Information Systems Analysis and Design €sc340

®

v XXIll. Class Design

What is Class Design?

Types of Design Classes
Class Specifications and Interfaces
Components, Sub-Systems and Packages
Cohesion and Coupling
Designing Associations
Integrity Constraints
Referential, Depenczncy and Domain Integrity

Information Systems Analysis and Design €sc340

®

v Class Design

= Within the context of architectural design, class

design:

v Produces full definitions of classes, associations,
algorithms and interfaces of operations;

v Adds classes that will be wuseful during
implementation;

v Defines object interactions and object lifetimes in
terms of interaction and state diagrams;

e v Optimises data structures and algorithms.
77
A4
TS
© 2004 Jaelson Castro and John Mylopoulos Class Design -- 1 © 2004 Jaelson Castro and John Mylopoulos Class Design -- 2
Information Systems Analysis and Design csc340 Information Systems Analysis and Design CSC340
¥ Inputoutput for Class Design v Types of Design Classes

= The input is assumed to consist of:

+ Use cases that describe functional requirements;
also sequence, state/activity diagrams that
describe the use cases in more detalil;

+ Class diagrams that describe the kinds of things
the information system will be managing
information about.

= The outputs of class design are:

+ Class packages which describe the overall
software architecture of the new system;

~ Supporting sequence, state/activity diagrams that
give additional details about the design.

© 2004 Jaelson Castro and John Mylopoulos Class Design -- 3

= Most classes defined during requirements analysis
represent objects about which information will be
stored in the system database.

= Assuming a 4-tier layered architecture, we distinguish
four types of classes:

+ Persistent database classes (D), correspond to
application classes and describe what will be
stored persistently in the system database;

+ Entity classes (E) represent in-memory, run-time
data structures for persistent database classes;

+ Boundary classes (B) specify interface functions;

+ Control classes (C) specify business logic

functions.

© 2004 Jaelson Castro and John Mylopoulos Class Design -- 4

Information Systems Analysis and Design csc340
2
A" A Class Specifications

= Attribute signature
name: " type-expr ‘=" init-value ‘{property-string}”
= Operation signature
Operation name: (" param-list °)" ;" return-type-expr
= Obiject Visibility
+ + Public -- feature directly accessible by any class;
+ - Private -- feature may only be used by the class
that includes it;
~ # Protected -- feature maybe used by either the
class that includes it or by a subclass of that class;

© 2004 Jaelson Castro and John Mylopoulos Class Design -- 5

Information Systems Analysis and Design CSC340
*
W An <<database>>
BankAccount
Example

-nextdccountlumber:integer

Database -accountNumber:integer
-accountMame:String {not null}
C/aSS -balance:Money = 0

-overdrafilimit:Money

+open{accountName: String):Boolean
+close({):Boolean
+credit(famount:Money):Boolean
+debit{amount:Money)-Boolean
+viewBalance{):Money
#getBalance():Money
-getBalance{newBalance:Money)
#getAccountNamed():String
#zetAccountMame(newMame: String)

© 2004 Jaelson Castro and John Mylopoulos Class Design -- 6

Information Systems Analysis and Design o
2
¥ an _
Example “Customer
Entity e stng
Class IstOcts st

Notes: Customer objects are created by accessing the
CustomerDB and BankAccounts part of the database to
build a single Customer object which collects all
account information about a customer.

Class Design — 7

© 2004 Jaelson Castro and John Mylopoulos

Information Systems Analysis and Design csc340
*
¥ an
<<control>>
EXx ampl e TransferAmount
Con tr O/ transfer(accl, acc2, amount)
Class
An
Example Look at examples of view and
B d control classes from the previous
ounaary section.
Class
© 2004 Jaelson Castro and John Mylopoulos Class Design -- 8

Information Systems Analysis and Design €sc340

v Class Interfaces

= An interface is a group of externally visible (public)
operations.

= An interface is like a class, but contains no internal
structure, has no attributes, no associations and no
implementation of its operations.

= The realizes relationship indicates that the target
class supports at least the operations listed in the

Information Systems /

Client.
@ CreativeStaft companyhddrass
A A T o) el
~slafiName -companyEmail —
r---1 -staffStanOate »
Class “quaitiation oontT dppane
Interfaces it P

H +changeSiaffContact

wusesy

wusesy
Advert

-ttle
-type

-targelDate
-estimatedCost

interface
Manageable ~completionDate Viewable
“FgelCost
+setCompleted
anterfacen | |
3 > Vimatia
e S L
W Realizes
velationships
© 2004 Jaelson Castro and John Mylopoulos Class Design -- 9 © 2004 Jaelson Castro and John Mylopoulos Class Design -- 10
Information Systems Analysis and Design csc340 Information Systems Analysis and Design CSC340
L o L o
V. . v Cohesion and Coupling
b Class Design b
Criteria for good sub-system/package design:
= So, a class design consists of a set of packages = Coupling measures the degree of
which contain classes and other packages, and which interconnectedness between design

represent components or sub-systems.

