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Abstract
We propose an efficient method for approximat-
ing natural gradient descent in neural networks
which we call Kronecker-factored Approximate
Curvature (K-FAC). K-FAC is based on an effi-
ciently invertible approximation of a neural net-
work’s Fisher information matrix which is nei-
ther diagonal nor low-rank, and in some cases is
completely non-sparse. It is derived by approxi-
mating various large blocks of the Fisher (corre-
sponding to entire layers) as being the Kronecker
product of two much smaller matrices. While
only several times more expensive to compute
than the plain stochastic gradient, the updates
produced by K-FAC make much more progress
optimizing the objective, which results in an al-
gorithm that can be much faster than stochas-
tic gradient descent with momentum in practice.
And unlike some previously proposed approx-
imate natural-gradient/Newton methods which
use high-quality non-diagonal curvature matri-
ces (such as Hessian-free optimization), K-FAC
works very well in highly stochastic optimiza-
tion regimes. This is because the cost of storing
and inverting K-FAC’s approximation to the cur-
vature matrix does not depend on the amount of
data used to estimate it, which is a feature typi-
cally associated only with diagonal or low-rank
approximations to the curvature matrix.

1. Background and notation
1.1. Neural Networks

We begin by defining the basic notation for feed-forward
neural networks which we will use throughout this paper.

A neural network transforms its input a0 = x to an output
f(x, θ) = a` through a series of ` layers, each of which
consists of a bank of units/neurons. The units each re-
ceive as input a weighted sum of the outputs of units from

Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

the previous layer and compute their output via a nonlin-
ear “activation” function. We denote by si the vector of
these weighted sums for the i-th layer, and by ai the vector
of unit outputs (aka “activities”). The precise computation
performed at each layer i ∈ {1, . . . , `} is given as follows:

si = Wiāi−1 ai = φi(si)

where φi is an element-wise nonlinear function, Wi is a
weight matrix, and āi is defined as the vector formed by ap-
pending to ai an additional homogeneous coordinate with
value 1. Note that we do not include explicit bias param-
eters here as these are captured implicitly through our use
of homogeneous coordinates. In particular, the last column
of each weight matrix Wi corresponds to what is usually
thought of as the “bias vector”.

We will define θ to be the vector consisting of all
of the network’s parameters concatenated together, i.e.
[vec(W1)> vec(W2)> . . . vec(W`)

>]>, where vec is the
operator which vectorizes matrices by stacking their
columns together.

We let L(y, z) denote the loss function which measures the
disagreement between a prediction z made by the network,
and a target y. The training objective function h(θ) is the
average (or expectation) of losses L(y, f(x, θ)) with re-
spect to a training distribution Q̂x,y over input-target pairs
(x, y). h(θ) is a proxy for the objective which we actually
care about but don’t have access to, which is the expecta-
tion of the loss taken with respect to the true data distribu-
tion Qx,y .

We will assume that the loss is given by the negative log
probability associated with a simple predictive distribution
Ry|z for y parameterized by z, i.e. that we have L(y, z) =
− log r(y|z) where r is Ry|z’s density function. This is the
case for both the standard least-squares and cross-entropy
objective functions, where the predictive distributions are
multivariate normal and multinomial, respectively.

We will let Py|x(θ) = Ry|f(x,θ) denote the conditional dis-
tribution defined by the neural network, as parameterized
by θ, and p(y|x, θ) = r(y|f(x, θ)) its density function.
Note that minimizing the objective function h(θ) can be
seen as maximum likelihood learning of the model Py|x(θ).

For convenience we will define the following additional no-
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tation:

Dv =
dL(y, f(x, θ))

dv
= −d log p(y|x, θ)

dv
and gi = Dsi

Algorithm 1 (in Appendix A) shows how to compute the
gradient Dθ of the loss function of a neural network using
standard backpropagation.

1.2. The Natural Gradient

Because our network defines a conditional model Py|x(θ),
it has an associated Fisher information matrix (which we
will simply call “the Fisher”) which is given by

F = E

[
d log p(y|x, θ)

dθ

d log p(y|x, θ)
dθ

>
]

= E[DθDθ>]

Here, the expectation is taken with respect to the data dis-
tribution Qx over inputs x, and the model’s predictive dis-
tribution Py|x(θ) over y. Since we usually don’t have ac-
cess to Qx, and the above expectation would likely be in-
tractable even if we did, we will instead compute F using
the training distribution Q̂x over inputs x.

The well-known natural gradient (Amari, 1998) is defined
as F−1∇h(θ). Motivated from the perspective of informa-
tion geometry (Amari and Nagaoka, 2000), the natural gra-
dient defines the direction in parameter space which gives
the largest change in the objective per unit of change in
the model, as measured by the KL-divergence. This is to
be contrasted with the standard gradient, which can be de-
fined as the direction in parameter space which gives the
largest change in the objective per unit of change in the pa-
rameters, as measured by the standard Euclidean metric.

