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The Linear Dynamical System model

model of vector-valued time-series {yt ∈ RNy }Tt=1

widely-applied due to predictable behavior, easy inference, etc

vector-valued hidden states ({xt ∈ RNx}Tt=1) evolve via linear
dynamics,

xt+1 = Axt + εt A ∈ RNx×Nx εt ∼ N(0,Q)

linearly generated observations:

yt = Cxt + δt C ∈ RNy×Nx δt ∼ N(0,R)
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Learning the LDS

Expectation Maximization (EM)

finds local optimum of log-likelihood

pretty slow - convergence requires lots of iterations and E-step is
expensive

Subspace identification

hidden states estimated directly from the data, and the parameters
from these

asymptotically unbiased / consistent

non-iterative algorithm, but solution not optimal in any objective

good way to initialize EM or other iterative optimizers
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Our contribution

accelerate the EM algorithm by reducing its per-iteration cost to be
constant time w.r.t. T (length of the time-series)

key idea: approximate the inference done in the E-step

E-step approximation is unbiased and asymptotically consistent

also convergences exponentially with L, where L is a meta-parameter
that trades off approximation quality with speed

(notation change: L is “klim” from the paper)
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Learning via E.M. the Algorithm

E.M. Objective Function

At each iteration we maximize the following objective where θn is the
current parameter estimate:

Qn(θ) = Eθn [log p(x , y)|y ] =

∫
x
p(x |y , θn) log p(x , y |θ)

E-Step

E-Step computes expectation of log p(x , y |θ) under p(x |y , θn)

uses the classical Kalman filtering/smoothing algorithm
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Learning via E.M. the Algorithm (cont.)

M-Step

maximize objective Qn(θ) w.r.t. to θ, producing a new estimate θn+1

θn+1 = arg max
θ
Qn(θ)

very easy - similar to linear-regression

Problem

EM can get very slow for when we have lots of data

mainly due to call to expensive Kalman filter/smoother in the E-step

O(N3
x T ) where T = length of the training time-series, Nx = hidden

state dim.
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the Kalman filter/smoother estimates hidden-state means and
covariances:

xk
t ≡ Eθn [ xt | y≤k ]

V k
t,s ≡ Covθn [ xt , xs | y≤k ]

for each t = {1, ...,T} and s = t, t + 1.

these are summed over time to obtain the statistics required for
M-step, e.g.:

Eθn [xt+1x
′
t | y≤k ] = (xT , xT )1 +

T−1∑
t=1

V T
t+1,t

where (a, b)k ≡
∑T−k

t=1 at+kb′t

but we only care about the M-statistics, not the individual inferences
for each time-step → so let’s estimate these directly!

James Martens (U of T) Learning the LDS with ASOS June 24, 2010 7 / 21



the Kalman filter/smoother estimates hidden-state means and
covariances:

xk
t ≡ Eθn [ xt | y≤k ]

V k
t,s ≡ Covθn [ xt , xs | y≤k ]

for each t = {1, ...,T} and s = t, t + 1.

these are summed over time to obtain the statistics required for
M-step, e.g.:

Eθn [xt+1x
′
t | y≤k ] = (xT , xT )1 +

T−1∑
t=1

V T
t+1,t

where (a, b)k ≡
∑T−k

t=1 at+kb′t

but we only care about the M-statistics, not the individual inferences
for each time-step → so let’s estimate these directly!

James Martens (U of T) Learning the LDS with ASOS June 24, 2010 7 / 21



the Kalman filter/smoother estimates hidden-state means and
covariances:

xk
t ≡ Eθn [ xt | y≤k ]

V k
t,s ≡ Covθn [ xt , xs | y≤k ]

for each t = {1, ...,T} and s = t, t + 1.

these are summed over time to obtain the statistics required for
M-step, e.g.:

Eθn [xt+1x
′
t | y≤k ] = (xT , xT )1 +

T−1∑
t=1

V T
t+1,t

where (a, b)k ≡
∑T−k

t=1 at+kb′t

but we only care about the M-statistics, not the individual inferences
for each time-step → so let’s estimate these directly!

