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Abstract

Markov Random Fields (MRFSs) are an im-
portant class of probabilistic models which
are used for density estimation, classifica-
tion, denoising, and for constructing Deep
Belief Networks. Every application of an
MRF requires addressing its inference prob-
lem, which can be done using deterministic
inference methods or using stochastic Markov
Chain Monte Carlo methods. In this paper
we introduce a new Markov Chain transition
operator that updates all the variables of a
pairwise MRF in parallel by using auxiliary
Gaussian variables. The proposed MCMC
operator is extremely simple to implement
and to parallelize. This is achieved by a
formal equivalence result between arbitrary
pairwise MRF's and a particular type of Re-
stricted Boltzmann Machine. This result also
implies that the later can be learned in place
of the former without any loss of modeling
power, a possibility we explore in experi-
ments.

1 INTRODUCTION

Pairwise Markov Random Fields are probabilistic
models useful for denoising (Malfait and Roose, 1997;
Portilla et al., 2003), density estimation (Roth and
Black, 2005; Wainwright and Simoncelli, 2000; Cross
and Jain, 1981), classification (Larochelle and Bengio,
2008), and for learning Deep Belief Networks (Hinton
et al., 2006; Hinton and Salakhutdinov, 2006).

Every application of MRFs requires dealing with infer-
ence, which is the problem of computing statistics with
respect to the MRF’s distribution. While the infer-
ence problem can be solved approximately for general
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MRFs and exactly for some special cases via determin-
istic methods (Wainwright, 2008), in this paper we fo-
cus on stochastic Markov Chain Monte Carlo methods
(Neal, 1993).

Markov chain Monte Carlo (MCMC) is attractive as
a general inference method because it is applicable to
almost every probabilistic model and it is guaranteed
to be unbiased and converge in the limit. In contrast,
deterministic methods typically are not unbiased and
may not even converge, except on models that exhibit
special structure such as acyclic dependencies.

In this work, we introduce a mapping between fully-
connected pairwise MRFs and a particular type
of MRF known as Restricted Boltzmann Machines
(RBMs) (Smolensky, 1986), with real-valued auxiliary
hidden variables, such that the original MRF’s distri-
bution is recovered by integrating out these variables.
By running parallel block Gibbs sampling on the RBM
and discarding the hidden variable samples, we can
obtain samples from the original MRF. Our method
is very easy to implement, and its parallelizable na-
ture makes it much more cost effective than sequential
Gibbs sampling (SGS) on parallel computing architec-
tures such as GPUs.

In addition, the equivalence we show between MRF's
and the marginal distributions of these special RBMs
suggests that it may be beneficial to work directly with
the latter, since they are equally expressive but easier
to sample from efficiently.

2 RELATED WORK

Sampling from pairwise MRFs is an important and
well-studied problem. Two well known MCMC meth-
ods are SGS and the Swendsen-Wang algorithm (SW).
Arguably the simplest and most commonly used, SGS
updates one variable at a time in sequence by condi-
tioning on the rest. SW introduces auxiliary binary-
valued variables into an MRF, one for each potential,
and samples from a joint distribution whose marginal
is equal to the original distribution. The samples
are produced using a standard Gibbs chain, which al-
ternates between sampling the auxiliary variables in-
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dependently and sampling the original ones using a
reasonably efficient “cluster-and-flip” algorithm. This
type of sampling is, in some contexts, preferable to
SGS because it can make “global moves” that involve
flipping large groups of highly correlated nodes all
at once (a situation where SGS struggles). However,
there is no general guarantee that the chain will mix
fast (Gore and Jerrum, 1999) and in particular we do
not even know if it will mix faster than SGS.

For certain pairwise MRFs with special properties
there are exact algorithms for computing the marginal
statistics in polynomial time that do not require sam-
pling. For example, planarity of the associated graph
is required in the case of the recent MRF inference al-
gorithm due to Schraudolph and Kamenetsky (Schrau-
dolph and Kamenetsky, 2009). In general these exact
deterministic methods cannot be applied to arbitrary
pairwise MRF's.