The natural gradient also has links to several classical ideas
from optimization. It can be shown (Martens, 2014; Pas-
canu and Bengio, 2014) that the Fisher is equivalent to the
Generalized Gauss-Newton matrix (GGN) (Schraudolph,
2002; Martens and Sutskever, 2012) in certain important
cases, which is a well-known positive semi-definite approx-
imation to the Hessian of the objective function.

The GGN has served as the curvature matrix of choice in
Hessian-free optimization (HF) (Martens, 2010) and re-
lated methods, and so in light of its equivalence to the
Fisher, these 2nd-order methods can be seen as approx-
imate natural gradient methods. And perhaps more im-
portantly from a practical perspective, natural gradient-
based optimization methods can conversely be viewed as
2nd-order optimization methods, which as pointed out by
Martens (2014)), brings to bare the vast wisdom that has
accumulated about how to make such methods work well
in both theory and practice (e.g Nocedal and Wright, 2006).

For some good recent discussion and analysis of the natural
gradient, see Arnold et al. (2011); Martens (2014); Pascanu
and Bengio (2014).

2. A block-wise Kronecker-factored Fisher
approximation

The main computational challenge associated with using
the natural gradient is computing F−1 (or its product with
∇h). For large networks, with potentially millions of pa-
rameters, computing this inverse naively is computationally
impractical. In this section we develop an initial approxi-
mation of F which will be a key ingredient in deriving our
efficiently computable approximation to F−1 and the natu-
ral gradient.

Note that Dθ = [d>1 d>2 · · · d>` ]> where di = vec(DWi)
and so F = E[DθDθ>] can be viewed as an ` by `
block matrix, with the (i, j)-th block Fi,j given by Fi,j =
E
[
did
>
j

]
.

Noting that DWi = giā
>
i−1 and that vec(uv>) = v ⊗ u

we have di = vec(giā
>
i−1) = āi−1 ⊗ gi, and thus we can

rewrite Fi,j as

Fi,j = E
[
did
>
j

]
= E

[
(āi−1 ⊗ gi)(āj−1 ⊗ gj)>

]
= E

[
(āi−1 ⊗ gi)(ā>j−1 ⊗ g>j )

]
= E

[
āi−1ā

>
j−1 ⊗ gig>j

]
where A ⊗ B denotes the Kronecker product between A
and B.

Our initial approximation F̃ to F will be defined by the
following block-wise approximation:

Fi,j = E
[
āi−1ā

>
j−1 ⊗ gig>j

]
≈ E

[
āi−1ā

>
j−1

]
⊗ E

[
gig
>
j

]
= Āi−1,j−1 ⊗Gi,j = F̃i,j (1)

where Āi,j = E
[
āiā
>
j

]
and Gi,j = E

[
gig
>
j

]
.

This gives

F̃ =


Ā0,0 ⊗G1,1 Ā0,1 ⊗G1,2 · · · Ā0,`−1 ⊗G1,`

Ā1,0 ⊗G2,1 Ā1,1 ⊗G2,2 · · · Ā1,`−1 ⊗G2,`

...
...

. . .
...

Ā`−1,0 ⊗G`,1 Ā`−1,1 ⊗G`,2 · · · Ā`−1,`−1 ⊗G`,`


which has the form of what is known as a Khatri-Rao prod-
uct in multivariate statistics.

The expectation of a Kronecker product is, in general, not
equal to the Kronecker product of expectations, and so this
is indeed a major approximation to make, and one which
likely won’t become exact under any realistic set of as-
sumptions, or as a limiting case in some kind of asymp-
totic analysis. Nevertheless, it seems to be fairly accurate
in practice, and is able to successfully capture the “coarse
structure” of the Fisher, as demonstrated in Figure 1 for an
example network.

As we will see in later sections, this approximation leads to
significant computational savings in terms of storage and
inversion, which we will be able to leverage in order to de-
sign an efficient algorithm for computing an approximation
to the natural gradient.
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Figure 1. A comparison of the exact Fisher F and our block-wise
Kronecker-factored approximation F̃ , for the middle 4 layers of a
standard deep neural network partially trained to classify a 16x16
down-scaled version of MNIST. The network was trained with 7
iterations of K-FAC in batch mode, achieving 5% error (the error
reached 0% after 22 iterations) . The network architecture is 256-
20-20-20-20-20-10 and uses standard tanh units. On the left is
the exact Fisher F , in the middle is our approximation F̃ , and on
the right is the difference of these. The dashed lines delineate the
blocks.