James Martens (U of T) Learning the LDS with ASOS June 24, 2010 7 / 21



Steady-state

first we need a basic tool from linear systems/control theory:
“steady-state”

the covariance terms, and the “filtering and smoothing matrices”
(denoted Kt and Jt) do not depend on the data y - only the current
parameters

and they rapidly converge to “steady-state” values:

V T
t,t , V T

t,t−1, Jt , Kt −→ Λ0, Λ1, J, K as min(t,T − t)→∞
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we can approximate the Kalman filter/smoother equations using the
steady-state matrices

this gives the highly simplified recurrences

x∗t = Hx∗t−1 + Kyt xT
t = JxT

t+1 + Px∗t

where x∗t ≡ x t
t ≡ Eθn [ xt | y≤t ] , H ≡ A− KCA and P ≡ I − JA

these don’t require any matrix multiplications or inversions

we apply the approximate filter/smoother everywhere except first and
last i time-steps

yields a run-time of O(N2
x T + N3

x i).

James Martens (U of T) Learning the LDS with ASOS June 24, 2010 9 / 21



we can approximate the Kalman filter/smoother equations using the
steady-state matrices

this gives the highly simplified recurrences

x∗t = Hx∗t−1 + Kyt xT
t = JxT

t+1 + Px∗t

where x∗t ≡ x t
t ≡ Eθn [ xt | y≤t ] , H ≡ A− KCA and P ≡ I − JA

these don’t require any matrix multiplications or inversions

we apply the approximate filter/smoother everywhere except first and
last i time-steps

yields a run-time of O(N2
x T + N3

x i).

James Martens (U of T) Learning the LDS with ASOS June 24, 2010 9 / 21



we can approximate the Kalman filter/smoother equations using the
steady-state matrices

this gives the highly simplified recurrences

x∗t = Hx∗t−1 + Kyt xT
t = JxT

t+1 + Px∗t

where x∗t ≡ x t
t ≡ Eθn [ xt | y≤t ] , H ≡ A− KCA and P ≡ I − JA

these don’t require any matrix multiplications or inversions

we apply the approximate filter/smoother everywhere except first and
last i time-steps

yields a run-time of O(N2
x T + N3

x i).

James Martens (U of T) Learning the LDS with ASOS June 24, 2010 9 / 21



we can approximate the Kalman filter/smoother equations using the
steady-state matrices

this gives the highly simplified recurrences

x∗t = Hx∗t−1 + Kyt xT
t = JxT

t+1 + Px∗t

where x∗t ≡ x t
t ≡ Eθn [ xt | y≤t ] , H ≡ A− KCA and P ≡ I − JA

these don’t require any matrix multiplications or inversions

we apply the approximate filter/smoother everywhere except first and
last i time-steps

yields a run-time of O(N2
x T + N3

x i).

James Martens (U of T) Learning the LDS with ASOS June 24, 2010 9 / 21



ASOS: Approximated Second-Order Statistics

steady-state makes covariance terms easy to estimate in time
independent of T

we want something similar for sum-of-products of means terms like
(xT , xT )0 ≡

∑
t xT

t (xT
t )′

such sums we will call “2nd-order statistics”. The ones-needed for the
M-step are the “M-statistics”

idea #1: derive recursions and equations that relate the 2nd-order
statistics of different “time-lags”

“time-lag” refers to the value of k in (a, b)k ≡
∑T−k

t=1 at+kb
′
t

idea #2: evaluate these efficiently using approximations

James Martens (U of T) Learning the LDS with ASOS June 24, 2010 10 / 21



ASOS: Approximated Second-Order Statistics

steady-state makes covariance terms easy to estimate in time
independent of T

we want something similar for sum-of-products of means terms like
(xT , xT )0 ≡

∑
t xT

t (xT
t )′

such sums we will call “2nd-order statistics”. The ones-needed for the
M-step are the “M-statistics”

idea #1: derive recursions and equations that relate the 2nd-order
statistics of different “time-lags”

