
Appendices for the ICML paper “Optimizing Neural
Networks with Kronecker-factored Approximate

Curvature”

A Backpropagation Algorithm

Algorithm 1 An algorithm for computing the gradient of the loss L(y, f(x, θ)) for a given (x, y).
Note that we are assuming here for simplicity that the φi are defined as coordinate-wise functions.

input: a0 = x; θ mapped to (W1,W2, . . . ,W`).

/* Forward pass */
for all i from 1 to ` do
si ← Wiāi−1

ai ← φi(si)
end for

/* Loss derivative computation */

Da` ←
∂L(y, z)

∂z

∣∣∣∣
z=a`

/* Backwards pass */
for all i from ` downto 1 do
gi ← Dai � φ′i(si)
DWi ← giā

>
i−1

Dai−1 ← W>
i gi

end for

output: Dθ = [vec(DW1)> vec(DW2)> . . . vec(DW`)
>]>
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B Derivation of the expression for the approximation from Sec-
tion 2.1

In this section we will show that

E
[
ā(1)ā(2) g(1)g(2)

]
−E

[
ā(1)ā(2)

]
E
[
g(1)g(2)

]
= κ(ā(1), ā(2), g(1), g(2)) + κ(ā(1))κ(ā(2), g(1), g(2)) + κ(ā(2))κ(ā(1), g(1), g(2))

The only specific property of the distribution over ā(1), ā(2), g(1), and g(2) which we will
require to do this is captured by the following lemma.
Lemma 4. Suppose u is a scalar variable which is independent of y when conditioned on the
network’s output f(x, θ), and v is some intermediate quantity computed during the evaluation of
f(x, θ) (such as the activities of the units in some layer). Then we have

E [uDv] = 0

Our proof of this lemma (which is at the end of this section) makes use of the fact that the
expectations are taken with respect to the network’s predictive distribution Py|x as opposed to the
training distribution Q̂y|x.

Intuitively, this lemma says that the intermediate quantities computed in the forward pass of
Algorithm 1 (or various functions of these) are statistically uncorrelated with various derivative
quantities computed in the backwards pass, provided that the targets y are sampled according to
the network’s predictive distribution Py|x (instead of coming from the training set). Valid choices
for u include ā(k), ā(k) − E

[
ā(k)
]

for k ∈ {1, 2}, and products of these. Examples of invalid
choices for u include expressions involving g(k), since these will depend on the derivative of the
loss, which is not independent of y given f(x, θ).

According to a well-known general formula relating moments to cumulants we may write
E
[
ā(1)ā(2) g(1)g(2)

]
as a sum of 15 terms, each of which is a product of various cumulants corre-

sponding to one of the 15 possible ways to partition the elements of {ā(1), ā(2), g(1), g(2)} into non-
overlapping sets. For example, the term corresponding to the partition {{ā(1)}, {ā(2), g(1), g(2)}} is
κ(ā(1))κ(ā(2), g(1), g(2)).

Observing that 1st-order cumulants correspond to means and 2nd-order cumulants correspond
to covariances, for k ∈ {1, 2} Lemma 4 gives

κ(g(k)) = E
[
g(k)
]

= E
[
Dx(k)

]
= 0

where x(1) = [xi]k2 , and x(2) = [xj]k4 (so that g(k) = Dx(k)). And similarly for k,m ∈ {1, 2} it
gives

κ(ā(k), g(m)) = E
[(
ā(m) − E

[
ā(m)

]) (
g(k) − E

[
g(k)
])]

= E
[(
ā(m) − E

[
ā(m)

])
g(k)
]

= 0
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Using these identities we can eliminate 10 of the terms.

The remaining expression for E
[
ā(1)ā(2) g(1)g(2)

]
is thus

κ(ā(1), ā(2), g(1), g(2)) + κ(ā(1))κ(ā(2), g(1), g(2)) + κ(ā(2))κ(ā(1), g(1), g(2))

+ κ(ā(1), ā(2))κ(g(1), g(2)) + κ(ā(1))κ(ā(2))κ(g(1), g(2))

Noting that

κ(ā(1), ā(2))κ(g(1), g(2)) + κ(ā(1))κ(ā(2))κ(g(1), g(2))

= Cov(ā(1), ā(2)) E
[
g(1)g(2)

]
+ E

[
ā(1)
]

E
[
ā(2)
]

E
[
g(1)g(2)

]
= E

[
ā(1)ā(2)

]
E
[
g(1)g(2)

]
it thus follows that

E
[
ā(1)ā(2) g(1)g(2)

]
−E

[
ā(1)ā(2)

]
E
[
g(1)g(2)

]
= κ(ā(1), ā(2), g(1), g(2)) + κ(ā(1))κ(ā(2), g(1), g(2)) + κ(ā(2))κ(ā(1), g(1), g(2))

as required.

It remains to prove Lemma 4.

Proof of Lemma 4. The chain rule gives

Dv = −d log p(y|x, θ)
dv

= −d log r(y|z)

dz

∣∣∣∣>
z=f(x,θ)

df(x, θ)

dv

From which it follows that

E [uDv] = EQ̂x

[
EPy|x [uDv]

]
= EQ̂x

[
ERy|f(x,θ) [uDv]

]
= EQ̂x

[
ERy|f(x,θ)

[
−u d log r(y|z)

dz

∣∣∣∣>
z=f(x,θ)

df(x, θ)

dv

]]

= EQ̂x

−uERy|f(x,θ)

[
d log r(y|z)

dz

∣∣∣∣
z=f(x,θ)

]>
df(x, θ)

dv

 = EQ̂x

[
−u~0> df(x, θ)

dv

]
= 0

That the inner expectation above is ~0 follows from the fact that the expected score of a distri-
bution, when taken with respect to that distribution, is ~0.
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C Additional figures for Section 3

Figures 5 and 6 examine the quality of the approximations F̆ and F̂ of F̃ , which are derived by
approximating F̃−1 as block-diagonal and block-tridiagonal (resp.), for an example network.

From Figure 5, which compares F̆ and F̂ directly to F̃ , we can see that while F̆ and F̂
exactly capture the diagonal and tridiagonal blocks (resp.) of F̃ , as they must by definition, F̂ ends
up approximating the off-tridiagonal blocks of F̃ very well too. This is likely owed to the fact that
the approximating assumption used to derive F̂ , that F̃−1 is block-tridiagonal, is a very reasonable
one in practice (judging by Figure 2).

Figure 5: A comparison of our block-wise Kronecker-factored approximation F̃ , and its approximations
F̆ and F̂ (which are based on approximating the inverse F̃−1 as either block-diagonal or block-tridiagonal,
respectively), using the example neural network from Figure 1. On the left is F̃ , in the middle its approx-
imation, and on the right is the absolute difference of these. The top row compares to F̆ and the bottom
row compares to F̂ . While the diagonal blocks of the top right matrix, and the tridiagonal blocks of the
bottom right matrix are exactly zero due to how F̆ and F̂ (resp.) are constructed, the off-tridiagonal blocks
of the bottom right matrix, while being very close to zero, are actually non-zero (which is hard to see from
the plot). Note that for the purposes of visibility we plot the absolute values of the entries, with the white
level corresponding linearly to the size of these values (up to some maximum, which is the same in each
image).
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Figure 6, which compares F̆−1 and F̂−1 to F̃−1, paints an arguably more interesting and
relevant picture, as the quality of the approximation of the natural gradient will be roughly propor-
tional1 to the quality of approximation of the inverse Fisher. We can see from this figure that due
to the approximate block-diagonal structure of F̃−1, F̆−1 is actually a reasonably good approxima-
tion of F̃−1, despite F̆ being a rather poor approximation of F̃ (based on Figure 5). Meanwhile,
we can see that by accounting for the tri-diagonal blocks, F̂−1 is indeed a significantly better
approximation of F̃−1 than F̆−1 is, even on the diagonal blocks.

Figure 6: A comparison of the exact inverse F̃−1 of our block-wise Kronecker-factored approximation F̃ ,
and its block-diagonal and block-tridiagonal approximations F̆−1 and F̂−1 (resp.), using the example neural
network from Figure 1. On the left is F̃−1, in the middle its approximation, and on the right is the absolute
difference of these. The top row compares to F̆−1 and the bottom row compares to F̂−1. The inverse was
computed subject to the factored Tikhonov damping technique described in Appendices E.3 and E.6, using
the same value of γ that was used by K-FAC at the iteration from which this example was taken (see Figure
1). Note that for the purposes of visibility we plot the absolute values of the entries, with the white level
corresponding linearly to the size of these values (up to some maximum, which is the same in each image).

