x∗t−k
′ = x∗tx

∗
t−k
′

where the second line follows from the “law of iterated expectations”. Thus the following

approximation is conditionally unbiased:

xTt x
∗
t−k
′ ≈ xttx

∗
t−k
′

Taking k = klim and summing both sides we get:

(xT , x∗)klim ≈ (x∗, x∗)klim

2.3.11 Computing (x∗, xT )0

Using (2.3) we have:

(x∗, xT )0 = (xT , x∗)′0

2.3.12 Computing (xT , u)k

Taking b = u, identity (2.10) can be used to recursively compute (xT , u)k for each 0 ≤

k ≤ klim provided we have access to (xT , u)klim (or an approximation of it) as a starting

point for the recursion.

2.3.13 Approximating (xT , u)klim

Using an identical argument to our proof that Eθn [ xTt x
∗
t−k
′ | y≤t, u≤t ] = x∗tx

∗
t−k
′ we have:

Eθn [ xTt ut−k
′ | y≤t, u≤t ] = xttut−k

′
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so that the following approximation is conditionally unbiased:

xTt ut−k
′ ≈ xttut−k

′

Taking k = klim and summing both sides we get:

(xT , u)klim ≈ (x∗, u)klim

2.3.14 Computing (u, xT )0

Using (2.3) we have:

(u, xT )0 = (xT , u)′0

2.3.15 Computing (xT , xT )k for k = 0, 1

Applying (2.2) to (2.4) we have for k ≥ 1 and b an arbitrary indexed list of vectors:

(b, xT )k =
(
(b, xT )k−1 − bkxT1

)
J ′ + (b, x∗)kP

′ − (b, u)kB
′J ′ (2.11)

For b = xT , identity (2.11) allows us to express (xT , xT )k+1 in terms of (xT , xT )k.

Similarly for b = xT , identity (2.10) allows us to express (xT , xT )k+1 in terms of (xT , xT )k.

Substituting the first expression into the second we have:

(xT , xT )k = J
(

((xT , xT )k − xTk+1x
T
1

′
)J ′ + (xT , x∗)k+1P

′ − (xT , u)k+1B
′J ′
)

+ P
(

(x∗, xT )k − x∗TxTT−k
′
)
− JB

(
(u, xT )k − uTxTT−k

′
)

+ xTTx
T
T−k

′
(2.12)

We can compute (xT , xT )0 by solving this equation with k = 0. Fortunately, it has

the form of a discrete Lyapunov equation and thus can efficiently solved using standard

methods (see appendix).

Then taking b = xT and k = 1 in identity (2.11) we can compute (xT , xT )1 from

(xT , xT )0.
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2.3.16 Computing (xT , y)k

Taking b = y, identity (2.10) can be used to recursively compute (xT , y)k for each 0 ≤

k ≤ klim provided we have access to (xT , y)klim (or an approximation of it) as a starting

point for the recursion.

2.3.17 Approximating (xT , y)klim

Again using an identical argument to our proof that Eθn [ xTt x
∗
t−k
′ | y≤t, u≤t ] = x∗tx

∗
t−k
′

we have:

Eθn [ xTt yt−k
′ | y≤t, u≤t ] = xttyt−k

′

so that the following approximation is conditionally unbiased:

xTt yt−k
′ ≈ xttyt−k

′

Taking k = klim and summing both sides we get:

(xT , y)klim ≈ (x∗, y)klim

2.4 Computing The Log-Likelihood

While we don’t need to compute the log-likelihood function (`) in order to optimize it

with EM, it may be desirable to have it in order to monitor the progress and convergence

of the algorithm. While it cannot be directly computed from the same statistics required

by the M-step, it can be computed from some of the the intermediate statistics found

during the approximate E-step.

Recalling that St ≡ Covθ[ȳt | y≤t, u≤t] where ȳt = Eθn [yt | y≤t−1, u≤t] = Cxt−1t +Dut,

it can be easily shown that p(yt | y≤t−1, u≤t) = n(ȳt; 0, St). Note that x01 = π1 and for

t > 1, xt−1t = Ax∗t−1 +But.
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So under the steady-state approximation St = S we have:

` =
T∑
t=1

log p(yt | y≤t−1, u≤t) = −1

2

T∑
t=1

(Ny log 2π + log |S|+ (yt − Cxt−1t )′S−1(yt − Cxt−1t ))

= −1

2
[TNy log 2π + T log |S|+ (yt − Cπ1 −Dut)′S−1(yt − Cπ1 −Dut)

+
T∑
t=2

(yt − CAx∗t−1 − CBut−1 −Dut)′S−1(yt − CAx∗t−1 − CBut−1 −Dut)]

where the large summation term can be written as:

tr[S−1
T∑
t=2

(yt − CAx∗t−1 − CBut−1 −Dut)(yt − CAx∗t−1 − CBut−1 −Dut)′]