2.1. Interpretations of this approximation

Consider an arbitrary pair of weights [Wi]k1,k2 and
[Wj ]k3,k4 from the network, where [·]i,j denotes the value
of the (i, j)-th entry. We have that the corresponding
derivatives of these weights are given by D[Wi]k1,k2 =

ā(1)g(1) and D[Wj ]k3,k4 = ā(2)g(2), where we denote for
convenience ā(1) = [āi−1]k1 , ā(2) = [āj−1]k3 , g(1) =

[gi]k2 , and g(2) = [gj ]k4 .

The approximation given by eqn. 1 is equivalent to making
the following approximation for each pair of weights:

E [D[Wi]k1,k2D[Wj ]k3,k4 ] = E
[
(ā(1)g(1))(ā(2)g(2))

]
= E

[
ā(1)ā(2) g(1)g(2)

]
≈ E

[
ā(1)ā(2)

]
E
[
g(1)g(2)

]
(2)

And thus one way to interpret the approximation in eqn. 1
is that we are assuming statistical independence between
products ā(1)ā(2) of unit activities and products g(1)g(2) of
unit input derivatives.

Another more detailed interpretation of the approxi-
mation emerges by considering the following expres-
sion for the approximation error E

[
ā(1)ā(2) g(1)g(2)

]
−

E
[
ā(1)ā(2)

]
E
[
g(1)g(2)

]
(which is derived in the ap-

pendix):

κ(ā(1), ā(2), g(1), g(2)) + E[ā(1)]κ(ā(2), g(1), g(2)) (3)

+ E[ā(2)]κ(ā(1), g(1), g(2))

Here κ(·) denotes the cumulant of its arguments. Cumu-
lants are a natural generalization of the concept of mean
and variance to higher orders, and indeed 1st-order cumu-
lants are means and 2nd-order cumulants are covariances.
Intuitively, cumulants of order k measure the degree to
which the interaction between variables is intrinsically of
order k, as opposed to arising from many lower-order in-
teractions.

A basic upper bound for the approximation error is

|κ(ā(1), ā(2), g(1), g(2))|+ |E[ā(1)]||κ(ā(2), g(1), g(2))|
+ |E[ā(2)]||κ(ā(1), g(1), g(2))| (4)

which will be small if all of the higher-order cumulants are
small (i.e. those of order 3 or higher). Note that in principle
this upper bound may be loose due to possible cancellations
between the terms in eqn. 3.

Because higher-order cumulants are zero for variables
jointly distributed according to a multivariate Gaussian, it
follows that this upper bound on the approximation error
will be small insofar as the joint distribution over ā(1),
ā(2), g(1), and g(2) is well approximated by a multivari-
ate Gaussian. And while we are not aware of an argument
for why this should be the case in practice, it does seem
to be the case that for the example network from Figure
1, the size of the error is well predicted by the size of the
higher-order cumulants. In particular, the total approxima-
tion error, summed over all pairs of weights in the middle
4 layers, is 2894.4, and is of roughly the same size as the
corresponding upper bound (4134.6), whose size is tied to
that of the higher order cumulants (due to the impossibility
of cancellations in eqn. 4).

3. Additional approximations to F̃ and
inverse computations

To the best of our knowledge there is no efficient general
method for inverting a Khatri-Rao product like F̃ . Thus, we
must make further approximations if we hope to obtain an
efficiently computable approximation of the inverse Fisher.

In the following subsections we argue that the inverse of
F̃ can be reasonably approximated as having one of two
special structures, either of which make it efficiently com-
putable. The second of these will be slightly less restric-
tive than the first (and hence a better approximation) at the
cost of some additional complexity. We will then show how
matrix-vector products with these approximate inverses can
be efficiently computed, which will thus give an efficient
algorithm for computing an approximation to the natural
gradient.

3.1. Structured inverses and the connection to linear
regression

Suppose we are given a multivariate distribution whose as-
sociated covariance matrix is Σ.

Define the matrix B so that for i 6= j, [B]i,j is the coeffi-
cient on the j-th variable in the optimal linear predictor of
the i-th variable from all the other variables, and for i = j,
[B]i,j = 0. Then define the matrix D to be the diagonal
matrix where [D]i,i is the variance of the error associated
with such a predictor of the i-th variable.

Pourahmadi (2011) showed that the inverse covariance ma-
trix can be expressed as Σ−1 = D−1(I −B).
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Figure 2. A comparison of our block-wise Kronecker-factored ap-
proximation F̃ , and its inverse, using the example neural network
from Figure 1. On the left is F̃ , in the middle is its exact inverse,
and on the right is a 4x4 matrix containing the averages of the
absolute values of the entries in each block of the inverse.

Intuitively, this result says that each row of the inverse co-
variance Σ−1 is given by the coefficients of the optimal
linear predictor of the i-th variable from the others, up to a
scaling factor. So if the j-th variable is much less “useful”
than the other variables for predicting the i-th variable, we
can expect that the (i, j)-th entry of the inverse covariance
will be relatively small.