1The error in any approximation F−10 ∇h of the natural gradient F−1∇h will be roughly proportional to the error
in the approximation F−10 of the associated inverse Fisher F−1, since ‖F−1∇h− F−10 ∇h‖ ≤ ‖∇h‖‖F−1 − F

−1
0 ‖.
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D Estimating the required statistics

Recall that Āi,j = E
[
āiā
>
j

]
and Gi,j = E

[
gig
>
j

]
. Both approximate Fisher inverses discussed in

Section 3 require some subset of these. In particular, the block-diagonal approximation requires
them for i = j, while the block-tridiagonal approximation requires them for j ∈ {i, i+ 1} (noting
that Ā>i,j = Āj,i and G>i,j = Gj,i).

Since the āi’s don’t depend on y, we can take the expectation E
[
āiā
>
j

]
with respect to just

the training distribution Q̂x over the inputs x. On the other hand, the gi’s do depend on y, and
so the expectation2 E

[
gig
>
j

]
must be taken with respect to both Q̂x and the network’s predictive

distribution Py|x.

While computing matrix-vector products with the Gi,j could be done exactly and efficiently
for a given input x (or small mini-batch of x’s) by adapting the methods of Schraudolph (2002),
there doesn’t seem to be a sufficiently efficient method for computing the entire matrix itself.
Indeed, the hardness results of Martens et al. (2012) suggest that this would require, for each
example x in the mini-batch, work that is asymptotically equivalent to matrix-matrix multiplication
involving matrices the same size as Gi,j . While a small constant number of such multiplications
is arguably an acceptable cost (see Appendix G), a number which grows with the size of the mini-
batch would not be.

Instead, we will approximate the expectation over y by a standard Monte-Carlo estimate ob-
tained by sampling y’s from the network’s predictive distribution and then rerunning the backwards
phase of backpropagation (see Algorithm 1) as if these were the training targets.

Note that computing/estimating the required Āi,j/Gi,j’s involves computing averages over
outer products of various āi’s from network’s usual forward pass, and gi’s from the modified back-
wards pass (with targets sampled as above). Thus we can compute/estimate these quantities on the
same input data used to compute the gradient∇h, at the cost of one or more additional backwards
passes, and a few additional outer-product averages. Fortunately, this turns out to be quite inexpen-
sive, as we have found that just one modified backwards pass is sufficient to obtain a good quality
estimate in practice, and the required outer-product averages are similar to those already used to
compute the gradient in the usual backpropagation algorithm.

In the case of online/stochastic optimization we have found that the best strategy is to maintain
running estimates of the required Āi,j’s andGi,j’s using a simple exponentially decaying averaging
scheme. In particular, we take the new running estimate to be the old one weighted by ε, plus the

2It is important to note this expectation should not be taken with respect to the training/data distribution over y (i.e.
Q̂y|x or Qy|x). Using the training/data distribution for y would perhaps give an approximation to a quantity known as
the “empirical Fisher information matrix”, which lacks the previously discussed equivalence to the Generalized Gauss-
Newton matrix, and would not be compatible with the theoretical analysis performed in Section 2.1 (in particular,
Lemma 4 would break down). Moreover, such a choice would not give rise to what is usually thought of as the
natural gradient, and based on the findings of Martens (2010), would likely perform worse in practice as part of an
optimization algorithm. See Martens (2014) for a more detailed discussion of the empirical Fisher and reasons why it
may be a poor choice for a curvature matrix compared to the standard Fisher.
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estimate on the new mini-batch weighted by 1 − ε, for some 0 ≤ ε < 1. In our experiments we
used ε = min{1− 1/k, 0.95}, where k is the iteration number.

Note that the more naive averaging scheme where the estimates from each iteration are given
equal weight would be inappropriate here. This is because the Āi,j’s and Gi,j’s depend on the
network’s parameters θ, and these will slowly change over time as optimization proceeds, so that
estimates computed many iterations ago will become stale.

This kind of exponentially decaying averaging scheme is commonly used in methods involv-
ing diagonal or block-diagonal approximations (with much smaller blocks than ours) to the curva-
ture matrix (e.g. LeCun et al., 1998; Park et al., 2000; Schaul et al., 2013). Such schemes have the
desirable property that they allow the curvature estimate to depend on much more data than can be
reasonably processed in a single mini-batch.

Notably, for methods like HF which deal with the exact Fisher indirectly via matrix-vector
products, such a scheme would be impossible to implement efficiently, as the exact Fisher matrix
(or GGN) seemingly cannot be summarized using a compact data structure whose size is indepen-
dent of the amount of data used to estimate it. Indeed, it seems that the only representation of the
exact Fisher which would be independent of the amount of data used to estimate it would be an
explicit n×nmatrix (which is far too big to be practical). Because of this, HF and related methods
must base their curvature estimates only on subsets of data that can be reasonably processed all at
once, which limits their effectiveness in the stochastic optimization regime.

E Update damping

E.1 Background and motivation

The idealized natural gradient approach is to follow the smooth path3 in the Riemannian manifold
(implied by the Fisher information matrix viewed as a metric tensor) that is generated by taking
a series of infinitesimally small steps (in the original parameter space) in the direction of the nat-
ural gradient (which gets recomputed at each point). While this is clearly impractical as a real
optimization method, one can take larger steps and still follow these paths approximately. But in
our experience, to obtain an update which satisfies the minimal requirement of not worsening the
objective function value, it is often the case that one must make the step size so small that the
resulting optimization algorithm performs poorly in practice.

The reason that the natural gradient can only be reliably followed a short distance is that it
is defined merely as an optimal direction (which trades off improvement in the objective versus
change in the predictive distribution), and not a discrete update.

3Which has the interpretation of being a geodesic in the Riemannian manifold from the current predictive distribu-
tion towards the training distribution when using a likelihood or KL-divergence based objective function (see Martens
(2014)).
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Fortunately, as observed by Martens (2014), the natural gradient can be understood using a
more traditional optimization-theoretic perspective which implies how it can be used to generate
updates that will be useful over larger distances. In particular, when Ry|z is an exponential family
model with z as its natural parameters (as it will be in our experiments), Martens (2014) showed
that the Fisher becomes equivalent to the Generalized Gauss-Newton matrix (GGN), which is a
positive semi-definite approximation of the Hessian of h. Additionally, there is the well-known
fact that when L(x, f(x, θ)) is the negative log-likelihood function associated with a given (x, y)
pair (as we are assuming in this work), the HessianH of h and the Fisher F are closely related in the
sense H is the expected Hessian of L under the training distribution Q̂x,y, while F is the expected
Hessian of L under the model’s distribution Px,y (defined by the density p(x, y) = p(y|x)q(x)).

From these observations it follows that

M(δ) =
1

2
δ>Fδ +∇h(θ)>δ + h(θ) (5)

can be viewed as a convex approximation of the 2nd-order Taylor series of expansion of h(δ + θ),
whose minimizer δ∗ is the (negative) natural gradient −F−1∇h(θ). Note that if we add an `2 or
“weight-decay” regularization term to h of the form

η

2
‖θ‖2

2, then similarly F +ηI can be viewed as

an approximation of the Hessian of h, and replacing F with F + ηI in M(δ) yields an approxima-
tion of the 2nd-order Taylor series, whose minimizer is a kind of “regularized” (negative) natural
gradient −(F + ηI)−1∇h(θ), which is what we end up using in practice.

From the interpretation of the natural gradient as the minimizer of M(δ), we can see that it
fails to be useful as a local update only insofar as M(δ) fails to be a good local approximation to
h(δ + θ). And so as argued by Martens (2014), it is natural to make use of the various “damping”
techniques that have been developed in the optimization literature for dealing with the breakdowns
in local quadratic approximations that inevitably occur during optimization. Notably, this break-
down usually won’t occur in the final “local convergence” stage of optimization where the function
becomes well approximated as a convex quadratic within a sufficiently large neighborhood of the
local optimum. This is the phase traditionally analyzed in most theoretical results, and while it is
important that an optimizer be able to converge well in this final phase, it is arguably much more
important from a practical standpoint that it behaves sensibly before this phase.

This initial “exploration phase” (Darken and Moody, 1990) is where damping techniques
help in ways that are not apparent from the asymptotic convergence theorems alone, which is not
to say there are not strong mathematical arguments that support their use (see Nocedal and Wright,
2006). In particular, in the exploration phase it will often still be true that h(θ + δ) is accurately
approximated by a convex quadratic locally within some region around δ = 0, and that therefor
optimization can be most efficiently performed by minimizing a sequence of such convex quadratic
approximations within adaptively sized local regions.

Note that well designed damping techniques, such as the ones we will employ, automati-
cally adapt to the local properties of the function, and effectively “turn themselves off” when the
quadratic model becomes a sufficiently accurate local approximation of h, allowing the optimizer
to achieve the desired asymptotic convergence behavior (Moré, 1978).
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Successful and theoretically well-founded damping techniques include Tikhonov damping
(aka Tikhonov regularization, which is closely connected to the trust-region method) with Levenberg-
Marquardt style adaptation (Moré, 1978), line-searches, and trust regions, truncation, etc., all of
which tend to be much more effective in practice than merely applying a learning rate to the update,
or adding a fixed multiple of the identity to the curvature matrix. Indeed, a subset of these tech-
niques was exploited in the work of Martens (2010), and primitive versions of them have appeared
implicitly in older works such as Becker and LeCun (1989), and also in many recent diagonal
methods like that of Zeiler (2013), although often without a good understanding of what they are
doing and why they help.