= tr[S−1
T∑
t=2

yty
′
t − 2ytx

∗
t−1
′A′C ′ + CAx∗t−1x

∗
t−1
′A′C ′ − 2ytu

′
t−1B

′C ′ + 2CAx∗t−1u
′
t−1B

′C ′

+ 2Dutu
′
t−1B

′C ′ + CBut−1u
′
t−1B

′C ′ − 2ytu
′
tD
′ + 2Dutx

′
t−1A

′C ′ + 2Dutu
′
t−1B

′C ′ +Dutu
′
tD
′]

= tr[S−1((y, y)0 − y1y1′ − 2(y, x∗)1A
′C ′ + CA((x∗, x∗)0 − x∗Tx∗T

′)A′C ′ − 2(y, u)1B
′C ′

+ 2CA((x∗, u)0 − x∗Tu′T )B′C ′ + 2D(u, u)1B
′C ′ + CB((u, u)0 − uTu′T )B′C ′

− 2((y, u)0 − y1u′1)D′ + 2D(u, x∗)1A
′C ′ + 2D(u, u)1B

′C ′ +D((u, u)0 − u1u′1)D′)]

This final formula involves second-order statistics that are computed in the approxi-

mate E-step and thus can be evaluated efficiently. However, because these statistics are

approximate, this way of computing ` should not be considered definitive. Indeed, when

the approximation fails (due to, for example, klim being set too low) the approximately

computed ` might be very far (in either direction) from `’s true value.

2.5 Summary of Algorithm

In this section we provide a code-like summary of the approximate EM algorithm we have

developed in the previous sections. While we continue to use the same notation for the

sake of consistency, for the purposes of implementation the symbols can be interpreted

as meaningless “variable names”.
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2.5.1 Initialization

1. Compute (y, y)k, (y, u)k, (u, y)k and (u, u)k for k := 0, 1, ..., klim+1 by direct evalua-

tion or more efficiently by zero-padding y and u and using the Circular Convolution

Theorem

2. Initialize model parameters to random starting values satisfying:

• ρ(A) < 1

• R, Q, and Π1 positive definite

2.5.2 Approximate E-step

1. Solve the following DARE for Λ1
0 using the doubling algorithm or some other effi-

cient method (see the appendix):

Λ1
0 = A

(
Λ1

0 − Λ1
0C
′(CΛ1

0C
′ +R)−1CΛ1

0

)
A′ +Q

2. Compute:

S := CΛ1
0C
′ +R K := Λ1

0C
′S−1 Λ0

0 := Λ1
0 −KCΛ1

0 J := Λ0
0A
′(Λ1

0)
−1

3. Solve the discrete Lyapunov equation for Λ0 using the doubling algorithm (see the

appendix) or another efficient method:

Λ0 = Λ0
0 + J(Λ0 − Λ1

0)J
′

4. Compute V T
1 := V T

0 J
′

5. Compute H := A−KCA, P := I − JA and L := B −KCB

6. Compute x∗1 := π1 +K(y1 − Cπ1)

7. For k = 2, 3, ..., klag+1

x∗t := Hx∗t−1 +Kyt + Lut−1 −KDut
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8. Approximate xT1+klag := x∗1+klag

9. For k = klag, klag−1, ..., 1 compute:

xTt := JxTt+1 + Px∗t − JBut

10. Approximate x∗T−klim−1 := 0

11. For k = T−klag, T−klag+1, ..., T

x∗t := Hx∗t−1 +Kyt + Lut−1 −KDut

12. Approximate:

(u, x∗)klim+1 := [ ((u, y)klim − u1+klimy′1)K ′ + (u, u)klimL
′

− ((u, u)klim − u1+klimu′1)D′K ′ + u1+klimx
∗
1
′](I −H ′)−1

13. For k = klim, klim−1, ..., 1, 0 compute:

(u, x∗)k := (u, x∗)k+1H
′ + ((u, y)k − u1+ky′1)K ′ + (u, u)k+1L

′

− ((u, u)k − u1+ku′1)D′K ′ + u1+kx
∗
1
′

14. Compute (x∗, u)0 := (u, x∗)′0

15. For k = 1, 2, ..., klim compute:

(x∗, u)k := H
(
(x∗, u)k−1 − x∗Tu′T−k+1

)
+K(y, u)k+L

(
(u, u)k−1 − uTu′T−k+1

)
−KD(u, u)k

16. Approximate:

(y, x∗)†klim+1 := −CAx∗Tx∗T−klim
′ + CB

(
(u, x∗)klim − uTx∗T−klim

′)+D(u, x∗)klim+1

17. For k = klim, klim−1, ..., 1, 0 compute:

(y, x∗)†k := (y, x∗)†k+1H
′ + ((y, y)k − y1+ky′1)K ′ + (y, u)k+1L

′

− ((y, u)k − y1+ku′1)D′K ′ + y1+kx
∗
1
′
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18. Compute (x∗, y)†0 := (y, x∗)†0
′