3 EVERY PAIRWISE MRF HAS AN
EQUIVALENT RBM

In this section we introduce our main technical re-
sult, which states that every nonzero discrete-valued
pairwise MRF (DPMRF) over the variables = can
be represented by the marginal distribution of some
RBM. Specifically, we introduce a special RBM p(z, y)
over x and continuous-valued auxiliary variables y of
the same dimension, and show that through a care-
ful choice of the parameters, the marginal distribution
p(z) can be made equal to the distribution of the given
DPMREF.

3.1 MARGINALIZING THE
CONTINUOUS VARIABLES

Consider the energy function E(z,y) defined over = €
X CR" and y € R™ which is given by

1
E(z,y) = 5y'y—y' Wa - f(2)
where W € R™*™ and f: X — R.

If Z = [exp(—E(z,y))dedy < oo then E defines a
Boltzmann distribution over x and y by the equation

pl,y) = 5 exp(~Elz,y))

We can rewrite the energy function F as
1 1
B(z,y) = 5(y=Wa) (y=Wa)— o'W Wa— f(x),
(1)

from which it follows that p(y|x) is a multivariate nor-
mal distribution

plyle) o exp (—%(y - Wa) (y - Ww))

A useful property of the multivariate normal distribu-
tion is that its partition function does not depend on
the mean-parameter. In particular, we have

/eXP (—%(y -Wa) (y - Wx)) dy = (21)"/?

which, critically, does not depend on x. Using this fact
and exploiting the re-written expression for E (eq. 1)
we can obtain a simple expression for the marginal on
x:

pe) = 5 [ew(~50-woTw-wa)ay
-exp <%HWTW1: + f(x))

_ (271')”/2 exp (%xTWwa-l- f(I))

Z

But this is just the Boltzmann distribution for the en-
ergy E' where E'(z) = —o' W TWz/2 — f(z).

3.2 SAMPLING FROM p(x)

We saw in the last section that the conditional p(y|z) is
a multivariate normal with mean Wz and covariance
matrix I and so each unit can be sampled indepen-
dently and in parallel. And depending on the form of
f(z), the conditional p(x|y) may also be easy to sam-
ple from using a parallelizable algorithm. If this is the
case then there is an efficient block-Gibbs method for
sampling from the joint distribution p(z,y), where we
alternate between sampling all of the units of x con-
ditioned on y and all of the units of y conditioned on
x. The existence of this kind of block-Gibbs sampling
algorithm is one of the main advantages of an RBM
over a fully connected Boltzmann machine (Smolensky,
1986) and if we take X = {0,1}" and f(z) = d'z/2
then p(z,y) is in fact an RBM where y are “Gaussian
units”. Sampling from p(x) then reduces to sampling
from p(x,y) (which is easy) and simply discarding the
y-components.

3.3 BINARY-VALUED MRF

In this section we will show that for any binary-valued
pairwise MRF there is a choice of f and X such that
p(z,y) is an RBM with Gaussian hidden units whose
marginal p(x) corresponds exactly to the MRF. Later,
we will generalize this result beyond the binary case.

A general binary-valued pairwise MRF is defined by a
Boltzmann distribution p(z) o exp(—FE(x)) over X =
{0,1}™ with energy function E(x) = —z " Ax/2, where
A is a symmetric matrix (there are other equivalent
ways of parameterizing it, but this way is the most
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useful for our purposes). If we set

flz)==d'z= %x—rdiag(d):zz

1
2
where d € R™ then we have that p(z|y) = [T, p(zi|y)
where

1
plei=1ly) =0 <W(;T,i)y + gdz‘>

and where o is the logistic sigmoid function and W/ ;)
denotes the i*" column of W.