Crucially, more powerful 2nd-order optimizers like HF and K-FAC, which have the capabil-
ity of taking much larger steps than 1st-order methods (or methods which use diagonal curvature
matrices), require more sophisticated damping solutions to work well, and will usually completely
fail without them, which is consistent with predictions made in various theoretical analyses (e.g.
Nocedal and Wright, 2006). As an analogy one can think of such powerful 2nd-order optimizers as
extremely fast racing cars that need more sophisticated control systems than standard cars to pre-
vent them from flying off the road. Arguably one of the reasons why high-powered 2nd-order opti-
mization methods have historically tended to under-perform in machine learning applications, and
in neural network training in particular, is that their designers did not understand or take seriously
the issue of quadratic model approximation quality, and did not employ the more sophisticated and
effective damping techniques that are available to deal with this issue.

For a detailed review and discussion of various damping techniques and their crucial role in
practical 2nd-order optimization methods, we refer the reader to Martens and Sutskever (2012).

E.2 A highly effective damping scheme for K-FAC

Methods like HF which use the exact Fisher seem to work reasonably well with an adaptive
Tikhonov regularization technique where λI is added to F + ηI , and where λ is adapted accord-
ing to Levenberg-Marquardt style adjustment rule. This common and well-studied method can be
shown to be equivalent to imposing an adaptive spherical region (known as a “trust region”) which
constrains the optimization of the quadratic model (e.g Nocedal and Wright, 2006). However, we
found that this simple technique is insufficient when used with our approximate natural gradient
update proposals. In particular, we have found that there never seems to be a “good” choice for λ
that gives rise to updates which are of a quality comparable to those produced by methods that use
the exact Fisher, such as HF.

One possible explanation for this finding is that, unlike quadratic models based on the exact
Fisher (or equivalently, the GGN), the one underlying K-FAC has no guarantee of being accurate
up to 2nd-order. Thus, λ must remain large in order to compensate for this intrinsic 2nd-order
inaccuracy of the model, which has the side effect of “washing out” the small eigenvalues (which
represent important low-curvature directions).
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Fortunately, through trial and error, we were able to find a relatively simple and highly effec-
tive damping scheme, which combines several different techniques, and which works well within
K-FAC. Our scheme works by computing an initial update proposal using a version of the above
described adaptive Tikhonov damping/regularization method, and then re-scaling this according
to quadratic model computed using the exact Fisher. This second step is made practical by the
fact that it only requires a single matrix-vector product with the exact Fisher, and this can be com-
puted efficiently using standard methods. We discuss the details of this scheme in the following
subsections.

E.3 A factored Tikhonov regularization technique

In the first stage of our damping scheme we generate a candidate update proposal ∆ by applying a
slightly modified form of Tikhononv damping to our approximate Fisher, before multiplying−∇h
by its inverse.

In the usual Tikhonov regularization/damping technique, one adds (λ + η)I to the curvature
matrix (where η accounts for the `2 regularization), which is equivalent to adding a term of the

form
λ+ η

2
‖δ‖2

2 to the corresponding quadratic model (given by M(δ) with F replaced by our

approximation). For the block-diagonal approximation F̆ of F̃ (from Section 3.2) this amounts to
adding (λ+ η)I (for a lower dimensional I) to each of the individual diagonal blocks, which gives
modified diagonal blocks of the form

Āi−1,i−1 ⊗Gi,i + (λ+ η)I = Āi−1,i−1 ⊗Gi,i + (λ+ η)I ⊗ I (6)

Because this is the sum of two Kronecker products we cannot use the simple identity (A⊗B)−1 =
A−1 ⊗ B−1 anymore. Fortunately however, there are efficient techniques for inverting such matri-
ces, which we discuss in detail in Appendix I.

If we try to apply this same Tikhonov technique to our more sophisticated approximation F̂
of F̃ (from Section 3.3) by adding (λ + η)I to each of the diagonal blocks of F̂ , it is no longer
clear how to efficiently invert F̂ . Instead, a solution which we have found works very well in
practice (and which we also use for the block-diagonal approximation F̆ ), is to add πi(

√
λ+ η)I

and
1

πi
(
√
λ+ η)I for a scalar constant πi to the individual Kronecker factors Āi−1,i−1 and Gi,i

(resp.) of each diagonal block, giving(
Āi−1,i−1 + πi(

√
λ+ η)I

)
⊗
(
Gi,i +

1

πi
(
√
λ+ η)I

)
(7)

As this is a single Kronecker product, all of the computations described in Sections 3.2 and 3.3
can still be used here too, simply by replacing each Āi−1,i−1 and Gi,i with their modified versions

Āi−1,i−1 + πi(
√
λ+ η)I and Gi,i +

1

πi
(
√
λ+ η)I .
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To see why the expression in eqn. 7 is a reasonable approximation to eqn. 6, note that expand-
ing it gives

Āi−1,i−1 ⊗Gi,i + πi(
√
λ+ η)I ⊗Gi,i +

1

πi
(
√
λ+ η)Āi−1,i−1 ⊗ I + (λ+ η)I ⊗ I

which differs from eqn. 6 by the residual error expression

πi(
√
λ+ η)I ⊗Gi,i +

1

πi
(
√
λ+ η)Āi−1,i−1 ⊗ I

While the choice of πi = 1 is simple and can sometimes work well in practice, a slightly
more principled choice can be found by minimizing the obvious upper bound (following from the
triangle inequality) on the matrix norm of this residual expression, for some matrix norm ‖ · ‖υ.
This gives

πi =

√
‖Āi−1,i−1 ⊗ I‖υ
‖I ⊗Gi,i‖υ

Evaluating this expression can be done efficiently for various common choices of the matrix
norm ‖ · ‖υ. For example, for a general B we have ‖I ⊗B‖F = ‖B ⊗ I‖F =

√
d‖B‖F where d is

the height/dimension of I , and also ‖I ⊗B‖2 = ‖B ⊗ I‖2 = ‖B‖2.

In our experience, one of the best and must robust choices for the norm ‖·‖υ is the trace-norm,
which for PSD matrices is given by the trace. With this choice, the formula for πi has the following
simple form:

πi =

√
tr(Āi−1,i−1)/(di−1 + 1)

tr(Gi,i)/di

where di is the dimension (number of units) in layer i. Intuitively, the inner fraction is just the
average eigenvalue of Āi−1,i−1 divided by the average eigenvalue of Gi,i.

Interestingly, we have found that this factored approximate Tikhonov approach, which was
originally motivated by computational concerns, often works better than the exact version (eqn. 6)
in practice. The reasons for this are still somewhat mysterious to us, but it may have to do with the
fact that the inverse of the product of two quantities is often most robustly estimated as the inverse
of the product of their individually regularized estimates.

E.4 Re-scaling according to the exact F

Given an update proposal ∆ produced by multiplying the negative gradient −∇h by our approxi-
mate Fisher inverse (subject to the Tikhonov technique described in the previous subsection), the
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second stage of our proposed damping scheme re-scales ∆ according to the quadratic model M as
computed with the exact F , to produce a final update δ = α∆.

More precisely, optimize α according to the value of the quadratic model M(δ) = M(α∆)
as computed using an estimate of the exact Fisher F (to which we add the `2 regularization +
Tikhonov term (λ+ η)I). In particular, we minimize the following function with respect to α:

M(δ) = M(α∆) =
α2

2
∆>(F + (λ+ η)I)∆ + α∇h>∆ + h(θ)

Because this is a 1-dimensional quadratic minimization problem, the formula for the optimal
α can be computed very efficiently as

α∗ =
−∇h>∆

∆>(F + (λ+ η)I)∆
=

−∇h>∆

∆>F∆ + (λ+ η)‖∆‖2
2

To evaluate this formula we use the current stochastic gradient ∇h (i.e. the same one used to
produce ∆), and compute matrix-vector products with F using the input data from the same mini-
batch. While using a mini-batch to compute F gets away from the idea of basing our estimate of
the curvature on a long history of data (as we do with our approximate Fisher), it is made slightly
less objectionable by the fact that we are only using it to estimate a single scalar quantity (∆>F∆).
This is to be contrasted with methods like HF which perform a long and careful optimization of
M(δ) using such an estimate of F .

Because the matrix-vector products with F are only used to compute scalar quantities in K-
FAC, we can reduce their computational cost by roughly one half (versus standard matrix-vector
products with F ) using a simple trick which is discussed in Appendix J.

Intuitively, this second stage of our damping scheme effectively compensates for the intrinsic
inaccuracy of the approximate quadratic model (based on our approximate Fisher) used to generate
the initial update proposal ∆, by essentially falling back on a more accurate quadratic model based
on the exact Fisher.