19. For k = 1, 2, ..., klim compute:

(x∗, y)†k := H
(

(x∗, y)†k−1 − x
∗
Ty
′
T−k+1

)
+K(y, y)k+L

(
(u, y)k−1 − uTy′T−k+1

)
−KD(u, y)k

20. Compute:

G := (−Ax∗Tx∗T−klim
′+B

(
(u, x∗)klim − uTx∗T−klim

)
)H ′ +

(
(x∗, y)†klim − x

∗
1+klim

y′1

)
K ′

+ (x∗, u)klim+1L
′ −
(
(x∗, u)klim − x∗1+klimu

′
1

)
D′K ′ + x∗1+klimx

∗
1
′

21. Solve the following equation for (x∗, x∗)klim using the algorithm developed in the

appendix:

(x∗, x∗)klim = A(x∗, x∗)klimH
′ +H2klim+1(x∗, x∗)klim

′A′C ′K ′ +G

22. Compute the following updates for k ∈ {0, 1, 2, ..., klim}:

(y, x∗)k := (y, x∗)†k + CA(x∗, x∗)klimH
klim+1−k ′

(x∗, y)k := (x∗, y)†k +Hklim+1+k(x∗, x∗)′klimA
′C ′

23. For k = klim−1, klim−2, ..., 1, 0 compute:

(x∗, x∗)k := (x∗, x∗)k+1H
′ +
(
(x∗, y)k − x∗1+ky′1

)
K ′ + (x∗, u)k+1L

′

−
(
(x∗, u)k − x∗1+ku′1

)
D′K ′ + x∗1+kx

∗
1
′

24. Approximate (xT , x∗)klim := (x∗, x∗)klim

25. For k = klim−1, klim−2, ..., 1, 0 compute:

(xT , x∗)k := J(xT , x∗)k+1+P
(
(x∗, x∗)k − x∗Tx∗T−k

′)−JB ((u, x∗)k − uTx∗T−k ′)+xTTx∗T−k ′
26. Compute (x∗, xT )0 := (xT , x∗)′0
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27. Approximate (xT , u)klim := (x∗, u)klim

28. For k = klim−1, klim−2, ..., 1, 0 compute:

(xT , u)k := J(xT , u)k+1 +P
(
(x∗, u)k − x∗Tu′T−k

)
− JB

(
(u, u)k − uTu′T−k

)
+ xTTu

′
T−k

29. Compute (u, xT )0 := (xT , u)′0

30. Solve the following Lyapunov equation for (xT , xT )0 using an efficient method (see

appendix):

(xT , xT )0 = J
(

((xT , xT )0 − xT1 xT1
′
)J ′ + (xT , x∗)1P

′ − (xT , u)1B
′J ′
)

+ P
(

(x∗, xT )0 − x∗TxTT
′
)
− JB

(
(u, xT )0 − uTxTT

′
)

+ xTTx
T
T

′

31. Compute (xT , xT )1 :=
(
(xT , xT )0 − xT1 xT1

)
J ′ + (xT , x∗)1P

′ − (xT , u)1B
′J ′

32. Approximate (xT , y)klim := (x∗, y)klim

33. For k = klim−1, klim−2, ..., 1, 0 compute:

(xT , y)k := J(xT , y)k+1 + P
(
(x∗, y)k − x∗Ty′T−k

)
− JB

(
(u, y)k − uTy′T−k

)
+ xTTy

′
T−k

34. Compute (y, xT )0 := (xT , y)′0

2.5.3 M-step

1. Compute Eθn [(x, x)0 | y, u] := (xT , xT )0 +TΛ0 and Eθn [(x, x)1 | y, u] := (xT , xT )1 +

(T − 1)Λ1. We will write these as E0 and E1 respectively, for brevity.
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2. Compute the parameter updates (see the appendix for a derivation):

C :=
(
(y, xT )0 − (y, u)0(u, u)−10 (u, xT )0

) (
E0 − (xT , u)0(u, u)−10 (u, xT )0

)−1
D :=

(
(y, u)0 − C(xT , u)0

)
(u, u)−10

R :=
1

T

(
(y, y)0 − C(xT , y)0 −D(u, y)0

)
A :=

(
E1 − (xT , u)1((u, u)0 − uTu′T )−1((u, xT )0 − uTxTT

′
)
)

·
(
E0 − xTTxTT

′ − V T
0 − ((xT , u)0 − xTTu′T )((u, u)0 − uTu′T )−1((u, xT )0 − uTxTT

′
)
)−1

B :=
(
(xT , u)1 − A((xT , u)0 − xTTu′T )

)
((u, u)0 − uTu′T )−1

Q :=
1

T − 1
((xT , xT )0 − xT1 xT1

′ − Λ0 − A(xT , xT )′1 −B(xT , u)′1)

π1 := xT1

Π1 := xT1 x
T
1

′
+ Λ0 − π1π′1



Chapter 3

Experimental Evaluation

3.1 Experimental Setup

Our experiments were designed to investigate the performance characteristics of our

approximate EM algorithm while comparing it to EM with just the steady-state approx-

imation (SSEM) and standard/classical EM. We also investigated the trade-off between

solution quality and speed as a function of the meta-parameter klim.