This choice of f satisfies our first requirement, namely
that each z; can be sampled parallel from p(z|y).
Moreover, it can be easily seen that p(z,y) is in fact
an RBM with Gaussian units y and binary units . It
remains to choose a value of W and d so the marginal
p(z) corresponds to the Boltzmann distribution with
the desired energy (i.e., our DPMRF). In particular
we require that for all x € X,

1 1 1
—5 T Az = —ixTWTWx - gx—rdiag(d)x

This will be satisfied iff A = W TW + diag(d).

If A is positive definite we can simply take d = 0,
m = n and W = chol(A) where chol(:) denotes the
Cholesky decomposition. Otherwise we must choose d
more carefully. In particular, if we choose d so that
A — diag(d) is positive definite then we can take W =
chol(A — diag(d)).

There can be many different choices for d, but one
choice that will always work is d = ol where 1 is the
vector of ones, a = (1 4 €) min(Aq,0), € is some small
constant greater than 0, and \; is the most negative
eigenvalue of A. It turns out that the choice of d is
important and will influence the mixing properties of
the block-Gibbs chain on p(z, y). We will examine this
issue in a later section.

One important point to note is that if A is sparse
(e.g. if the connections follow a lattice structure) then
W = chol(A) will generally be sparse too, which is a
useful property to have if n is very large and efficiency
depends on sparsity. Even when A is dense, computing
W is as hard as computing a Cholesky decomposition
for which there are reasonably efficient algorithms.

3.4 MULTI-VALUED MRFS

In developing the procedure for determining d and
W we made use of the fact that X = {0,1}" so
that %d—r:v = %:deiag(d):v. However, the construc-
tion would also apply if instead we required only that
X C {0,1}" and in this section we show that for any
DPMREF there is such a choice of X so that its en-
ergy may be written in the required form —2" Az/2

and that p(z,y) remains an easy-to-sample RBM, al-
beit one with “softmax units” instead of the standard
binary units.

Suppose that the DPMRF is defined over the vari-
ables s = (s1,...,8m), each of which takes values in
{0,...,k —1}. We will use a 1-of-k encoding for the
variables s by representing it as an mk-dimensional
vector x

LTk-j+l = 5(Sj, E)

where 0 < 7 < m — 1 indexes the unit, and ¢ indexes
the value of unit j. Thus every state s can be uniquely
mapped to a state z(s) using the 1-of-k encoding. The
set of such valid z’s is given by

k—1
Zxk.j+g =1 for all j}

£=0

X = {x € {0,1}™*

Having defined X we next show how to choose A. Sup-
pose that the DPMRF distribution is defined by

q(s) o [] @i (si,55) [ ] ®i(s0)

i#j i=1

Then by setting Agitu kjto to log ®sj(u,v)/2 if i #
J, setting Apitu kitw to log ®;(u), and to zero if the
potential ®;; is not provided, the resulting distribution
p(z) oc exp(z " Ax/2) is equivalent to the distribution
q(s) in the sense that g(s) = p(z(s)).

We can now apply the transformation described in the
previous section to obtain a Boltzmann distribution
p(z,y) whose marginal distribution is equal to p(z).
Our choice of X makes sampling from the conditional
distribution p(z|y) easy, because it factorizes as the
product

m

p(zly) = HP (I(i—l)»kv ‘. 7$i~kfl|y)

=1

where each term is a simple multinomial distribution.

3.5 SEMI-RESTRICTED BOLTZMANN
MACHINES

An interesting special case of the binary MRF, and
one which we will devote most of our experiments to in
this paper, is the semi-restricted Boltzmann Machine
(SRBM) (Osindero and Hinton, 2008). The SRBM,
like the standard RBM, introduces binary hidden units
h € {0,1}? which are connected to each visible unit
x but not to each other. But unlike the RBM, the
visible units z of the SRBM are connected to each
other, which prevents the use of block-Gibbs sampling
in such a model.
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Figure 1: An SRBM (left) and an equivalent RBM (right)

The energy term of the SRBM can be written as:
1
E(z,h) = —ExTAx —z ' Mh—b"h

where the connection matrix between the visible units
A is in R™*"  the hidden-visible connection matrix M
is in R™*P, and the biases b are in RP.