Note that “usefulness” is a subtle property as we have in-
formally defined it. In particular, it is not equivalent to the
degree of correlation between the j-th and i-th variables,
or any such simple measure. As a simple example, con-
sider the case where the j-th variable is equal to the k-th
variable plus independent Gaussian noise. Since any linear
predictor can achieve a lower variance simply by shifting
weight from the j-th variable to the k-th variable, we have
that the j-th variable is not useful (and its coefficient will
thus be zero) in the task of predicting the i-th variable for
any setting of i other than i = j or i = k.

Noting that the Fisher F is a covariance matrix over Dθ
w.r.t. the model’s distribution (because E[Dθ] = 0 by
Lemma 4), we can thus apply the above analysis to the
distribution over Dθ to gain insight into the approximate
structure of F−1, and by extension its approximation F̃−1.

Consider the derivative DWi of the loss with respect to the
weights Wi of layer i. Intuitively, if we are trying to pre-
dict one of the entries of DWi from the other entries of
Dθ, those entries also in DWi will likely be the most use-
ful in this regard. Thus, it stands to reason that the largest
entries of F̃−1 will be those on the diagonal blocks, so
that F̃−1 will be well approximated as block-diagonal, with
each block corresponding to a different DWi.

Beyond the other entries ofDWi, it is the entries ofDWi+1

andDWi−1 (i.e. those associated with adjacent layers) that
will arguably be the most useful in predicting a given entry
ofDWi. This is because the true process for computing the
loss gradient only uses information from the layer below
(during the forward pass) and from the layer above (during
the backwards pass). Thus, approximating F̃−1 as block-
tridiagonal seems like a reasonable and milder alternative
than taking it to be block-diagonal. Indeed, this approx-
imation would be exact if the distribution over Dθ were
given by a directed graphical model which generated each

of the DWi’s, one layer at a time, from either DWi+1 or
DWi−1. Or equivalently, if DWi were distributed accord-
ing to an undirected Gaussian graphical model with binary
potentials only between entries in the same or adjacent lay-
ers. Both of these models are depicted in Figure 3.

Now while in reality the DWi’s are generated using infor-
mation from adjacent layers according to a process that is
neither linear nor Gaussian, it nonetheless stands to rea-
son that their joint statistics might be reasonably approxi-
mated by such a model. In fact, the idea of approximating
the distribution over loss gradients with a directed graphi-
cal model forms the basis of the recent FANG method of
Grosse and Salakhutdinov (2015).

Figure 2 examines the extent to which the inverse Fisher is
well approximated as block-diagonal or block-tridiagonal
for an example network.

In the following two subsections we show how both the
block-diagonal and block-tridiagonal approximations to
F̃−1 give rise to computationally efficient methods for
computing matrix-vector products with it. And in Ap-
pendix C we present two figures (Figures 5 and 6) which
examine the quality of these approximations for an exam-
ple network.

3.2. Approximating F̃−1 as block-diagonal

Approximating F̃−1 as block-diagonal is equivalent to ap-
proximating F̃ as block-diagonal. A natural choice for such
an approximation F̆ of F̃ , is to take the block-diagonal of
F̆ to be that of F̃ . This gives the matrix

F̆ = diag
(
Ā0,0 ⊗G1,1, Ā1,1 ⊗G2,2, . . . , Ā`−1,`−1 ⊗G`,`

)
Using the identity (A⊗B)−1 = A−1⊗B−1 we can easily
compute the inverse of F̆ as

F̆−1 = diag
(
Ā−1

0,0 ⊗G
−1
1,1, . . . , Ā

−1
`−1,`−1 ⊗G

−1
`,`

)
Thus, computing F̆−1 amounts to computing the inverses
of 2` smaller matrices.

Then to compute u = F̆−1v, we can make use of the well-
known identity (A⊗B) vec(X) = vec(BXA>) to get

Ui = G−1
i,i ViĀ

−1
i−1,i−1

where v maps to (V1, V2, . . . , V`) and u maps to
(U1, U2, . . . , U`) in an analogous way to how θ maps to
(W1,W2, . . . ,W`).

3.3. Approximating F̃−1 as block-tridiagonal

Note that unlike in the above block-diagonal case, approx-
imating F̃−1 as block-tridiagonal is not equivalent to ap-
proximating F̃ as block-tridiagonal. Thus we require a
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. . .

. . .

Figure 3. A diagram depicting the UGGM corresponding to F̂−1

and its equivalent DGGM. The UGGM’s edges are labeled with
the corresponding weights of the model (these are distinct from
the network’s weights). Here, (F̂−1)i,j denotes the (i, j)-th block
of F̂−1. The DGGM’s edges are labeled with the matrices that
specify the linear mapping from the source node to the conditional
mean of the destination node (whose conditional covariance is
given by its label).

more sophisticated approach to deal with such an approxi-
mation. We develop such an approach in this subsection.