Each algorithm was implemented efficiently in MATLAB and run on an Intel 3.2GHz

quad-core machine with 4GB of DDR2 ram. Our implementations were carefully “vector-

ized” so that there was only a minimal performance degradation due to MATLAB’s code

execution overhead. Log-likelihoods were computed every 5 iterations as each algorithm

ran. Each algorithm was given the same randomly chosen initial parameters and run for

the same number of iterations (which was determined to be when they all approximately

converged). Running times were calculated to ignore the extra time needed to compute

the log likelihoods.

We used several datasets in our experiments. The first was a 3-dimensional time-

series and corresponding 3-dimensional control signal of length 6305 which consisted of

sensor readings from an industrial milk evaporator. This is a standard dataset used in

32
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system identification (e.g. Zhu et al., 1994) and is available online from the Database for

the Identification of Systems (DaISy). Also from DaiSy we used a dataset containing a

1-dimensional times-series and corresponding 1-dimensional control signal of length 4000

which consisted of sensor readings from a “liquid-satured steam heat exchanger”.

Another dataset we used was the first 10 dimensions of a 49-dimensional time-series

of length 15300 (with no control signals) consisting of transformed sensor readings from

a motion capture experiment. This dataset is available on-line from the Carnegie Mellon

University Motion Capture Database and was preprocessed as in Taylor et al. (2007).

Finally, we used two very long datasets, also available online, from the Signal Process-

ing Information Base (SPIB) based at Rice University. The first was a 48-dimensional

time-series of length 301,056 consisting of sensor readings from a sonar experiment con-

ducted by the NATO SACLANT Center. In particular, we used the data from the “350

Hz source” experiment. The second dataset we used from SPIB was a very long 1-

dimensional time series consisting of the first 750,000 time-steps (38 seconds) of an audio

recording taken in the “Operations Room” of a destroyer warship. We truncated this

dataset because SSEM was taking too much time and memory to make our tests feasible

(while standard EM was grossly infeasible).

3.2 Experimental Results

We will present our results as a series of graphs of log-likelihood versus iteration num-

ber, with the parameters and other important details of the experiment given in the

captions. ‘AEM-n’ is our approximate EM algorithm with klim = n and klag = 2n + 1.

Running times are listed in brackets. Note that the point of these graphs is to show

that despite its liberal use of approximations, AEM achieves a per-iteration performance

that is comparable with EM and SSEM, as long as klim is set high enough. A graph

of log-likelihood versus time would only obscure this point and would ultimately serve
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no purpose since in practice LDS learning algorithms are run until convergence and this

happens after roughly the same number of iterations for each algorithm. Also note that

while the graphs may visually suggest a large difference between the quality of the models

learned by the different algorithms, special attention should be paid to the scale of the

y-axis as the graphs have been carefully zoomed to emphasize differences that are often

negligible.
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Figure 3.1: Results from the milk evaporator dataset with Nx = 15.
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Figure 3.2: Results from the milk evaporator dataset with Nx = 15 and the input/control

signals ignored.
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SSEM  (76.4576 s)
EM  (424.1403 s)

Figure 3.3: Results from the heat exchanger dataset with Nx = 8. Note that our imple-

mentation of AEM initially had problems with this dataset until we mean-subtracted it

(which won’t be a problem for most potential applications since the mean can always be

added back in). Before mean subtraction the dataset has a very large fixed offset from 0

which seemed to be causing numerical issues.
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Figure 3.4: Results from the motion-capture dataset with Nx = 40.
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AEM−350 (2042.5286 s)
AEM−450 (2440.0293 s)
SSEM  (9017.5994 s)

Figure 3.5: Results from the SACLANT dataset with Nx = 150. Standard EM is not

included because it was infeasible with this dataset and the performance metrics (LL

and RMS) were computed using the steady-state approximation for the same reason.

Note that while graph seems to suggest using a smaller value of klim to achieve a better

run-time, we found that doing so caused indefinite estimates of the covariance matrix Q.
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Figure 3.6: Results from the destroyer operations room audio dataset with Nx = 20.

Standard EM is not included because it was infeasible with this dataset and the perfor-

mance metrics (LL and RMS) were computed using the steady-state approximation for

the same reason. Note that the run-time difference between SSEM and AEM was most

dramatic here due to the extreme length of the dataset (which was a truncated version

of a much longer dataset).
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3.3 Discussion of Results

Our experiments indicate that SSEM and EM behave nearly identically (except for the

former being a lot faster in implementation) and that AEM tends converge to parameter

values with a slightly worse log-likelihood than those found by EM. However, as the value

of klim is raised, the point at which AEM converges seems to approach that of SSEM

and EM. Moreover, depending on the value of T , the klim value at which this occurs (to

within a reasonable degree of precision) can yield an algorithm with a significantly better

runtime than SSEM. We included the runtimes in our results only as a demonstration

that AEM can achieve real performance improvements in a reasonable implementational

setting (carefully vectorized MATLAB code) with commonly used datasets. Whether or

not the reader accepts them as reasonable indicators of relative performance, the fact

remains that AEM is asymptotically faster than either SSEM and EM per iteration since

its iteration cost is independent of T (as discussed below).