Interestingly, by re-scaling ∆ according to M(δ), K-FAC can be viewed as a version of HF
which uses our approximate Fisher as a preconditioning matrix (instead of the traditional diagonal
preconditioner), and runs CG for only 1 step, initializing it from 0. This observation suggests run-
ning CG for longer, thus obtaining an algorithm which is even closer to HF (although using a much
better preconditioner for CG). Indeed, this approach works reasonably well in our experience, but
suffers from some of the same problems that HF has in the stochastic setting, due its much stronger
use of the mini-batch–estimated exact F .

Figure 7 demonstrates the effectiveness of this re-scaling technique versus the simpler method
of just using the raw ∆ as an update proposal. We can see that ∆, without being re-scaled, is a
very poor update to θ, and won’t even give any improvement in the objective function unless the
strength of the factored Tikhonov damping terms is made very large. On the other hand, when the
update is re-scaled, we can afford to compute ∆ using a much smaller strength for the factored
Tikhonov damping terms, and overall this yields a much larger and more effective update to θ.
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Figure 7: A comparison of the effectiveness of the proposed damping scheme, with and without the re-
scaling techniques described in Appendix E.4. The network used for this comparison is the one produced
at iteration 500 by K-FAC (with the block-tridiagonal inverse approximation) on the MNIST autoencoder
problem described in Section 7. The y-axis is the improvement in the objective function h (i.e. h(θ) −
h(θ + δ)) produced by the update δ, while the x-axis is the strength constant used in the factored Tikhonov
damping technique (which is denoted by “γ” as described in Appendix E.6). In the legend, “no moment.”
indicates that the momentum technique developed for K-FAC in Appendix F (which relies on the use of
re-scaling) was not used.

E.5 Adapting λ

Tikhonov damping can be interpreted as implementing a trust-region constraint on the update δ,
so that in particular the constraint ‖δ‖ ≤ r is imposed for some r, where r depends on λ and
the curvature matrix (e.g. Nocedal and Wright, 2006). While some approaches adjust r and then
seek to find the matching λ, it is often simpler just to adjust λ directly, as the precise relationship
between λ and r is complicated, and the curvature matrix is constantly evolving as optimization
takes place.

The theoretically well-founded Levenberg-Marquardt style rule used by HF for doing this,
which we will adopt for K-FAC, is given by

if ρ > 3/4 then λ← ω1λ

if ρ < 1/4 then λ← 1

ω1

λ

where ρ ≡ h(θ + δ)− h(θ)

M(δ)
is the “reduction ratio” and 0 < ω1 < 1 is some decay constant, and

all quantities are computed on the current mini-batch (and M uses the exact F ).

Intuitively, this rule tries to make λ as small as possible (and hence the implicit trust-region
as large as possible) while maintaining the property that the quadratic model M(δ) remains a good
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local approximation to h (in the sense that it accurately predicts the value of h(θ + δ) for the δ
which gets chosen at each iteration). It has the desirable property that as the optimization enters
the final convergence stage where M becomes an almost exact approximation in a sufficiently
large neighborhood of the local minimum, the value of λ will go rapidly enough towards 0 that
it doesn’t interfere with the asymptotic local convergence theory enjoyed by 2nd-order methods
(Moré, 1978).

In our experiments we applied this rule every T1 iterations of K-FAC, with ω1 = (19/20)T1

and T1 = 5, from a starting value of λ = 150. Note that the optimal value of ω1 and the starting
value of λmay be application dependent, and setting them inappropriately could significantly slow
down K-FAC in practice.

Computing ρ can be done quite efficiently. Note that for the optimal δ, M(δ) = 1
2
∇h>δ, and

h(θ) is available from the usual forward pass. The only remaining quantity which is needed to
evaluate ρ is thus h(θ+ δ), which will require an additional forward pass. But fortunately, we only
need to perform this once every T1 iterations.

E.6 Maintaining a separate damping strength for the approximate Fisher

While the scheme described in the previous sections works reasonably well in most situations, we
have found that in order to avoid certain failure cases and to be truly robust in a large variety of sit-
uations, the Tikhonov damping strength parameter for the factored Tikhonov technique described
in Appendix E.3 should be maintained and adjusted independently of λ. To this end we replace the
expression

√
λ+ η in Appendix E.3 with a separate constant γ, which we initialize to

√
λ+ η but

which is then adjusted using a different rule, which is described at the end of this section.

The reasoning behind this modification is as follows. The role of λ, according to the Leven-
berg Marquardt theory (Moré, 1978), is to be as small as possible while maintaining the property
that the quadratic model M remains a trust-worthy approximation of the true objective. Mean-
while, γ’s role is to ensure that the initial update proposal ∆ is as good an approximation as
possible to the true optimum of M (as computed using a mini-batch estimate of the exact F ), so
that in particular the re-scaling performed in Appendix E.4 is as benign as possible. While one
might hope that adding the same multiple of the identity to our approximate Fisher as we do to the
exact F (as it appears in M ) would produce the best ∆ in this regard, this isn’t obviously the case.
In particular, using a larger multiple may help compensate for the approximation we are making to
the Fisher when computing ∆, and thus help produce a more “conservative” but ultimately more
useful initial update proposal ∆, which is what we observe happens in practice.

A simple measure of the quality of our choice of γ is the (negative) value of the quadratic
model M(δ) = M(α∆) for the optimally chosen α. To adjust γ based on this measure (or others
like it) we use a simple greedy adjustment rule. In particular, every T2 iterations during the opti-
mization we try 3 different values of γ (γ0, ω2γ0, and (1/ω2)γ0, where γ0 is the current value) and
choose the new γ to be the best of these, as measured by our quality metric. In our experiments
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we used T2 = 20 (which must be a multiple of the constant T3 as defined in Appendix G), and
ω2 = (

√
19/20)T2 .

We have found that M(δ) works well in practice as a measure of the quality of γ, and has the
added bonus that it can be computed at essentially no additional cost from the incidental quantities
already computed when solving for the optimal α. In our initial experiments we found that using
it gave similar results to those obtained by using other obvious measures for the quality of γ, such
as h(θ + δ).

F Momentum

Sutskever et al. (2013) found that momentum (Polyak, 1964; Plaut et al., 1986) was very helpful
in the context of stochastic gradient descent optimization of deep neural networks. A version of
momentum is also present in the original HF method, and it plays an arguably even more important
role in more “stochastic” versions of HF (Martens and Sutskever, 2012; Kiros, 2013).

A natural way of adding momentum to K-FAC, and one which we have found works well
in practice, is to take the update to be δ = α∆ + µδ0, where δ0 is the final update computed
at the previous iteration, and where α and µ are chosen to minimize M(δ). This allows K-FAC
to effectively build up a better solution to the local quadratic optimization problem minδM(δ)
(where M uses the exact F ) over many iterations, somewhat similarly to how Matrix Momentum
(Scarpetta et al., 1999) and HF do this (see Sutskever et al., 2013).

The optimal solution for α and µ can be computed as[
α∗

µ∗

]
= −

[
∆>F∆ + (λ+ η)‖∆‖2

2 ∆>Fδ0 + (λ+ η)∆>δ0

∆>Fδ0 + (λ+ η)∆>δ0 δ>0 Fδ0 + (λ+ η)‖δ0‖2
2

]−1 [∇h>∆
∇h>δ0

]

The main cost in evaluating this formula is computing the two matrix-vector products F∆
and Fδ0. Fortunately, the technique discussed in Appendix J can be applied here to compute the 4
required scalars at the cost of only two forwards passes (equivalent to the cost of only one matrix-
vector product with F ).

Empirically we have found that this type of momentum provides substantial acceleration in
regimes where the gradient signal has a low noise to signal ratio, which is usually the case in
the early to mid stages of stochastic optimization, but can also be the case in later stages if the
mini-batch size is made sufficiently large. These findings are consistent with predictions made by
convex optimization theory, and with older empirical work done on neural network optimization
(LeCun et al., 1998).

Notably, because the implicit “momentum decay constant” µ in our method is being computed
on the fly, one doesn’t have to worry about setting schedules for it, or adjusting it via heuristics, as
one often does in the context of SGD.
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Interestingly, if h is a quadratic function (so the definition of M(δ) remains fixed at each
iteration) and all quantities are computed deterministically (i.e. without noise), then using this
type of momentum makes K-FAC equivalent to performing preconditioned linear CG on M(δ),
with the preconditioner given by our approximate Fisher. This follows from the fact that linear
CG can be interpreted as a momentum method where the learning rate α and momentum decay
coefficient µ are chosen to jointly minimize M(δ) at the current iteration.