To start, we will define F̂ to be the matrix which agrees
with F̃ on the tridiagonal blocks, and which satisfies the
property that F̂−1 is block-tridiagonal. Note that this def-
inition implies certain values for the off-tridiagonal blocks
of F̂ which will differ from those of F̃ insofar as F̃−1 is
not actually block-tridiagonal.

To establish that such a matrix F̂ is well defined and can
be inverted efficiently, we first observe that assuming that
F̂−1 is block-tridiagonal is equivalent to assuming that it
is the precision matrix of an undirected Gaussian graphical
model (UGGM) over Dθ (as depicted in Figure 3), whose
density function is proportional to exp(−Dθ>F̂−1Dθ). As
this graphical model has a tree structure, there is an equiv-
alent directed graphical model with the same distribution
and the same (undirected) graphical structure (e.g. Bishop,
2006), where the directionality of the edges is given by a
directed acyclic graph (DAG). Moreover, this equivalent
directed model will also be linear/Gaussian, and hence a
directed Gaussian Graphical model (DGGM).

Next we will show how the parameters of such a DGGM
corresponding to F̂ can be efficiently recovered from the
tridiagonal blocks of F̂ , so that F̂ is uniquely determined
by these blocks (and hence well-defined). We will assume
here that the direction of the edges is from the higher layers
to the lower ones. Note that a different choice for these
directions would yield a superficially different algorithm
for computing the inverse of F̂ that would nonetheless yield
the same output.

For each i, we will denote the conditional covariance ma-
trix of vec(DWi) on vec(DWi+1) by Σi|i+1 and the linear
coefficients from vec(DWi+1) to vec(DWi) by the matrix
Ψi,i+1, so that the conditional distributions defining the
model are vec(DWi) ∼ N

(
Ψi,i+1vec(DWi+1), Σi|i+1

)
and vec(DW`) ∼ N

(
~0, Σ`

)
Since Σ` is just the covariance of vec(DW`), it is given

simply by F̃`,`. And for i ≤ ` − 1, we can see that Ψi,i+1

is given by Ψi,i+1 = F̂i,i+1F̂
−1
i+1,i+1. where

ΨĀ
i−1,i = Āi−1,iĀ

−1
i,i and ΨG

i,i+1 = Gi,i+1G
−1
i+1,i+1

The conditional covariance Σi|i+1 is thus given by

Σi|i+1 = F̃i,i−Ψi,i+1F̃i+1,i+1Ψ>i,i+1 = Āi−1,i−1 ⊗Gi,i
−ΨĀ

i−1,iĀi,iΨ
Ā>
i−1,i ⊗ΨG

i,i+1Gi+1,i+1ΨG>
i,i+1

Following the work of Grosse and Salakhutdinov (2015),
we use the block generalization of well-known “Cholesky”
decomposition of the precision matrix of DGGMs (Pourah-
madi, 1999), which gives

F̂−1 = Ξ>ΛΞ

where Λ = diag
(

Σ−1
1|2, . . . , Σ−1

`−1|`,Σ
−1
`

)

and Ξ =


I −Ψ1,2

I −Ψ2,3

I
. . .
. . . −Ψ`−1,`

I


Thus, matrix-vector multiplication with F̂−1 amounts to
performing matrix-vector multiplication by Ξ, followed by
Λ, and then by Ξ>.

As in the block-diagonal case considered in the previous
subsection, matrix-vector products with Ξ (and Ξ>) can be
efficiently computed using the well-known property (A ⊗
B)−1 = A−1 ⊗ B−1. In particular, u = Ξ>v can be
computed as

Ui = Vi −ΨG>
i−1,iVi−1ΨĀ

i−2,i−1 and U1 = V1

and similarly u = Ξv can be computed as

Ui = Vi −ΨG
i,i+1Vi+1ΨĀ>

i−1,i and U` = V`

where the Ui’s and Vi’s are defined in terms of u and v as
in the previous subsection.

Multiplying a vector v by Λ amounts to multiplying each
vec(Vi) by the corresponding Σ−1

i|i+1. This is slightly tricky
because Σi|i+1 is the difference of Kronecker products, so
we cannot use the straightforward identity (A ⊗ B)−1 =
A−1 ⊗B−1. Fortunately, there are efficient techniques for
inverting such matrices which we discuss in detail in Ap-
pendix I.

4. Invariance Properties and the Relationship
to Whitening and Centering

When computed with the exact Fisher, the natural gradient
specifies a direction in the space of predictive distributions
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which is invariant to the specific way that the model is pa-
rameterized. This invariance means that the smooth path
through distribution space produced by following the nat-
ural gradient with infinitesimally small steps will be simi-
larly invariant.