The SRBM has a number of particularly appealing fea-
tures for modeling densities of image-like data (Osin-
dero and Hinton, 2008). Intuitively, the connections
between the visible units model the “obvious” corre-
lations between adjacent pixels, allowing the hidden
units to use their capacity to model the more complex,
higher order features of the model that are impossible
to model with pairwise connections alone. As a result,
the SRBM’s hidden-visible connections tend to look
qualitatively different from corresponding connections
in a standard RBM, because the RBM’s hidden-visible
connections are forced to model the higher order statis-
tics as well as the simpler pairwise correlations.

To achieve efficient sampling in SRBMs we may treat
x and h as a homogeneous collection of variables and
apply the previously developed conversion method to
find an equivalent RBM, but it is more economical to
apply the method only to x and its associated connec-
tion matrix A, leaving the h to = connections (i.e. M)
unchanged. This transforms the SRBM into what is
essentially a 3-layer RBM where the visible units x are
in the middle layer (see figure (1)). That is, by taking
d = (1+¢)min(\,0)1 and W = chol(A — diag(d)) we
obtain a Boltzmann distribution with energy

1
E(x,h,y) = -2 Mh—b"h—xz' Wy + ideiag(d):c

The marginal p(x,h) of this distribution is equal to
the joint distribution of the SRBM and the associated
energy F has the exact form of the energy function
of a 3-layer RBM with Gaussian units y. Fortunately,
just as with a 2-layer RBM, there is an efficient block-
Gibbs sampling algorithm for a 3-layer RBM. To see
this note that the auxiliary units y are not connected

to the hidden units h and so we can sample both inde-
pendently given x. This allows us to alternate between
sampling from p(z|y, h) and sampling from both p(h|z)
and p(y|z). The conditional p(y|z) is computed as be-
fore and the remaining conditionals can be computed
as p(hlz) = []; p(hilz) and p(z|h,y) = []; p(zilh,y),
where

plhi =1]z) =

p(x; = 1]h,y)

o (M(Tl)x + bi)

o (M W+ )

4 MODEL CONVERSION VERSUS
DIRECT LEARNING

The equivalence results we have developed can be used
in two basic ways. First, they can be used to achieve a
much more paralellizable sampling algorithm by way
of conversion to the equivalent RBM. For a DPMRF
the conversion involves computing a Cholesky decom-
position and thus can become computationally bur-
densome if we have to do it repeatedly, say in the case
of learning where the parameters of the DPMRF con-
stantly change.

A second and perhaps more interesting use of our re-
sults is to motivate the use of RBM-type models in
place of traditional DPMRFs. The existence of the
conversion from the original MRF parameterizations
proves that the equivalent RBMs have the same ex-
pressive power. So, for example, instead of learning
an SRBM and using our method to transform it to an
equivalent RBM for the purposes of sampling, we could
directly learn the parameters of the RBM as long as
it has the general structure needed for the conversion
result to hold.

5 EXPERIMENTAL RESULTS

5.1 DATASETS AND TRAINING
ALGORITHMS

For the majority of our experiments we used three
datasets: the USPS digit dataset, which consists
of 10,000 16x16-images of handwritten digits, the
MNIST digit dataset, which consists of 60,000 28 x28
images of handwritten digits, and the MNORB dataset
(used in Tieleman and Hinton, 2009), which is a binary
32x32 version of the NORB image dataset, consisting
of 12,000 training images (LeCun et al., 2004).

The training algorithm we use is persistent-CD (PCD)
(Tieleman, 2008; Younes, 1988), in which a set of neg-
ative particles is used as a persistent approximate sam-
ple from the model’s distribution, which is used for ap-
proximating the gradient of the model’s log probabil-
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ity. The resulting weight update is described in (Tiele-
man, 2008). The persistent particles are a sensible ap-
proximation to the model’s distribution, because the
model constantly updates them with a Markov chain
that keeps the current model invariant. Although the
current model changes as learning proceeds, the hope
is that the persistent particles will be updated suffi-
ciently quickly and remain a good approximation to
the model’s distribution throughout learning. It is
known that if the learning rate is reduced at a certain
rate, this algorithm locally converges to the maximum-
likelihood setting of the parameters (Younes, 1988).