G Computational Costs and Efficiency Improvements

Let d be the typical number of units in each layer and m the mini-batch size. The significant
computational tasks required to compute a single update/iteration of K-FAC, and rough estimates
of their associated computational costs, are as follows:

1. standard forwards and backwards pass: 2C1`d
2m

2. computation of the gradient ∇h on the current mini-batch using quantities computed in
backwards pass: C2`d

2m

3. additional backwards pass with random targets (as described in Appendix D): C1`d
2m

4. updating the estimates of the required Āi,j’s and Gi,j’s from quantities computed in the
forwards pass and the additional randomized backwards pass: 2C2`d

2m

5. matrix inverses (or SVDs for the block-tridiagonal inverse, as described in Appendix I) re-
quired to compute the inverse of the approximate Fisher: C3`d

3 for the block-diagonal in-
verse, C4`d

3 for the block-tridiagonal inverse

6. various matrix-matrix products required to compute the matrix-vector product of the approx-
imate inverse with the stochastic gradient: C5`d

3 for the block-diagonal inverse, C6`d
3 for

the block-tridiagonal inverse

7. matrix-vector products with the exact F on the current mini-batch using the approach in
Appendix J: 4C1`d

2m with momentum, 2C1`d
2m without momentum

8. additional forward pass required to evaluate the reduction ratio ρ needed to apply the λ
adjustment rule described in Appendix E.5: C1`d

2m every T1 iterations

Here the Ci are various constants that account for implementation details, and we are assuming the
use of the naive cubic matrix-matrix multiplication and inversion algorithms when producing the
cost estimates. Note that it it is hard to assign precise values to the constants, as they very much
depend on how these various tasks are implemented.

Note that most of the computations required for these tasks will be sped up greatly by perform-
ing them in parallel across units, layers, training cases, or all of these. The above cost estimates
however measure sequential operations, and thus may not accurately reflect the true computation

16



times enjoyed by a parallel implementation. In our experiments we used a vectorized implemen-
tation that performed the computations in parallel over units and training cases, although not over
layers (which is possible for computations that don’t involve a sequential forwards or backwards
“pass” over the layers).

Tasks 1 and 2 represent the standard stochastic gradient computation.

The costs of tasks 3 and 4 are similar and slightly smaller than those of tasks 1 and 2. One
way to significantly reduce them is to use a random subset of the current mini-batch of size τ1m to
update the estimates of the required Āi,j’s andGi,j’s. One can similarly reduce the cost of task 7 by
computing the (factored) matrix-vector product with F using such a subset of size τ2m, although
we recommend caution when doing this, as using inconsistent sets of data for the quadratic and
linear terms in M(δ) can hypothetically cause instability problems which are avoided by using
consistent data (see Martens and Sutskever (2012), Section 13.1). In our experiments in Section 7
we used τ1 = 1/8 and τ2 = 1/4, which seemed to have a negligible effect on the quality of the
resultant updates, while significantly reducing per-iteration computation time. In a separate set of
unreported experiments we found that in certain situations, such as when `2 regularization isn’t
used and the network starts heavily overfitting the data, or when smaller mini-batches were used,
we had to revert to using τ2 = 1 to prevent significant deterioration in the quality of the updates.

The cost of task 8 can be made relatively insignificant by making the adjustment period T1 for
λ large enough. We used T1 = 5 in our experiments.

The costs of tasks 5 and 6 are hard to compare directly with the costs associated with comput-
ing the gradient, as their relative sizes will depend on factors such as the architecture of the neural
network being trained, as well as the particulars of the implementation. However, one quick obser-
vation we can make is that both tasks 5 and 6 involve computations that be performed in parallel
across the different layers, which is to be contrasted with many of the other tasks which require
sequential passes over the layers of the network.

Clearly, if m� d, then the cost of tasks 5 and 6 becomes negligible in comparison to the oth-
ers. However, it is more often the case that m is comparable or perhaps smaller than d. Moreover,
while algorithms for inverses and SVDs tend to have the same asymptotic cost as matrix-matrix
multiplication, they are at least several times more expensive in practice, in addition to being
harder to parallelize on modern GPU architectures (indeed, CPU implementations are often faster
in our experience). Thus, C3 and C4 will typically be (much) larger than C5 and C6, and so in a
basic/naive implementation of K-FAC, task 5 can dominate the overall per-iteration cost.

Fortunately, there are several possible ways to mitigate the cost of task 5. As mentioned
above, one way is to perform the computations for each layer in parallel, and even simultaneously
with the gradient computation and other tasks. In the case of our block-tridiagonal approximation
to the inverse, one can avoid computing any SVDs or matrix square roots by using an iterative
Stein-equation solver (see Appendix I). And there are also ways of reducing matrix-inversion (and
even matrix square-root) to a short sequence of matrix-matrix multiplications using iterative meth-
ods (Pan and Schreiber, 1991). Furthermore, because the matrices in question only change slowly
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over time, one can consider hot-starting these iterative inversion methods from previous solutions.
In the extreme case where d is very large, one can also consider using low-rank + diagonal approx-
imations of the Āi,j and Gi,j matrices maintained online (e.g. using a similar strategy as Le Roux
et al. (2008)) from which inverses and/or SVDs can be more easily computed. Although based on
our experience such approximations can, in some cases, lead to a substantial degradation in the
quality of the updates.

While these ideas work reasonably well in practice, perhaps the simplest method, and the one
we ended up settling on for our experiments, is to simply recompute the approximate Fisher inverse
only every T3 iterations (we used T3 = 20 in our experiments). As it turns out, the curvature of
the objective stays relatively stable during optimization, especially in the later stages, and so in our
experience this strategy results in only a modest decrease in the quality of the updates.

If m is much smaller than d, the costs associated with task 6 can begin to dominate (provided
T3 is sufficiently large so that the cost of task 5 is relatively small). And unlike task 5, task 6 must
be performed at every iteration. While the simplest solution is to increase m (while reaping the
benefits of a less noisy gradient), in the case of the block-diagonal inverse it turns out that we can
change the cost of task 6 from C5`d

3 to C5`d
2m by taking advantage of the low-rank structure of

the stochastic gradient. The method for doing this is described below.

Let Āi and Gi be matrices whose columns are the m āi’s and gi’s (resp.) associated with
the current mini-batch. Let ∇Wi

h denote the gradient of h with respect to Wi, shaped as a
matrix (instead of a vector). The estimate of ∇Wi

h over the mini-batch is given by 1
m
GiĀ>i−1,

which is of rank-m. From Section 3.2, computing the F̆−1∇h amounts to computing Ui =
G−1
i,i (∇Wi

h)Ā−1
i−1,i−1. Substituting in our mini-batch estimate of∇Wi

h gives

Ui = G−1
i,i

(
1

m
GiĀ>i−1

)
Ā−1
i−1,i−1 =

1

m

(
G−1
i,i Gi

) (
Ā>i−1Ā

−1
i−1,i−1

)
Direct evaluation of the expression on the right-hand side involves only matrix-matrix multiplica-
tions between matrices of size m× d and d×m (or between those of size d× d and d×m), and
thus we can reduce the cost of task 6 to C5`d

2m.

Note that the use of standard `2 weight-decay is not compatible with this trick. This is because
the contribution of the weight-decay term to each ∇Wi

h is νWi, which will typically not be low-
rank. Some possible ways around this issue include computing the weight-decay contribution
νF̆−1θ separately and refreshing it only occasionally, or using a different regularization method,
such as drop-out (Hinton et al., 2012) or weight-magnitude constraints.

Note that the adjustment technique for γ described in Appendix E.6 requires that, at every
T2 iterations, we compute 3 different versions of the update for each of 3 candidate values of γ.
In an ideal implementation these could be computed in parallel with each other, although in the
summary analysis below we will assume they are computed serially.

Summarizing, we have that with all of the various efficiency improvements discussed in this
section, the average per-iteration computational cost of K-FAC, in terms of serial arithmetic oper-
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ations, is

[(2 + τ1 + 2(1 + χmom)(1 + 2/T2)τ2 + 1/T1)C1 + (1 + 2τ1)C2]`d2m

+ (1 + 2/T2)[(C4/T3 + C6)χtri + C3/T3(1− χtri)]`d3 + (1 + 2/T2)C5(1− χtri)`d2 min{d,m}

where χmom, χtri ∈ {0, 1} are flag variables indicating whether momentum and the block-tridiagonal
inverse approximation (resp.) are used.

Plugging in the values of these various constants that we used in our experiments, for the
block-diagonal inverse approximation (χtri = 0) this becomes

(3.425C1 + 1.25C2)`d2m+ 0.055C3`d
3 + 1.1C5`d

2 min{d,m}

and for the block-tridiagonal inverse approximation (χtri = 1)

(3.425C1 + 1.25C2)`d2m+ (0.055C4 + 1.1C6)`d3

which is to be compared to the per-iteration cost of SGD, which is given by

(2C1 + C2)`d2m

H Pseudocode for K-FAC

Algorithm 2 gives high-level pseudocode for the K-FAC method, with the details of how to perform
the computations required for each major step left to their respective sections.