For a practical natural gradient based optimization method
which takes large discrete steps in the direction of the nat-
ural gradient, this invariance of the optimization path will
only hold approximately. As shown by Martens (2014), the
approximation error will go to zero as the effects of damp-
ing diminish and the reparameterizing function ζ tends to
a locally linear function. Note that the latter will happen
as ζ becomes smoother, or the local region containing the
update shrinks to zero.

Because K-FAC uses an approximation of the natural gra-
dient, these invariance results are not applicable in our case.
Fortunately, as was shown by Martens (2014), one can es-
tablish invariance of an update direction with respect to a
given reparameterization of the model by verifying certain
simple properties of the curvature matrix C used to com-
pute the update. We will use this result to show that, under
the assumption that damping is absent (or negligible in its
affect), K-FAC is invariant to a broad and natural class of
transformations of the network.

This class of transformations is given by the following
modified network definition (c.f. the def. in Section 1.1):

s†i = W †i ā
†
i−1 ā†i = Ωiφ̄i(Φis

†
i )

where φ̄i is the function that computes φi and then appends
a homogeneous coordinate (with value 1), Ωi and Φi are ar-
bitrary invertible matrices of the appropriate sizes (except
that we assume Ω` = I), ā†0 = Ω0ā0, and where the net-
work’s output is given by f†(x, θ) = a†` . Note that because
Ωi multiplies φ̄i(Φis

†
i ), it can implement arbitrary transla-

tions of the unit activities φi(Φis
†
i ) in addition to arbitrary

linear transformations.

Here, and going forward, we will add a “†” superscript
to any network-dependent quantity in order to denote the
analogous version of it computed by the transformed net-
work. Note that under this identification, the loss deriva-
tive formulas for the transformed network are analogous
to those of the original network, and so our various Fisher
approximations are still well defined.

The following theorem describes the main technical result
of this section.

Theorem 1. There exists an invertible linear function θ =
ζ(θ†) so that f†(x, θ†) = f(x, θ) = f(x, ζ(θ†)), and thus
the transformed network can be viewed as a reparameteri-
zation of the original network by θ†. Moreover, additively
updating θ by δ = −αF̆−1∇h or δ = −αF̂−1∇h in the
original network is equivalent to additively updating θ† by
δ† = −αF̆ †−1∇h† or δ† = −αF̂ †−1∇h† (resp.) in the
transformed network, in the sense that ζ(θ† + δ†) = θ+ δ.

This immediately implies the following corollary which
characterizes the invariance of a basic version of K-FAC
to the given class of network transformations.

Corollary 2. The optimization path taken by K-FAC (us-
ing either of our Fisher approximations F̆ or F̂ ) through
the space of predictive distributions is the same for the de-
fault network as it is for the transformed network (where
the Ωi’s and Φi’s remain fixed). This assumes the use of an
equivalent initialization (θ0 = ζ(θ†0)), and a basic version
of K-FAC where damping is absent or negligible in effect,
momentum is not used, and where the learning rates are
chosen in a way that is independent of the network’s pa-
rameterization.

While this corollary assumes that the Ωi’s and Φi’s are
fixed, if we relax this assumption so that they are allowed to
vary smoothly with θ, then ζ will be a smooth function of
θ, and so as discussed in Martens (2014), invariance of the
optimization path will hold approximately in a way that de-
pends on the smoothness of ζ (which measures how quickly
the Ωi’s and Φi’s change) and the size of the update. More-
over, invariance will hold exactly in the limit as the learning
rate goes to 0.

Note that the network transformations can be interpreted
as replacing the network’s nonlinearity φ̄i(si) at each layer
i with a “transformed” version Ωiφ̄i(Φisi). So since the
well-known logistic sigmoid and tanh functions are re-
lated to each other by such a transformation, an immediate
consequence of Corollary 2 is that K-FAC is invariant to
the choice of logistic sigmoid vs. tanh activation functions
(provided that equivalent initializations are used and that
the effect of damping is negligible, etc.). Also note that
because the network inputs are also transformed by Ω0, K-
FAC is thus invariant to arbitrary affine transformations of
the input, which includes many popular training data pre-
processing techniques.

In the case where we use the block-diagonal approximation
F̆ and compute updates without damping, Theorem 1 af-
fords us an additional elegant interpretation of what K-FAC
is doing. In particular, the updates produced by K-FAC end
up being equivalent to those produced by standard gradient
descent using a network which is transformed so that the
unit activities and the unit-gradients are both centered and
whitened (with respect to the model’s distribution). This is
stated formally in the following corollary.

Corollary 3. Additively updating θ by −αF̆−1∇h in the
original network is equivalent to additively updating θ† by
the gradient descent update −α∇h† in a transformed ver-
sion of the network where the unit activities a†i and the unit-
gradients g†i are both centered and whitened with respect to
the model’s distribution.