5.2 MIXING SPEED EXPERIMENTS

While no Markov chain for arbitrary binary MRFs can
mix fast in a certain strong sense unless NP = RP (see
Gore and Jerrum, 1999, for details), we can still dis-
cuss and compare mixing speed in a more practical
sense. While sampling from p(z,y) in the equivalent
RBM can be done with easily parallelized block-Gibbs
steps, we do not necessarily know how fast the chain
will mix in practice. And in particular we do not know
if it will mix nearly as fast (in terms of the number of
passes over the complete set of variables) as a sequen-
tial Gibbs chain applied directly to the original MRF.
In this section we will investigate the mixing speed
of the block-Gibbs chain run on the equivalent RBM
and show that it mixes only slightly slower (per step)
than the SGS chain run on the original SRBM !. Thus
block-Gibbs sampling in the equivalent RBM will be
very cost effective on parallel computing architectures,
which we demonstrate in the next section.

In section 3.3 we gave a conversion formula for com-
puting the parameters of an the equivalent RBM for
an arbitrary MRF. The formula depends on a con-
stant « that is only required to be larger than ay,;, =
min(Aq,0). Our first experiment investigates the rela-
tionship between the mixing speed of the Gibbs chain
on the RBM, and the choice of « used to construct it.
In particular we use an SRBM model that was trained
with PCD on the USPS dataset as the target MRF
(the details of this training are given in section 5.4).

To quantify mixing speed we first ran 1024 parallel
chains of sequential Gibbs for 10000 steps after 5000
steps of burn-in, in order to estimate a “ground truth”
for the statistic E[hz "] — E[h]E[z] " (hereafter referred
to as the hx-statistic). We chose this 2nd-order statis-
tic because first-order statistics such as E[z] are too
easily estimated even by poorly mixing chains, and be-
cause this statistic is arguably the most important one
for learning. Then, for several different values of o, we

Here a “step” of SGS means a sequential sampling pass
over all of the dimensions.
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Figure 2: Error versus number of runs for the block-Gibbs
chain running on the RBM constructed using a = (1 +
€)@min. The legend indicates the value of € used.

computed the equivalent RBM and ran 1024 parallel
Gibbs chains on it for 3000 steps (after 2000 steps of
burn-in) and measured the relative difference between
the current estimate of the hx-statistic and the ground
truth.

The results of this experiment are given as Figure
2. Not too surprisingly, they clearly suggest that as
we raise a the mixing performance of the RBM chain
steadily degrades. Fortunately a,,;, tends to be rea-
sonably small in practice. This well behaved nature of
« may be due to some qualitative property of the A
matrix when it models real data and it is something
we plan to investigate in future work.

The second set of experiments we performed were de-
signed to compare the mixing speed of SGS on an
SRBM against block-Gibbs on the equivalent RBM.
We trained models with both parameterizations and
on two different datasets (for a total of 4). As be-
fore we computed the relative error of the hx-statistic
as estimated by 1024 parallel chains. Since we could
estimate ground truth using either sampling method
(with a much longer chain) for each model we did both
and found, reassuringly, that they were always within
less than 3% relative error of each other. The results
of these experiments are given as Figures 3 and 4.

In addition to measuring the speed of convergence of
the hx-statistic estimates we also ran Markov chain
analysis software (Cowles et al., 2006) to compute the
“effective number of independent samples” produced
by 15000 consecutive samples from each chain. This
method analyzes each dimension of the chain indepen-
dently, producing individual estimates, over which we
take the median to obtain a single number. These are
reported in table 1.
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Figure 3: Relative estimation error (of the hx-statistic)
versus step number for models trained on USPS with the
SRBM parameterization (bottom) and with the equivalent
RBM parameterization (top).