19



Algorithm 2 High-level pseudocode for K-FAC
• Initialize θ1 (e.g. using a good method such as the ones described in Martens (2010) or Glorot and
Bengio (2010))
• Choose initial values of λ (err on the side of making it too large)
• γ ←

√
λ+ η

• k ← 1
while θk is not satisfactory do
• Choose a mini-batch size m (e.g. using a fixed value, an adaptive rule, or some predefined schedule)
• Select a random mini-batch S′ ⊂ S of training cases of size m
• Select a random subset S1 ⊂ S′ of size τ1|S′|
• Select a random subset S2 ⊂ S′ of size τ2|S′|
• Perform a forward and backward pass on S′ to estimate the gradient∇h(θk) (see Algorithm 1)
• Perform an additional backwards pass on S1 using random targets generated from the model’s pre-
dictive distribution (as described in Appendix D)
• Update the estimates of the required Āi,j’s and Gi,j’s using the ai’s computed in forward pass for S1,
and the gi’s computed in the additional backwards pass for S1 (as described Appendix D)
• Choose a set Γ of new candidate γ’s as described in Appendix E.6 (setting Γ = {γ} if not adjusting
γ at this iteration, i.e. if k 6≡ 0 (mod T2) )
for each γ ∈ Γ do

if recomputing the approximate Fisher inverse this iteration (i.e. if k ≡ 0 (mod T3) or k ≤ 3) then
• Compute the approximate Fisher inverse (using the formulas derived in Section 3.2 or Section
3.3) from versions of the current Āi,j’s andGi,j’s which are modified as per the factored Tikhonov
damping technique described in Appendix E.3 (but using γ as described in Appendix E.6)

end if
• Compute the update proposal ∆ by multiplying current estimate of approximate Fisher inverse by
the estimate of ∇h (using the formulas derived in Section 3.2 or Section 3.3). For layers with size
d < m consider using trick described at the end of Appendix G for increased efficiency.
• Compute the final update δ from ∆ as described in Appendix E.4 (or Appendix F if using momen-
tum) where the matrix-vector products with F are estimated on S2 using the ai’s computed in the
forward pass

end for
• Select the δ and the new γ computing in the above loop that correspond to the lowest value of M(δ)
(see Appendix E.6)
if updating λ this iteration (i.e. if k ≡ 0 (mod T1)) then
• Update λ with the Levenberg-Marquardt style rule described in Appendix E.5

end if
• θk+1 ← θk + δ
• k ← k + 1

end while
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I Efficient techniques for inverting A⊗B ± C ⊗D

It is well known that (A ⊗ B)−1 = A−1 ⊗ B−1, and that matrix-vector products with this matrix
can thus be computed as (A−1 ⊗ B−1)v = vec(B−1V A−>), where V is the matrix representation
of v (so that v = vec(V )).

Somewhat less well known is that there are also formulas for (A⊗B ±C ⊗D)−1 which can
be efficiently computed and likewise give rise to efficient methods for computing matrix-vector
products.

First, note that (A⊗B ± C ⊗D)−1v = u is equivalent to (A⊗B ± C ⊗D)u = v, which is
equivalent to the linear matrix equationBUA>±DUC> = V , where u = vec(U) and v = vec(V ).
This is known as a generalized Stein equation, and different examples of it have been studied in
the control theory literature, where they have numerous applications. For a recent survey of this
topic, see Simoncini (2014).

One well-known class of methods called Smith-type iterations (Smith, 1968) involve rewriting
this matrix equation as a fixed point iteration and then carrying out this iteration to convergence.
Interestingly, through the use of a special squaring trick, one can simulate 2j of these iterations
with only O(j) matrix-matrix multiplications.

Another class of methods for solving Stein equations involves the use of matrix decomposi-
tions (e.g. Chu, 1987; Gardiner et al., 1992). Here we will present such a method particularly well
suited for our application, as it produces a formula for (A ⊗ B + C ⊗D)−1v, which after a fixed
overhead cost (involving the computation of SVDs and matrix square roots), can be repeatedly
evaluated for different choices of v using only a few matrix-matrix multiplications.

We will assume that A, B, C, and D are symmetric positive semi-definite, as they always are
in our applications. We have

A⊗B ± C ⊗D = (A1/2 ⊗B1/2)(I ⊗ I ± A−1/2CA−1/2 ⊗B−1/2DB−1/2)(A1/2 ⊗B1/2)

Inverting both sides of the above equation gives

(A⊗B ± C ⊗D)−1 = (A−1/2 ⊗B−1/2)(I ⊗ I ± A−1/2CA−1/2 ⊗B−1/2DB−1/2)−1(A−1/2 ⊗B−1/2)

Using the symmetric eigen/SVD-decomposition, we can write A−1/2CA−1/2 = E1S1E
>
1 and

B−1/2DB−1/2 = E2S2E
>
2 , where for i ∈ {1, 2} the Si are diagonal matrices and the Ei are unitary

matrices.

This gives

I ⊗ I ± A−1/2CA−1/2 ⊗B−1/2DB−1/2 = I ⊗ I ± E1S1E
>
1 ⊗ E2S2E

>
2

= E1E
>
1 ⊗ E2E

>
2 ± E1S1E

>
1 ⊗ E2S2E

>
2

= (E1 ⊗ E2)(I ⊗ I ± S1 ⊗ S2)(E>1 ⊗ E>2 )
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so that

(I ⊗ I ± A−1/2CA−1/2 ⊗B−1/2DB−1/2)−1 = (E1 ⊗ E2)(I ⊗ I ± S1 ⊗ S2)−1(E>1 ⊗ E>2 )

Note that both I⊗I and S1⊗S2 are diagonal matrices, and thus the middle matrix (I⊗I±S1⊗S2)−1

is just the inverse of a diagonal matrix, and so can be computed efficiently.

Thus we have

(A⊗B ± C ⊗D)−1 = (A−1/2 ⊗B−1/2)(E1 ⊗ E2)(I ⊗ I ± S1 ⊗ S2)−1(E>1 ⊗ E>2 )(A−1/2 ⊗B−1/2)

= (K1 ⊗K2)(I ⊗ I ± S1 ⊗ S2)−1(K>1 ⊗K>2 )

where K1 = A−1/2E1 and K2 = B−1/2E2.

And so matrix-vector products with (A⊗B ± C ⊗D)−1 can be computed as

(A⊗B ± C ⊗D)−1v = vec
(
K2

[
(K>2 V K1)�

(
11> ± s2s

>
1

)]
K>1
)

where E � F denotes element-wise division of E by F , si = diag(Si), and 1 is the vector of
ones (sized as appropriate). Note that if we wish to compute multiple matrix-vector products with
(A⊗B ± C ⊗D)−1 (as we will in our application), the quantities K1, K2, s1 and s2 only need to
be computed the first time, thus reducing the cost of any future such matrix-vector products, and
in particular avoiding any additional SVD computations.

In the considerably simpler case where A and B are both scalar multiples of the identity, and
ξ is the product of these multiples, we have

(ξI ⊗ I ± C ⊗D)−1 = (E1 ⊗ E2)(ξI ⊗ I ± S1 ⊗ S2)−1(E>1 ⊗ E>2 )

where E1S1E
>
1 and E2S2E

>
2 are the symmetric eigen/SVD-decompositions of C and D, respec-

tively. And so matrix-vector products with (ξI ⊗ I ± C ⊗D)−1 can be computed as

(ξI ⊗ I ± C ⊗D)−1v = vec
(
E2

[
(E>2 V E1)�

(
ξ11> ± s2s

>
1

)]
E>1
)

J Computing v>Fv and u>Fv more efficiently

Note that the Fisher is given by

F = EQ̂x

[
J>FRJ

]
where J is the Jacobian of f(x, θ) and FR is the Fisher information matrix of the network’s pre-
dictive distribution Ry|z, evaluated at z = f(x, θ) (where we treat z as the “parameters”).

To compute the matrix-vector product Fv as estimated from a mini-batch we simply compute
J>FRJv for each x in the mini-batch, and average the results. This latter operation can be com-
puted in 3 stages (e.g. Martens, 2014), which correspond to multiplication of the vector v first by
J , then by FR, and then by J>.
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Multiplication by J can be performed by a forward pass which is like a linearized version
of the standard forward pass of Algorithm 1. As FR is usually diagonal or diagonal plus rank-
1, matrix-vector multiplications with it are cheap and easy. Finally, multiplication by J> can
be performed by a backwards pass which is essentially the same as that of Algorithm 1. See
Schraudolph (2002); Martens (2014) for further details.

The naive way of computing v>Fv is to compute Fv as above, and then compute the in-
ner product of Fv with v. Additionally computing u>Fv and u>Fu would require another such
matrix-vector product Fu.

However, if we instead just compute the matrix-vector products Jv (which requires only half
the work of computing Fv), then computing v>Fv as (Jv)>FR(Jv) is essentially free. And with
Ju computed, we can similarly obtain u>Fv as (Ju)>FR(Jv) and u>Fu as (Ju)>FR(Ju).