5. Additional details
Due to the constraints of space we have left certain details
about how to implement K-FAC in practice to the appendix.
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Appendix D describes how we compute online estimates
of the quantities required by our inverse Fisher approxima-
tion over a large “window” of previously processed mini-
batches (which makes K-FAC very different from methods
like HF or KSD, which base their estimates of the curvature
on a single mini-batch). Appendix E describes how we use
our approximate Fisher to obtain a practical and robust op-
timization algorithm which requires very little manual tun-
ing, through the careful application of various theoretically
well-founded “damping” techniques that are standard in the
optimization literature. Note that damping techniques com-
pensate both for the local quadratic approximation being
implicitly made to the objective, and for our further approx-
imation of the Fisher, and are non-optional for essentially
any 2nd-order method like K-FAC to work properly, as is
well established by both theory and practice within the opti-
mization literature (Nocedal and Wright, 2006). Appendix
F describes a simple and effective way of adding a type of
“momentum” to K-FAC, which we have found works very
well in practice. Appendix G describes the computational
costs associated with K-FAC, and various ways to reduce
them to the point where each update is at most only sev-
eral times more expensive to compute than the stochastic
gradient. Finally, Appendix H gives complete high-level
pseudocode for K-FAC.

6. Related Work
Centering methods work by either modifying the gradient
(Schraudolph, 1998) or dynamically reparameterizing the
network itself (Raiko et al., 2012; Vatanen et al., 2013;
Wiesler et al., 2014), so that various unit-wise scalar quan-
tities like the activities (the ai’s) and local derivatives (the
φ′i(si)’s) are 0 on average (i.e. “centered”), as they appear
in the formula for the gradient. Typically, these methods
require the introduction of additional “skip” connections
(which bypass the nonlinearities of a given layer) in order
to preserve the expressive power/efficiency of the network
after these transformations are applied.

It is argued by Raiko et al. (2012) that the application of the
centering transformation makes the Fisher of the resulting
network closer to a diagonal matrix, and thus makes its gra-
dient more closely resemble its natural gradient. However,
this argument uses the strong approximating assumption
that the correlations between various network-dependent
quantities, such as the activities of different units within
a given layer, are zero. In our notation, this would be like
assuming that theGi,i’s are diagonal, and that the Āi,i’s are
rank-1 plus a diagonal term. Indeed, using such an approx-
imation within the block-diagonal version of K-FAC would
yield an algorithm similar to standard centering, although
without the need for skip connections (and hence similar to
the version of centering proposed by Wiesler et al. (2014)).

As shown in Corollary 3, K-FAC can also be interpreted as
using the gradient of a transformed network as its update
direction, although one in which the gi’s and ai’s are both

centered and whitened (with respect to the model’s distri-
bution). Intuitively, it is this whitening which accounts for
the correlations between activities (or back-propagated gra-
dients) within a given layer.

The work most closely related to ours is that of Heskes
(2000), who proposed an approximation of the Fisher of
feed-forward neural networks similar to our Kronecker-
factored block-diagonal approximation F̆ from Section 3.2,
and used it to derive an efficient approximate natural-
gradient based optimization method by exploiting the iden-
tity (A⊗B)−1 = A−1⊗B−1. K-FAC differs from Heskes’
method in several important ways which turn out to be cru-
cial to it working well in practice.

In Heskes’ method, update damping is accomplished using
a basic factored Tikhonov technique where γI is added to
each Gi,i and Āi,i for a fixed parameter γ > 0 which is
set by hand. By contrast, K-FAC uses a factored Tikhonov
technique where γ adapted dynamically as described in Ap-
pendix E.6, combined with a re-scaling technique based on
a local quadratic model computed using the exact Fisher
(see Appendix E.4). Note that the adaptation of γ is impor-
tant since what constitutes a good or even merely accept-
able value of γ will change significantly over the course of
optimization. And the use of our re-scaling technique, or
something similar to it, is also crucial as we have observed
empirically that basic Tikhonov damping is incapable of
producing high quality updates by itself, even when γ is
chosen optimally at each iteration (see Figure 7 of Ap-
pendix E.4).

Also, while Heskes’ method computes the Gi,i’s exactly,
K-FAC uses a stochastic approximation which scales effi-
ciently to neural networks with much higher-dimensional
outputs (see Appendix D). Other advances we have intro-
duced include the more accurate block-tridiagonal approx-
imation to the inverse Fisher, a parameter-free type of mo-
mentum (see Appendix F), online estimation of theGi,i and
Āi,i matrices, and various improvements in computational
efficiency (see Appendix G). We have found that each of
these additional elements is important in order for K-FAC
to work as well as it does in various settings.