Together, these experiments seem to indicate that the
per-step mixing speed of the two methods is similar,
with SGS being only moderately faster in some cases.
However, since a single step of the RBM sampling
method can be parallelized, the method will likely be
much more cost-effective than SGS on parallel com-
puting architectures.

Table 1: Median Effective Sample Size Estimated by
CODA

Model, Dataset SGS | Block-Gibbs
SRBM, USPS 264 153
Equiv. RBM, USPS 188 142
SRBM, MNIST 377 218
Equiv. RBM, MNIST 401 416

5.3 EVALUATING SWENDSEN-WANG

Our next experiment examines the possibility of us-
ing the Swendsen-Wang algorithm instead of SGS to
sample from an SRBM. We used the same MNIST-
trained SRBM from the previous experiment as our
target model.

Let a be the vector of auxiliary binary units introduced
by SW. To sample from the SRBM using the SW algo-
rithm we run a Gibbs chain, alternating between sam-
pling h and a given = (as a block-step) and sampling
x given h and a using the SW “cluster-and-flip” pro-
cedure with clusters defined by a and flip probabilities
given by the input biases MTh. Since the clustering
procedure is computationally very expensive compared

=
(=]
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— — — Sequential Gibbs sampling (SGS) in SRBM

|
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o
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— — — Sequential Gibbs sampling (SGS) in SRBM
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Figure 4: Relative estimation error (of the hx-statistic)
versus step number for models trained on MNIST with the
SRBM parameterization (bottom) and with the equivalent
RBM parameterization (top).

to SGS or block-Gibbs (even with a hybrid Matlab-C
implementation we used) we only ran 5 parallel chains
and assessed the speed of mixing by examining the
quality of the samples. It was immediately apparent
by simple inspection that the SW chains were mixing
very slowly (per step) compared to the other methods
and that the samples did not resemble anything close
to the USPS digits until around the 1000th step.

See Figure 5 for some typical samples produced by SW
contrasted with ones produced by sequential Gibbs
sampling of the SRBM and block-Gibbs sampling of
the equivalent RBM. The likely explanation for the
failure of SW on learned RBM-type models is that they
are highly frustrated MRFs with a very non-uniform
structure and are qualitiatively very different from the
sort of physics models for which SW was originally
designed.

5.4 SRBM LEARNING EXPERIMENTS

In this section, through a series of experiments, we
compare learning under the SRBM parameterization
and the equivalent RBM parameterization.

In our experiments, we trained, via PCD, the param-
eters of an SRBM and those of an equivalent RBM on
the same datasets and with the same learning-rate pa-
rameters. The training and test set log probabilities
were estimated as training proceeded. For comparison,
we also trained a standard RBM without visible-visible
connections, to support the claim that such connec-
tions provide a real advantage in terms of modeling
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Figure 5: Typical samples produced by the 3 chains after
the indicated number of burn-in steps.

power on these datasets.

We now describe details of our PCD training. For
simplicity, we used the same learning parameters for
all the models. The models were trained for 100,000
weight updates on batches consisting of 256 training
examples and on 256 negative particles for PCD. The
learning rate was kept at 0.01. The learning rate for
the visible-visible connections in the SRBM or the
visible-Gaussian connections in the equivalent RBM
was 10 times smaller. We used 3 steps of the Gibbs
sampling chain for updating the negative particles for
the equivalent RBM.

The small USPS model had 256 visible units and 40
hidden units, while the large USPS model had 256 hid-
den units. The MNIST and the MNORB models had
784 and 1024 visible units, respectively, and both had
500 hidden units. We observed that overfitting was
a significant problem on the MNORB dataset for all
three models, which was likely the result of the train-
ing set and the test set being qualitatively different.