This trick thus reduces the computational cost associated with computing these various scalars
by roughly half.

K Proofs for Section 4

Proof of Theorem 1. First we will show that the given network transformation can be viewed as
reparameterization of the network according to an invertible linear function ζ .

Define θ† = [vec(W †
1 )> vec(W †

2 )> . . . vec(W †
` )>]>, where W †

i = Φ−1
i WiΩ

−1
i−1 (so that Wi =

ΦiW
†
i Ωi−1) and let ζ be the function which maps θ† to θ. Clearly ζ is an invertible linear transfor-

mation.

If the transformed network uses θ† in place of θ then we have

ā†i = Ωiāi and s†i = Φ−1
i si

which we can prove by a simple induction. First note that ā†0 = Ω0ā0 by definition. Then, assuming
by induction that ā†i−1 = Ωi−1āi−1, we have

s†i = W †
i ā
†
i−1 = Φ−1

i WiΩ
−1
i−1Ωi−1āi−1 = Φ−1

i Wiāi−1 = Φ−1
i si

and therefore also

ā†i = Ωiφ̄i(Φis
†
i ) = Ωiφ̄i(ΦiΦ

−1
i si) = Ωiφ̄i(si) = Ωiāi

And because Ω` = I , we have ā†` = ā`, or more simply that a†` = a`, and thus both the
original network and the transformed one have the same output (i.e. f(x, θ) = f †(x, θ†)). From
this it follows that f †(x, θ†) = f(x, θ) = f(x, ζ(θ†)), and thus the transformed network can be
viewed as a reparameterization of the original network by θ†. Similarly we have that h†(θ†) =
h(θ) = h(ζ(θ†)).

The following lemma is adapted from Martens (2014).
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Lemma 5. Let ζ be some invertible affine function mapping θ† to θ, which reparameterizes the
objective h(θ) as h(ζ(θ†)). Suppose that B and B† are invertible matrices satisfying

J>ζ BJζ = B†

Then, additively updating θ by δ = −αB−1∇h is equivalent to additively updating θ† by δ† =
−αB†−1∇θ†h(ζ(θ†)), in the sense that ζ(θ† + δ†) = θ + δ.

Because h†(θ†) = h(θ) = h(ζ(θ†)) we have that ∇h† = ∇θ†h(ζ(θ†)). So, by the above
lemma, to prove the theorem it suffices to show that J>ζ F̆ Jζ = F̆ † and J>ζ F̃ Jζ = F̃ †.

Using Wi = ΦiW
†
i Ωi−1 it is straightforward to verify that

Jζ = diag(Ω>0 ⊗ Φ1,Ω
>
1 ⊗ Φ2, . . . , Ω>`−1 ⊗ Φ`)

Because si = Φis
†
i and the fact that the networks compute the same outputs (so the loss

derivatives are identical), we have by the chain rule that, g†i = Ds†i = Φ>i Dsi = Φ>i gi, and
therefore

G†i,j = E
[
g†i g
†>
j

]
= E

[
Φ>i gi(Φ

>
i gi)

>] = Φ>i E
[
gig
>
i

]
Φj = Φ>i Gi,jΦj

Furthermore,

Ā†i,j = E
[
ā†i ā
†>
j

]
= E

[
(Ωiāi)(Ωj āj)

>] = Ωi E
[
āiā
>
j

]
Ω>j = ΩiĀi,jΩ

>
j

Using these results we may express the Kronecker-factored blocks of the approximate Fisher
F̃ †, as computed using the transformed network, as follows:

F̃ †i,j = Ā†i−1,j−1 ⊗G
†
i,j = Ωi−1Āi−1,j−1Ω>j−1 ⊗ Φ>i Gi,jΦj = (Ωi−1 ⊗ Φ>i )(Āi−1,j−1 ⊗Gi,j)(Ω

>
j−1 ⊗ Φj)

= (Ωi−1 ⊗ Φ>i )F̃i,j(Ω
>
j−1 ⊗ Φj)

Given this identity we thus have

F̆ † = diag
(
F̃ †1,1, F̃

†
2,2, . . . , F̃

†
`,`

)
= diag

(
(Ω0 ⊗ Φ>1 )F̃1,1(Ω>0 ⊗ Φ1), (Ω1 ⊗ Φ>2 )F̃2,2(Ω>1 ⊗ Φ2), . . . , (Ω`−1 ⊗ Φ>` )F̃`,`(Ω

>
`−1 ⊗ Φ`)

)
= diag(Ω0 ⊗ Φ>1 ,Ω1 ⊗ Φ>2 , . . . , Ω`−1 ⊗ Φ>` ) diag

(
F̃1,1, F̃2,2, . . . , , F̃`,`

)
· diag(Ω>0 ⊗ Φ1,Ω

>
1 ⊗ Φ2, . . . , Ω>`−1 ⊗ Φ`)

= J>ζ F̆ Jζ

We now turn our attention to the F̂ (see Section 3.3 for the relevant notation).
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First note that

Ψ†i,i+1 = F̃ †i,i+1F̃
†−1
i+1,i+1 = (Ωi−1 ⊗ Φ>i )F̃i,i+1(Ω>i ⊗ Φi+1)

(
(Ωi ⊗ Φ>i+1)F̃i+1,i+1(Ω>i ⊗ Φi+1)

)−1

= (Ωi−1 ⊗ Φ>i )F̃i,i+1(Ω>i ⊗ Φi+1)(Ω>i ⊗ Φi+1)−1F̃−1
i+1,i+1(Ωi ⊗ Φ>i+1)−1

= (Ωi−1 ⊗ Φ>i )F̃i,i+1F̃
−1
i+1,i+1(Ωi ⊗ Φ>i+1)−1

= (Ωi−1 ⊗ Φ>i )Ψi,i+1(Ωi ⊗ Φ>i+1)−1

and so

Σ†i|i+1 = F̃ †i,i −Ψ†i,i+1F̃
†
i+1,i+1Ψ†>i,i+1

= (Ωi−1 ⊗ Φ>i )F̃i,i(Ω
>
i−1 ⊗ Φi)

− (Ωi−1 ⊗ Φ>i )Ψi,i+1(Ωi ⊗ Φ>i+1)−1(Ωi ⊗ Φ>i+1)F̃i+1,i+1(Ω>i ⊗ Φi+1)(Ωi ⊗ Φ>i+1)−>

·Ψ>i,i+1(Ωi−1 ⊗ Φ>i )>

= (Ωi−1 ⊗ Φ>i )(F̃i,i −Ψi,i+1F̃i+1,i+1Ψ>i,i+1)(Ω>i−1 ⊗ Φi)

= (Ωi−1 ⊗ Φ>i )Σi|i+1(Ω>i−1 ⊗ Φi)

Also, Σ†` = F̃ †`,` = (Ω`−1 ⊗ Φ>` )F̃`,`(Ω
>
`−1 ⊗ Φ`) = (Ω`−1 ⊗ Φ>` )Σ`(Ω

>
`−1 ⊗ Φ`).

From these facts it follows that

Λ†−1 = diag
(

Σ†1|2,Σ
†
2|3, . . . , Σ†`−1|`,Σ

†
`

)
= diag

(
(Ω0 ⊗ Φ>1 )Σ1|2(Ω0 ⊗ Φ>1 ), (Ω1 ⊗ Φ>2 )Σ2|3(Ω1 ⊗ Φ>2 ), . . . ,

(Ω`−2 ⊗ Φ>`−1)Σ`−1|`(Ω`−2 ⊗ Φ>`−1), (Ω`−1 ⊗ Φ>` )Σ`(Ω
>
`−1 ⊗ Φ`)

)
= diag(Ω0 ⊗ Φ>1 ,Ω1 ⊗ Φ>2 , . . . , Ω`−2 ⊗ Φ>`−1,Ω`−1 ⊗ Φ>` ) diag

(
Σ1|2,Σ2|3, . . . , Σ`−1|`,Σ`

)
diag(Ω>0 ⊗ Φ1,Ω

>
1 ⊗ Φ2, . . . , Ω>`−2 ⊗ Φ`−1,Ω

>
`−1 ⊗ Φ`)

= J>ζ Λ−1Jζ

Inverting both sides gives Λ† = J−1
ζ ΛJ−>ζ .