Another conclusion from these experiments is that the steady-state approximation

is indeed very good and seems to have little impact on the quality of inference. It is

also apparent from the results for the first two datasets that AEM cannot guarantee

a decrease in the log likelihood for each iteration. Most likely this is because AEM

is implicitly optimizing an approximate objective function whose direction of increase

doesn’t necessarily correspond to that of the actual log likelihood, especially when klim

is set too low.

Note that the value of klim needs to be high enough so that the model parameters are

adequately specified by the matrix quantities pre-computed in the initialization phase.

For example, if klim = 5, Nx = 5, Ny = 1 and Nu = 0 then the algorithm would have

to learn the parameters (which include the A matrix with its 25 degrees of freedom)

from only about 5 to 15 distinct real numbers. If klim wasn’t set high enough to restrict

the parameters, we found that the covariance matrices (R and Q) estimated in the M-

step would often become indefinite after a few iterations. Additionally, the experiments
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demonstrate that if a parameter estimate of sufficient quality is to be obtained, the value

of klim should be set higher than what is required to merely constrain the parameter

values. But critically, while it depends on the values of Nx and Ny and the qualitative

nature of the data, the appropriate value of klim does not seem to have any dependence

on the length (T ) of the data.



Chapter 4

Conclusions and Future Work

Our AEM algorithm is the first iterative algorithm that we know of for learning an LDS

where the computational cost for each iteration does not depend on the length of the

time-series used for training. Thus, with an unlimited amount of data our algorithm can

exhibit an arbitrarily large performance advantage over other iterative algorithms such

as standard EM.

The experiments discussed in the previous sections only hint at the potential of our

approach since the datasets they use are only modestly long. Most datasets that are

available for evaluating the performance of LDS learning algorithms (such as those in

DaISy) are relatively short since length is usually an uninteresting factor when comparing

algorithms. Our algorithm allows for the possibility of using extremely long datasets for

practical learning applications.

The cost of pre-computing the statistics over y and u in the initialization phase of

our algorithm is comparable to a single iteration of steady-state EM and is much less

expensive than an iteration of classical EM. Naively it is O(Tklimmax{Ny, Nu})2) but

more careful implementations that use FFTs and the Circular Convolution Theorem can

achieve O(T log2 Tmax{Ny, Nu}2) (with a very small constant factor thanks to highly

optimized FFT packages). Most importantly, the cost of this pre-computation is inde-
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pendent of the number of iterations. And while it is hard to exactly quantify, the number

of iterations is justifiably considered non-constant and dominant in asymptotic analysis

due to EM’s slow convergence. Furthermore, these pre-computations could be performed

on-line as the data is collected, eliminating the need to ever store the entire dataset.

One possible extension of our algorithm is into the on-line learning setting in which

new training data is continually being received and a learning algorithm must be able to

process and then discard this data so that its computational requirements do not grow

without bound. On-line learning algorithms are important for robotics, noise cancellation

and other applications where learning must be performed in real-time as data is received.

There are on-line versions of EM that are typically applied to non-temporal models

(i.e. not LDSs) that work by storing and updating an approximate posterior over the

model parameters, and incorporating (via Bayes’ rule) the likelihood of each observation

as it is processed. Thus previously observed data are only remembered through their

contributions to the approximate posterior. Fortunately it is relatively simple to extend

our approach into the on-line learning setting, eliminating the need to employ such a

crude approximation to the posterior. This is because our approach only requires second

order statistics of bounded time-lag over y and u (which can easily be computed online)

and not the individual values of yt and ut for each t.

Another possible extension of our approach is to non-linear models/inference-schemes

such as the Extended Kalman filter (EKF). The EKF is similar to the LDS but assumes a

non-linear transfer function between hidden states, allowing them to be linearized (via a

Taylor series expansion) around the current state estimates during inference and learning.

An extension of AEM into to this setting would require a significant modification to our

approach since a key assumption, that the covariance of each state does not depend on

its mean during inference, would be violated. A second possible non-linear model where

AEM could be employed would be a hierarchical version of the LDS where a non-linearity

is applied to the output of each layer, which then acts as the input or control signal to the
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layer below. Since the optimization of the parameters of each layer would be equivalent

to learning a standard LDS, our approach could be naturally applied in this setting.

While this report gave a complete derivation of the algorithm, many obvious theoret-

ical questions were left unanswered such as:

• How can the expected error induced by the approximations be quantified?

• When are the approximated statistics computed in the E-step guaranteed to give

well-defined parameter estimates in the M-step? For example, when is the estimate

of Q guaranteed to be symmetric? Positive definite?

• Can it be mathematically proven that for sufficiently large values of klim our algo-

rithm will produce identical results to those of SSEM? The answer, which we won’t

justify here, is yes, as long as ρ(H)klim ≈ 0 holds at every iteration there is such

a provable guarantee. But in practice, even when this condition doesn’t hold, the

algorithm can perform very well.