For a discussion of more related work, see Appendix L.

7. Experiments
To investigate the practical performance of K-FAC we
applied it to the 3 deep autoencoder optimization prob-
lems from Hinton and Salakhutdinov (2006), which use
the “MNIST”, “CURVES”, and “FACES” datasets respec-
tively (see Hinton and Salakhutdinov (2006) for a com-
plete description of the network architectures and datasets).
Due to their high difficulty, performance on these problems
has become a standard benchmark for neural network opti-
mization methods (e.g. Martens, 2010; Vinyals and Povey,
2012; Sutskever et al., 2013).

As our baseline we used the version of SGD with momen-
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tum based on Nesterov’s Accelerated Gradient (Nesterov,
1983) described in Sutskever et al. (2013), which was cal-
ibrated to work well on these particular deep autoencoder
problems. For each problem we followed the prescription
given by Sutskever et al. (2013) for determining the learn-
ing rate, and the increasing schedule for the decay param-
eter µ. We did not compare to methods based on diago-
nal approximations of the curvature matrix, as in our ex-
perience such methods tend not perform as well on these
kinds of optimization problems as the baseline does (which
is consistent with the findings of Zeiler (2013)).

Our implementation of K-FAC used most of the efficiency
improvements described in Appendix G, except that all
“tasks” were computed serially (and thus with better engi-
neering and more hardware, a faster implementation could
likely be obtained). Both K-FAC and the baseline were
implemented using vectorized MATLAB code accelerated
with the GPU package Jacket. The code for K-FAC is avail-
able for download1. All tests were performed on a single
computer with a 4.4 Ghz Intel CPU and an NVidia GTX
580 GPU with 3GB of memory. Each method used the
same initial parameter setting, which was generated using
the “sparse initialization” technique from Martens (2010)
(which was also used by Sutskever et al. (2013)).

To help mitigate the detrimental effect that the noise in the
stochastic gradient has on the convergence of the baseline
(and to a lesser extent K-FAC) we used a exponentially de-
cayed iterate averaging approach based on Polyak averag-
ing (e.g. Swersky et al., 2010). In particular, at each iter-
ation we took the “averaged” parameter estimate to be the
previous such estimate, multiplied by 0.99, plus the new
iterate produced by the optimizer, multiplied by 1− 0.99.

To be consistent with the numbers given in previous papers
we report the reconstruction error instead of the actual ob-
jective function value (although these are almost perfectly
correlated in our experience). And we report the error on
the training set as opposed to the test set, as we are chiefly
interested in optimization speed and not the generalization
capabilities of the networks themselves.

In our main experiment we evaluated the performance of
our implementation of K-FAC versus the baseline on all
3 deep autoencoder problems, where we used an expo-
nentially increasing schedule for m within K-FAC (which
we explain and provide empirical justification for in Ap-
pendix M), and a fixed setting of m within the baseline and
momentum-less K-FAC (which was chosen from a small
range of candidates to give the best overall per-second rate
of progress).

The results from this experiment are plotted in Figure
4, with additional information about per-iteration rates of
progress plotted in Figure 9 of Appendix M. For each prob-
lem K-FAC had a per-iteration rate of progress which was

1http://www.cs.toronto.edu/˜jmartens/
docs/KFAC3-MATLAB.zip
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Figure 4. Results from our main experiment showing training er-
ror versus computation time on the CURVES (top), MNIST
(middle), and FACES (bottom) deep autoencoder problems.
Here, “Blk-TriDiag K-FAC” is the block-tridiagonal version of K-
FAC, and “Blk-Diag K-FAC” is the block-diagonal version. “No
moment.” indicates that momentum was not used.

orders of magnitude higher than that of the baseline’s, pro-
vided that momentum was used, which translated into an
overall much higher per-second rate of progress, despite
the higher cost of K-FAC’s iterations (due mostly to the
much larger mini-batch sizes used).

The importance of using some form of momentum on these
problems is emphasized in these experiments by the fact
that without the momentum technique developed in Ap-
pendix F, K-FAC wasn’t significantly faster than the base-
line (which itself used a strong form of momentum). These
results echo those of Sutskever et al. (2013), who found that
without momentum, SGD was orders of magnitude slower
on these particular problems.

While our results suggest that the block-diagonal version
is probably the better option overall due to its greater sim-
plicity (and comparable per-second progress rate), the situ-
ation may be different given a more efficient implementa-
tion of K-FAC where the expensive SVDs required by the
tri-diagonal version are computed approximately and/or in
parallel with the other tasks, or perhaps even while the net-
work is being optimized.

Our results also suggest that K-FAC may be much better
suited than the SGD baseline for a massively distributed
implementation, since it would require far fewer synchro-
nization steps (by virtue of the fact that it performs far
fewer iterations).
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