Next, observe that

Ψ†>i,i+1(Ω>i−1 ⊗ Φi)
−1 = (Ωi ⊗ Φ>i+1)−>Ψ>i,i+1(Ωi−1 ⊗ Φ>i )>(Ω>i−1 ⊗ Φi)

−1 = (Ω>i ⊗ Φi+1)−1Ψ>i,i+1
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from which it follows that

Ξ†>J−1
ζ =


I

−Ψ†>1,2 I

−Ψ†>2,3 I
. . . . . .
−Ψ†>`−1,` I

 diag((Ω>0 ⊗ Φ1)−1, (Ω>1 ⊗ Φ2)−1, . . . , (Ω>`−1 ⊗ Φ`)
−1)

=


(Ω>0 ⊗ Φ1)−1

−Ψ†>1,2(Ω>0 ⊗ Φ1)−1 (Ω>1 ⊗ Φ2)−1

−Ψ†>2,3(Ω>1 ⊗ Φ2)−1 (Ω>2 ⊗ Φ3)−1

. . . . . .
−Ψ†>`−1,`(Ω

>
`−2 ⊗ Φ`−1)−1 (Ω>`−1 ⊗ Φ`)

−1



=


(Ω>0 ⊗ Φ1)−1

−(Ω>0 ⊗ Φ1)−1Ψ>1,2 (Ω>1 ⊗ Φ2)−1

−(Ω>1 ⊗ Φ2)−1Ψ>2,3 (Ω>2 ⊗ Φ3)−1

. . . . . .
−(Ω>`−2 ⊗ Φ`−1)−1Ψ>`−1,` (Ω>`−1 ⊗ Φ`)

−1



= diag((Ω>0 ⊗ Φ1)−1, (Ω>1 ⊗ Φ2)−1, . . . , (Ω>`−1 ⊗ Φ`)
−1)


I
−Ψ>1,2 I

−Ψ>2,3 I
. . . . . .
−Ψ>`−1,` I


= J−1

ζ Ξ>

Combining Λ† = J−1
ζ ΛJ−>ζ and Ξ†>J−1

ζ = J−1
ζ Ξ> we have

F̂ †−1 = Ξ†>Λ†Ξ† = Ξ†>J−1
ζ ΛJ−>ζ Ξ† = (Ξ†>J−1

ζ )Λ(Ξ†>J−1
ζ )> = (J−1

ζ Ξ>)Λ(J−1
ζ Ξ>)>

= J−1
ζ Ξ>ΛΞJ−>ζ

= J−1
ζ F̂−1J−>ζ

Inverting both sides gives F̂ † = J>ζ F̂ Jζ as required.

Proof of Corollary 3. First note that a network which is transformed so that G†i,i = I and Ā†i,i = I

will satisfy the required properties. To see this, note that E[g†i g
†>
i ] = G†i,i = I means that g†i is

whitened with respect to the model’s distribution by definition (since the expectation is taken with
respect to the model’s distribution), and furthermore we have that E[g†i ] = 0 by default (e.g. using
Lemma 4), so g†i is centered. And since E[a†ia

†>
i ] is the square submatrix of Ā†i,i = I which leaves
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out the last row and column, we also have that E[a†ia
†>
i ] = I and so a†i is whitened. Finally, observe

that E[a†i ] is given by the final column (or row) of Āi,i, excluding the last entry, and is thus equal
to 0, and so a†i is centered.

Next, we note that if G†i,i = I and Ā†i,i = I then

F̆ † = diag
(
Ā†0,0 ⊗G

†
1,1, Ā

†
1,1 ⊗G

†
2,2, . . . , Ā

†
`−1,`−1 ⊗G

†
`,`

)
= diag (I ⊗ I, I ⊗ I, . . . , I ⊗ I) = I

and so −αF̆−1∇h† = −α∇h† is indeed a standard gradient descent update.

Finally, we observe that there are choices of Ωi and Φi which will make the transformed
model satisfy G†i,i = I and Ā†i,i = I . In particular, from the proof of Theorem 1 we have that
G†i,j = Φ>i Gi,jΦj and Ā†i,j = ΩiĀi,jΩ

>
j , and so taking Φi = G

−1/2
i,i and Ωi = Ā

−1/2
i,i works.

The result now follows from Theorem 1.

L Additional related work

The Hessian-free optimization method of Martens (2010) uses linear conjugate gradient (CG) to
optimize local quadratic models of the form of eqn. 5 (subject to an adaptive Tikhonov damping
technique) in lieu of directly solving it using matrix inverses. As discussed in the introduction, the
main advantages of K-FAC over HF are twofold. Firstly, K-FAC uses an efficiently computable
direct solution for the inverse of the curvature matrix and thus avoids the costly matrix-vector
products associated with running CG within HF. Secondly, it can estimate the curvature matrix
from a lot of data by using an online exponentially-decayed average, as opposed to relatively
small-sized fixed mini-batches used by HF. The cost of doing this is of course the use of an inexact
approximation to the curvature matrix.

Le Roux et al. (2008) proposed a neural network optimization method known as TONGA
based on a block-diagonal approximation of the empirical Fisher where each block corresponds to
the weights associated with a particular unit. By contrast, K-FAC uses much larger blocks, each
of which corresponds to all the weights within a particular layer. The matrices which are inverted
in K-FAC are roughly the same size as those which are inverted in TONGA, but rather than there
being one per unit as in TONGA, there are only two per layer. Therefore, K-FAC is significantly
less computationally intensive than TONGA, despite using what is arguably a much more accurate
approximation to the Fisher.

Concurrently with this work Povey et al. (2015) has developed a neural network optimization
method which uses a block-diagonal Kronecker-factored approximation similar to the one from
Heskes (2000). This approach differs from K-FAC in numerous ways, including its use of the em-
pirical Fisher (which doesn’t work as well as the standard Fisher in our experience – see Appendix
D), and its use of only a basic factored Tikhonov damping technique without adaptive re-scaling
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or any form of momentum. One interesting idea introduced by Povey et al. (2015) is a particular
method for maintaining an online low-rank plus diagonal approximation of the factor matrices for
each block, which allows their inverses to be computed more efficiently (although subject to an
approximation). While our experiments with similar kinds of methods for maintaining such online
estimates found that they performed poorly in practice compared to the solution of refreshing the
inverses only occasionally (see Appendix G), the particular one developed by Povey et al. (2015)
could potentially still work well, and may be especially useful for networks with very wide layers.

M Additional experiments and results plots

In our initial experiment we examined the relationship between the mini-batch size m and the per-
iteration rate of progress made by K-FAC and the baseline on the MNIST problem. The results
from this experiment are plotted in Figure 8. They strongly suggest that the per-iteration rate
of progress of K-FAC tends to a superlinear function of m (which can be most clearly seen by
examining the plots of training error vs training cases processed), which is to be contrasted with
the baseline, where increasingm has a much smaller effect on the per-iteration rate of progress, and
with K-FAC without momentum, where the per-iteration rate of progress seems to be a linear or
slightly sublinear function of m. It thus appears that the main limiting factor in the convergence of
K-FAC (with momentum applied) is the noise in the gradient, at least in later stages of optimization,
and that this is not true of the baseline to nearly the same extent. This would seem to suggest that
K-FAC, much more than SGD, would benefit from a massively parallel distributed implementation
which makes use of more computational resources than a single GPU.

But even in the single CPU/GPU setting, the fact that the per-iteration rate of progress tends
to a superlinear function of m, while the per-iteration computational cost of K-FAC is a roughly
linear function of m, suggests that in order to obtain the best per-second rate of progress with K-
FAC, we should use a rapidly increasing schedule for m. To this end we designed an exponentially
increasing schedule for m, given by mi = min(m1 exp((i − 1)/b), |S|), where i is the current
iteration, m1 = 1000, and where b is chosen so that m500 = |S|. The approach of increasing the
mini-batch size in this way is analyzed by Friedlander and Schmidt (2012). Note that for other
neural network optimization problems, such as ones involving larger training datasets than these
autoencoder problems, a more slowly increasing schedule, or one that stops increasing well before
m reaches |S|, may be more appropriate.

From Figure 9, which consists of results from our second (main) experiment described in Sec-
tion 7, we can see that the block-tridiagonal version of K-FAC has a per-iteration rate of progress
which is typically 25% to 40% larger than the simpler block-diagonal version. This observation
provides empirical support for the idea that the block-tridiagonal approximate inverse Fisher F̂−1

is a more accurate approximation of F−1 than the block-diagonal approximation F̆−1. However,
due to the higher cost of the iterations in the block-tridiagonal version, its overall per-second rate of
progress seems to be only moderately higher than the block-diagonal version’s (as seen in Figure
4), depending on the problem.
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Figure 8: Results from our first experiment examining the relationship between the mini-batch size m and
the per-iteration progress (left column) or per-training case progress (right column) progress made by K-
FAC on the MNIST deep autoencoder problem. Here, “Blk-TriDiag K-FAC” is the block-tridiagonal version
of K-FAC, and “Blk-Diag K-FAC” is the block-diagonal version, and “no moment.” indicates that momen-
tum was not used. The bottom row consists of zoomed-in versions of the right plot from the row above it,
with the left plot concentrating on the beginning stage of optimization, and the right plot concentrating on
the later stage. Note that the x-axes of these two last plots are at significantly different scales (106 vs 107).
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Figure 9: More results from our second experiment showing training error versus iteration on the CURVES
(top row), MNIST (middle row), and FACES (bottom row) deep autoencoder problems. The plots on the
right are zoomed in versions of those on the left which highlight the difference in per-iteration progress
made by the different versions of K-FAC.
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