These and other theoretical questions are good candidates for further investigations in

future work.

In our development of the SSEM algorithm we applied the steady-state approximation

to the Kalman recursions at each time-step. But since the steady-state assumptions are

significantly violated near the beginning and end of the sequence it might be worthwhile

to develop a hybrid algorithm that applies the standard Kalman recursions (computing

full covariance information) at the beginning and end of the sequence, switching automat-

ically to the steady-state version after some pre-specified number of time-steps (or once

the covariance matrices converge close enough to their steady-state values). Moreover it

would be a relatively simple task to adapt our constant-time approximation technique to

this hybrid algorithm.

EM, as applied to general statistical models, is a well studied algorithm. There are

many well-known techniques for accelerating EM (e.g. Jamshidian and Jennrich, 1997)
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that might become useful to employ in a direct comparison between EM (and by extension

AEM) and other algorithms for learning the LDS such as 4SID and PEM.

Finally, it may be beneficial to augment our algorithm so that it automatically de-

termines a good value for the meta-parameter klim and/or adjusts klim dynamically as

required. Indeed our experiments demonstrate that with a lower value of klim our approx-

imate EM algorithm will only diverge from SSEM during the latter stages of learning.
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Appendix A

Details of the Derivation of EM

A.1 Computing the EM Objective Function

The EM objective function is:

Qn(θ) = Eθn [log p(x, y|θ)|y]

= Eθn

[
T∑
t=1

log p(yt|xt, θ) +
T−1∑
t=1

log p(xt+1|xt, θ) + log p(x1|θ) | y

]
Recalling that p(yt|xt, θ) = n(yt;Cxt +Dut, R), we have:

T∑
t=1

log p(yt|xt) = −T
2

(log |R|+Ny log 2π)− 1

2

T∑
t=1

(yt −Cxt −Dut)′R−1(yt −Cxt −Dut)

where the large summation term can be written as

tr

[
R−1

T∑
t=1

(yt − Cxt −Dut)(yt − Cxt −Dut)′
]

= tr[R−1
T∑
t=1

yty
′
t − ytx′tC ′ − Cxty′t + Cxtx

′
tC
′ − ytu′tD′ −Duty′t +Dutx

′
tC
′

+ Cxtu
′
tD
′ +Dutu

′
tD
′]

= tr[R−1((y, y)0 − (y, x)0C
′ − C(x, y)0 + C(x, x)0C

′ − (y, u)0D
′ −D(u, y)0 +D(u, x)0C

′

+ C(x, u)0D
′ +D(u, u)0D

′)]
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Recalling that p(xt+1|xt, θ) = n(xt+1;Axt +But+1, Q), we have:

T−1∑
t=1

log p(xt+1|xt) = −T
2

(log |Q|+Nx log 2π)− 1

2

T−1∑
t=1

(xt+1 − Axt −But)′Q−1(xt+1 − Axt −But)

where the large summation term can be written as:

tr[Q−1((x, x)0 − x1x1′ − (x, x)1A
′ − A(x, x)′1 + A((x, x)0 − xTx′T )A′ − (x, u)1B

′

−B(x, u)′1 + A((x, u)0 − xTu′T )B′ +B((u, x)0 − uTx′T )A′ +B((u, u)0 − uTu′T )B′)]

Recalling that p(x1|θ) = n(x1; π1,Π1), we have:

log p(x1) = −1

2
(log |Π1|+Nx log 2π)− 1

2
(x1 − π1)′Π−11 (x1 − π1)

= −1

2
(log |Π1|+Nx log 2π)− 1

2
tr
[
Π−11 (x1x1

′ − π1x1′ − x1π1′ + π1π1
′)
]

Taking the conditional expectation of the three expressions derived above (and noting

that it respects matrix multiplication and trace) we have that the objective function is:

Qn(θ) = −1

2
{ tr[R−1((y, y)0 − Eθn [(y, x)0 | y, u]C ′ − CEθn [(x, y)0 | y, u] + CEθn [(x, x)0 | y, u]C ′

− (y, u)0D
′ −D(u, y)0 +DEθn [(u, x)0 | y, u]C ′ + CEθn [(x, u)0 | y, u]D′ +D(u, u)0D

′)]

+ tr[Q−1(Eθn [(x, x)0 | y, u]− Eθn [x1x1
′ | y, u]− Eθn [(x, x)1 | y, u]A′ − AEθn [(x, x)′1 | y, u]

+ A(Eθn [(x, x)0 | y, u]− Eθn [xTxT
′ | y, u])A′ − Eθn [(x, u)1 | y, u]B′ −BEθn [(x, u)′1 | y, u]

+ A(Eθn [(x, u)0 | y, u]− Eθn [xT | y, u]u′T )B′ +B(Eθn [(u, x)0 | y, u]− uTEθn [x′T | y, u])A′

+B((u, u)0 − uTuT ′)B′)]