“time-lag” refers to the value of k in (a, b)k ≡
∑T−k

t=1 at+kb
′
t

idea #2: evaluate these efficiently using approximations

James Martens (U of T) Learning the LDS with ASOS June 24, 2010 10 / 21



ASOS: Approximated Second-Order Statistics

steady-state makes covariance terms easy to estimate in time
independent of T

we want something similar for sum-of-products of means terms like
(xT , xT )0 ≡

∑
t xT

t (xT
t )′

such sums we will call “2nd-order statistics”. The ones-needed for the
M-step are the “M-statistics”

idea #1: derive recursions and equations that relate the 2nd-order
statistics of different “time-lags”

“time-lag” refers to the value of k in (a, b)k ≡
∑T−k

t=1 at+kb
′
t

idea #2: evaluate these efficiently using approximations

James Martens (U of T) Learning the LDS with ASOS June 24, 2010 10 / 21



ASOS: Approximated Second-Order Statistics

steady-state makes covariance terms easy to estimate in time
independent of T

we want something similar for sum-of-products of means terms like
(xT , xT )0 ≡

∑
t xT

t (xT
t )′

such sums we will call “2nd-order statistics”. The ones-needed for the
M-step are the “M-statistics”

idea #1: derive recursions and equations that relate the 2nd-order
statistics of different “time-lags”

“time-lag” refers to the value of k in (a, b)k ≡
∑T−k

t=1 at+kb
′
t

idea #2: evaluate these efficiently using approximations

James Martens (U of T) Learning the LDS with ASOS June 24, 2010 10 / 21



ASOS: Approximated Second-Order Statistics

steady-state makes covariance terms easy to estimate in time
independent of T

we want something similar for sum-of-products of means terms like
(xT , xT )0 ≡

∑
t xT

t (xT
t )′

such sums we will call “2nd-order statistics”. The ones-needed for the
M-step are the “M-statistics”

idea #1: derive recursions and equations that relate the 2nd-order
statistics of different “time-lags”

“time-lag” refers to the value of k in (a, b)k ≡
∑T−k

t=1 at+kb
′
t

idea #2: evaluate these efficiently using approximations

James Martens (U of T) Learning the LDS with ASOS June 24, 2010 10 / 21



Deriving the 2nd-order recursions/equations: An example

suppose we wish to find the recursion for (x∗, y)k

steady-state Kalman recursion for x∗t+k is: x∗t+k = Hx∗t+k−1 + Kyt+k

right-multiply both sides by y ′t and sum over t

factor out matrices H and K

finally, re-write everything using our special notation for 2nd-order
statistics: (a, b)k ≡

∑T−k
t=1 at+kb′t

(x∗, y)k ≡
T−k∑
t=1

x∗t+ky ′t =
T−k∑
t=1

(Hx∗t+k−1y
′
t + Kyt+ky ′t)

= H
T−k∑
t=1

x∗t+k−1y
′
t + K

T−k∑
t=1

yt+ky ′t

= H( (x∗, y)k−1 − x∗T y ′T−k+1) + K (y , y)k
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The complete list (don’t bother to memorize this)

The recursions:

(y , x∗)k = (y , x∗)k+1H
′ + ((y , y)k − y1+ky ′1)K

′ + y1+kx∗1
′

(x∗, y)k = H((x∗, y)k−1 − x∗T y ′T−k+1) + K(y , y)k

(x∗, x∗)k = (x∗, x∗)k+1H
′ + ((x∗, y)k − x∗1+ky ′1)K

′ + x∗1+kx∗1
′

(x∗, x∗)k = H((x∗, x∗)k−1 − x∗T x∗T−k+1
′) + K(y , x∗)k

(xT , y)k = J(xT , y)k+1 + P((x∗, y)k − x∗T yT−k
′) + xT

T yT−k
′

(xT , x∗)k = J(xT , x∗)k+1 + P((x∗, x∗)k − x∗T x∗T−k
′) + xT

T x∗T−k
′

(xT , xT )k = ((xT , xT )k−1 − xT
k xT

1 )J′ + (xT , x∗)kP′

(xT , xT )k = J(xT , xT )k+1 + P((x∗, xT )k − x∗T xT
T−k

′
) + xT

T xT
T−k

′

The equations:

(x∗, x∗)k = H(x∗, x∗)kH′ + ((x∗, y)k − x∗1+ky ′1)K
′ − Hx∗T x∗T−k

′H′ + K(y , x∗)k+1H
′ + x∗1+kx∗1

′

(xT , xT )k = J(xT , xT )kJ′ + P((x∗, xT )k − x∗T xT
T−k

′
)− JxT

k+1x
T
1
′
J′ + J(xT , x∗)k+1P

′ + xT
T xT

T−k
′

James Martens (U of T) Learning the LDS with ASOS June 24, 2010 12 / 21



noting that statistics of time-lag T + 1 are 0 by definition we can
start the 2nd-order recursions at t = T

but this doesn’t get us anywhere - would be even more expensive
than the usual Kalman recursions on the 1st-order terms

instead, start the recursions at time-lag ∼ L with unbiased
approximations (“ASOS approximations”)

(y , x∗)L+1 ≈ CA
(
(x∗, x∗)L − x∗T x∗T−L

′)
, (xT , x∗)L ≈ (x∗, x∗)L, (xT , y)L ≈ (x∗, y)L

we also need xT
t for t ∈ {1, 2, ..., L} ∪ {T−L,T−L+1, ...,T} but these

can be approximated by a separate procedure (see paper)
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Why might this be reasonable?

2nd-order statistics with large time lag quantify relationships between
variables that are far apart in time

weaker and less important than relationships between variables that are
close in time

in steady-state Kalman recursions, information is propagated via
multiplication by H and J:

x∗t = Hx∗t−1 + Kyt xT
t = JxT

t+1 + Px∗t

both of these have spectral radius (denoted σ(·)) less than 1, and so
they decay the signal exponentially
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Procedure for estimating the M-statistics

how do we compute an estimate of the M-statistics consistent with
the 2nd-order recursions/equations and the approximations?

essentially it is just a large linear system of dimension O(N2
x L)

but using a general solver would be far too expensive: O(N6
x L3)

fortunately, using the special structure of this system, we have
developed a (non-trivial) algorithm which is much more efficient

equations can be solved using an efficient iterative algorithm we
developed for a generalization of the Sylvester equation
evaluating recursions is then straightforward

the cost is then just O(N3
x L) after (y , y)k ≡

∑
t yt+ky ′t has been
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First convergence result: our intuition confirmed

First result: For a fixed θ the `2-error in the M-statistics is bounded
by a quantity proportional to L2λL−1, where λ = σ(H) = σ(J) < 1

(σ(·) denotes the spectral radius)

so as L grows, the estimation error for the M-statistics will decay
exponentially

but, λ might be close enough to 1 so that we need to make L too big

fortunately we have a 2nd result which provides a very different type
of guarantee
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Second convergence result

Second result: updates produced by ASOS procedure are
asymptotically consistent with the usual EM updates in the limit as
T →∞

assumes data is generated from the model

first result didn’t make strong use any property of the approx.

(could use 0 for each and result would still hold)

this second one is justified in the opposite way

strong use of the approximation
follows from convergence of 1

T -scaled expected `2 error of approx.
towards zero
result holds for any value of L value
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Experiments

we considered 3 real datasets of varying sizes and dimensionality

each algorithm initialized from same random parameters

latent dimension Nx determined by trial-and-error

Experimental parameters

Name length (T) Ny Nx

evaporator 6305 3 15
motion capture 15300 10 40
warship sounds 750000 1 20
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Experimental results (cont.)

Name length (T) Ny Nx

evaporator 6305 3 15
motion capture 15300 10 40
warship sounds 750000 1 20
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SS−EM  (56.804 s)
EM  (692.6135 s)
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Experimental results (cont.)
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Conclusion

we applied steady-state approximations to derive a set of “2nd-order
recursions and equations”

approximated statistics of time-lag L

produced an efficient algorithm for solving the resulting system

Per-iteration run-times:
EM SS-EM ASOS-EM

O(N3
x T ) O(N2

x T + N3
x i) O(N3

x klim)

gave 2 formal convergence results

demonstrated significant performance benefits for learning with long
time-series
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Thank you for your attention
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