The training and the test log probability were es-
timated with Annealed Importance Sampling (Neal,
2001), where the chain was initialized with a “base-
rate” model fitted to the training data (Salakhutdi-
nov and Murray, 2008). We used 1024 AIS runs for
32,000 intermediate distributions, where 2000 equally
spaced distributions were placed in the interval [0,0.5),
10000 were equally spaced in the temperature interval
[0.5,0.9), and 20000 transitions were used in the inter-
val [0.9, 1.0].

Our GPU-based implementations used the Python li-
brary Cudamat (Mnih, 2009).

The results (fig. 6) show that models learned with
the RBM parameterization can be as good as those
learned with the standard SRBM parameterization in
terms of log probability, with training that proceeds
an order of magnitude faster with our GPU-based im-
plementations.
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Figure 6: Plots showing the training and test log proba-
bilities of the different models as learning progresses. Blue
corresponds to the SRBM, green the equivalent RBM and
red the standard 2-layer RBM without visible-visible con-
nections. Circles correspond to the test set and x’s the
training set. The z-axis is computation time in seconds,
and the y-axis log probability.

6 A FAILURE MODE

Our experience with the SRBM suggests that the SGS
and the auxiliary variable method mix at roughly the
same speed. However, in this section we present a
simple pathological example where the SRBM can mix
much faster than the auxiliary variable method. Let
t > 0 be a large scalar, and let

P(x1,29) o exp(a1t?/2 + xot? — x129t%)

be our MRF defined over z € {0,1}2. Below is the
equivalent model with the Gaussian hidden units,

P(x1,72,91,Y2) < exp(x1y1t—zoy1t+royot—y5 /2—y3/2)

which can be seen to be equal to P(z1,x2) when the
hidden units y are marginalized.

By inspecting P(z1, z2) and enumerating the four pos-
sible states, we can see that an overwhelming fraction
of the probability mass lies at (0,1) (i.e., x1 = 0,29 =
1) when t is large. Now, if we apply the sequential
Gibbs chain to P(z1,x2), we can see that all states
quickly bring us to (0,1). If we perform sequential a
Gibbs sweep by first updating x; and then zo, then
the states (0,0) and (1,0) are both taken to (1,0) or
(1,1) with probability ~ 1/2, while the state (1,1) is
taken to (0,1) with overwhelming probability. Thus
the SGS will quickly fixate on (0,1).
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However, we can show that block-Gibbs sampling on
p(z1,T2,y1,y2) keeps the low probability state z =
(1,0) unchanged with overwhelming probability, caus-
ing the chain to mix very slowly when it is initialized
to x = (1,0) and ¢ is large. In particular, the proba-
bility of transitioning away from this state after Gibbs
sampling y ~ N((¢,0),1) is 1 — o(ty1)o(tyr — ty2) =
1—o(t?+tny)o(t? +tny —tng) where nq,ng ~ N(0,1).
For large t there is a high probability this will be
closely approximated by 1 — o(t?)o(t?) which will be
very close to 0.

Finally, while this example demonstrates the existence
of parameter settings where the auxiliary-variable
sampling method performs significantly worse than
SGS, we have found that in practice, when applied
to models that have been learned on real data such as
in the previous section, such performance gaps do not
seem to arise. Moreover, the natural annealing which
takes place during PCD learning may help to ensure
that the chain doens’t easily get stuck in the “bad”
states.

7 CONCLUSIONS

In this paper, we showed that the distribution of
any pairwise discrete MRF can be represented as the
marginal distribution of a Restricted Boltzmann Ma-
chine with Gaussian hidden units. Our results show
that the resulting block-Gibbs chain is comparable to
sequential Gibbs in terms of mixing speed, while be-
ing readily parallelizable and thus more efficient. Our
results also demonstrate the usefulness of an alterna-
tive learning strategy which is motived by the equiva-
lence result: learning the parameters of special RBMs,
augmented with Gaussian hiddens units, in place of
harder-to-sample-from MRFs such as SRBMs. The
simplicity of the conversion procedure between RBMs
and MRFs, combined with the parallelizability of sam-
pling with RBMs, makes these techniques for sampling
and learning of MRF's very suitable for practical ap-
plications.
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