+ tr
[
Π−11 (Eθn [x1x1

′ | y, u]− π1Eθn [x1
′ | y, u]− Eθn [x1 | y, u]π1

′ + π1π1
′)
]

+ (T − 1) (log |Q|+Nx log 2π) + T (log |R|+Ny log 2π) + log |Π1|+Nx log 2π }

A.2 Derivation of the M-step

To compute the M-step we will differentiate the objective function with respect to each

parameter, set the result to zero, and solve the resulting systems.
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The partial derivative w.r.t. D is:

∂Qn(θ)

∂D
= −R−1 (−(y, u)0 +D(u, u)0 + CEθn [(x, u)0 | y, u])

Setting this to zero and pre-multiplying by −R we have:

−(y, u)0 +D(u, u)0 + CEθn [(x, u)0 | y, u] = 0 (A.1)

Solving for D we obtain:

D = ((y, u)0 − CEθn [(x, u)0 | y, u]) (u, u)−10

The partial derivative w.r.t. C is:

∂Qn(θ)

∂C
= −R−1 (−Eθn [(y, x)0 | y, u] + CEθn [(x, x)0 | y, u] +DEθn [(u, x)0 | y, u])

Setting this to zero and pre-multiplying by −Q we obtain:

−Eθn [(y, x)0 | y, u] + CEθn [(x, x)0 | y, u] +DEθn [(u, x)0 | y, u] = 0 (A.2)

Then substituting the previous solution for D (which depends on C) gives us:

−Eθn [(y, x)0 | y, u] + CEθn [(x, x)0 | y, u]

+ ((y, u)0 − CEθn [(x, u)0 | y, u]) (u, u)−10 Eθn [(u, x)0 | y, u] = 0

Solving this for C gives:

C =
(
Eθn [(y, x)0 | y, u]− (y, u)0(u, u)−10 Eθn [(u, x)0 | y, u]

)
·
(
Eθn [(x, x)0 | y, u]− Eθn [(x, u)0 | y, u](u, u)−10 Eθn [(u, x)0 | y, u]

)−1
Taking the partial derivative w.r.t. R−1 and using (A.1) post-multiplied by D′ and

(A.2) post-multiplied by C ′ to simplify the expression we obtain:

∂Qn(θ)

∂R−1
= −1

2
((y, y)0 − CEθn [(x, y)0 | y, u]−D(u, y)0 − TR)
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Setting this to zero and solving for R we obtain:

R =
1

T
((y, y)0 − CEθn [(x, y)0 | y, u]−D(u, y)0)

The partial derivative w.r.t. B is:

∂Qn(θ)

∂B
= −Q−1(−Eθn [(x, u)1 | y, u] + A(Eθn [(x, u)0 | y, u]− Eθn [xT | y, u]u′T )

+B((u, u)0 − uTu′T ))

Setting this to zero we have and pre-multiplying by −Q we obtain:

−Eθn [(x, u)1 | y, u] + A(Eθn [(x, u)0 | y, u]− Eθn [xT | y, u]u′T ) +B((u, u)0 − uTu′T ) = 0

(A.3)

And solving for B we obtain:

B = (Eθn [(x, u)1 | y, u]− A(Eθn [(x, u)0 | y, u]− Eθn [xT | y, u]u′T )) ((u, u)0 − uTu′T )−1

The partial derivative w.r.t. A is:

∂Qn(θ)

∂A
= −Q−1(−Eθn [(x, x)1 | y, u] + A(Eθn [(x, x)0 | y, u]− Eθn [xTx

′
T | y, u])

+B(Eθn [(u, x)0 | y, u]− uTEθn [x′T | y, u]))

Setting this to zero and pre-multiplying by −Q we obtain:

−Eθn [(x, x)1 | y, u] + A(Eθn [(x, x)0 | y, u]− Eθn [xTx
′
T | y, u])

+B(Eθn [(u, x)0 | y, u]− uTEθn [x′T | y, u]) = 0 (A.4)

Then substituting the previous solution for B (which depends on A) and solving for

A gives:

A = (Eθn [(x, x)1 | y]− Eθn [(x, u)1 | y]M)

· (Eθn [(x, x)0 | y]− Eθn [xTx
′
T | y]− (Eθn [(x, u)0 | y]− Eθn [xT | y]u′T )M)

−1

where M ≡ ((u, u)0 − uTu′T )−1(Eθn [(u, x)0 | y]− uTEθn [x′T | y])
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Taking the partial derivative w.r.t. Q−1 and using (A.3) post-multiplied by B′ and

(A.4) post-multiplied by A′ to simplify the expression we obtain:

∂Qn(θ)

∂Q−1
= −1

2
(Eθn [(x, x)0 | y, u]− Eθn [x1x1

′ | y, u]− AEθn [(x, x)′1 | y, u]

−BEθn [(x, u)′1 | y, u]− (T − 1)Q)

Setting this to zero and solving we obtain:

Q =
1

T − 1
(Eθn [(x, x)0 | y, u]−Eθn [x1x

′
1 | y, u]−AEθn [(x, x)′1 | y, u]−BEθn [(x, u)′1 | y, u])

The partial derivative w.r.t. π1 is:

∂Qn(θ)

∂π1
= −Π−1 (−Eθn [x1 | y, u] + π1)

Setting this to zero and solving for π1 we obtain:

π1 = Eθn [x1 | y, u] (A.5)

Taking the partial derivative w.r.t. Π−11 and using (A.5) is:

∂Qn(θ)

∂Π1

= −1

2
(Eθn [x1x

′
1 | y, u]− π1π′1 − Π1)

Setting this to zero and solving for Π1 we obtain:

Π1 = Eθn [x1x1
′ | y, u]− π1π′1



Appendix B

Algorithms for Solving Various

Matrix Equation

B.1 Solving the DARE

The discrete algebraic Riccati equation (DARE) is a matrix equation of the form X =

f(X) where,

f(X) ≡ E
(
X −XF ′(FXF ′ +N)−1FX

)
E ′ +M

and E, F , N and M are matrices such that f t(X) converges (reaches a steady state) for

any X as t→∞.

The doubling algorithm (e.g. Anderson and Moore, 1979) works by simulating a very

long sequence of repeated applications of f , starting from the zero matrix. It is able

to simulate 2t such applications in only t iterations, making it much more efficient than

performing each application directly.

The algorithm is defined as the computation of a particular sequence of matrices

53
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according to the following recursions:

Φt+1 = Φt(I + ΨtΘt)
−1Φt

Ψt+1 = Ψt + Φt(I + ΨtΘt)
−1ΨtΦ

′
t

Θt+1 = Θt + Φ′tΘt(I + ΨtΘt)
−1Φt

with the starting points Φ1 = E ′, Ψ1 = F ′N−1F and Θ1 = M . It can be shown (with

some difficulty) that Θt = f 2t(0).

B.2 Solving Lyapunov and Sylvester Equations

The discrete Lyapunov equation, which has the general form X = f(X) where f(X) =

EXE ′ + M , is a special case of the Sylvester equation, which has the form X = f(X)

where f(X) = EXF + M . The Sylvester equation can be solved efficiently by several

well-known algorithms including an alternate version of the doubling algorithm defined

by the recursions:

Φt+1 = Φ2
t Υt+1 = Υ2

t Θt+1 = Θt + ΦtΘtΥt

with the starting points Φ1 = E, Υ1 = F and Θ1 = M . As with the doubling algorithm

for the DARE, Θt = f 2t(0). This can be shown with a simple inductive argument and

the observation that f t(0) =
∑t

i=0E
iMF i. Thus if ρ(F ′ ⊗ E) = ρ(E)ρ(F ) < 1, Θt will

converge to the solution of X = f(X).

There are more sophisticated non-iterative algorithms for solving X = f(X) that do

not require ρ(E)ρ(F ) < 1. One such algorithm is based on the reduction of E and F to

Hessenberg and Schur forms (see Golub et al., 1978) and is implemented in MATLAB as

the function ‘dlyap’.
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Algorithm 1 Algorithm Solving (2.9)

Input: A, C, K, H, G

Initialize X := 0, Y := G.

while Y has not converged to 0 do

Y := Solution for Z of (Z = AZH ′ + Y )

X := X + Y

Y := H2klim+1Y ′A′C ′K ′

end while

B.3 Solving Equation (2.9)

Lemma 1. Let V be a vector space, f : V −→ V be a continuous linear function such

that ρ(f) < 1. Then a solution to the equation x = f(x) + y is given by:

x0 =
∞∑
i=0

f i(y) (B.1)

Proof. The condition ρ(f) < 1 ensures that the series converges (and determines the rate

of convergence).

Then,

x0 =
∞∑
i=0

f i(y) =
∞∑
i=1

f i(y) + f 0(y) =
∞∑
i=0

f ◦ f i(y) + y = f(
∞∑
i=0

f i(y)) + y = f(x0) + y

where we have used the fact that f is both continuous and linear so that it respect the

infinite sum.

Now let f1(X) = X −AXH ′, f2(X) = H2klim+1X ′A′C ′K ′ and y = G where A, H, C,

K and G are defined in the context of section 2.3.7. These functions are clearly linear

and continuous. Then the solution of f1(X) = f2(X) +G is the solution of (2.9). Taking

f−11 of both sides yields X = f−11 ◦ f2(X) + f−11 (G) which is the form of the equation

solved in the previous lemma with f = f−11 ◦ f2 and y = f−11 (G).

Conjecture 1. For all klim ≥ 0, f−11 ◦f2 is a continuous linear function with ρ(f−11 ◦f2) <

1
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In practice, ρ(f−11 ◦ f2) will be a significantly less than 1 when klim is large enough

(even when ρ(H) is close to 1) which implies rapid convergence of the series defined in

(B.1).

Algorithm 1 computes this series term-by-term and so by the previous lemmas and

rapid converge property it is an efficient method for solving (2.9).