= The grouping of classes into packages may be done
from several different points of view:

~ By architectural tier -- Boundary, Control, Entity,
Database;

+ By functional relationship -- MVC;

+ By authorship -- who designed what;

v

Class Design -- 11

© 2004 Jaelson Castro and John Mylopoulos

classes/components/sub-systems/packages.

= The degree of coupling is reflected by the number of
links a class has, and by the degree of interaction the
class has with other classes.

= Low coupling is preferrable in a design for many good
reasons, e.g., easier to understand and modify the
design.

= Cohesion , on the other hand, measures the degree
to which an element (class/component/sub-
system/package) contributes to a single purpose.

= Of course, we want a highly cohesive design.

© 2004 Jaelson Castro and John Mylopoulos Class Design -- 12

Information Systems Analysis and Design €sc340

®

v Minimizing Coupling

= Interaction coupling Vehicle

+ Measures number of message types decription
and the number of parameters serviceDate

. . maximumAltitude
passed with these message types; takeOffSpeed
~ Should be kept to a minimum in checkAltitude()
takeOf(}

order to reduce the possibility of
changes rippling through interfaces; Zﬁ
= Inheritance coupling

~ Degree to which a subclass actually
needs the features it inherits;

+ A subclass with unnecessary
attributes or operations is more register()
complex than it needs to be.

© 2004 Jaelson Castro and John Mylopoulos

LandVehicle

numberOffvies
registrationDate

Class Design - 13

Information Systems Analysis and Design €sc340

®

v Maximizing Cohesion

= Operation cohesion

+ Measures degree to which an Lecturar
operation focuses on a single
functional requirement. lecturerName

.~ Good design produces highly :_i‘;";\":[ﬁ‘dg’:“
cohesive operations, each of roomLength
which deals with a single roomWidth
functlonal. requirement. calculatsRoomSpace()

= Class cohesion

~ Degree to which a class is
focused on a single
requirement.

Good operation cohesion,
...but lousy class cohesion

© 2004 Jaelson Castro and John Mylopoulos Class Design -- 14

Information Systems Analysis and Design csc340 Information Systems Analysis and Design csc340
v Maximizing Cohesion \°"A Liskov Substitution Principle
. . . . Adkdness
= Specialization Cohesu:_m - _ — = In class hierarchies, it should be possible to treat a
addresses the semantic cohesion | = specialized object as if it were a base object.
of inheritance hierarchies county
posCade ChequeAccount W Account
&
Address B accountName 1
[balance b
number , balance
street Prersan Terrible Company F!esm:guring Y
town [— _—
county 5™ | cohesion! | e Bt sateryse f [creait
country gandar arnunPTedL h
n postCode I
lives at is based at
Person Company 1
Good oun! Mortgag ChequeAccount
personiName . companyName
age cohesion, annuallncome intarastRats interestRate
gender annualProfit calculatelnterest aenit
- debit debit
Class Design -- 15 © 2004 sign -- 16
Information Systems Analysis and Design csc340 Information Systems Analysis and Design csc340
® ®
2 More Design Principles v Designing Associations

= Clarity - A design should be easy to understand.

= Do not over-design -- Developers are tempted to

produce designs that may not only satisfy current

requirements but may also be capable of supporting a

wide range of future requirements.

Inheritance hi erarchies -- Not too deep nor too shallow!

= Keep messages and operations simple : Limit number
of parameters; specify operations in one page.

= Design volatility -- A good design should be stable in
response to change in requirements; enforcing
encapsulation is a key factor in producing stable systems.

= Design by de legation: A complex object should be
decomposed into component objects forming a
composition or aggregation

© 2004 Jaelson Castro and John Mylopoulos

Class Design ~ 17

= Each association needs to be analysed to determine
whether it should be a one-way or a two-way
association.
= Depending on multiplicities, we may use collection
classes (e.g., lists).
= Need to ask questions about object visibility:
v does object A need to know object B's object-id?

v does it need to communicate to third-party objects
the object-id?

© 2004 Jaelson Castro and John Mylopoulos Class Design -- 18

Information Systems Analysis and Design csc340
®
A" Designing Associations

One-to-One, One Way

Arrowhead shows the

direction in which
Owner messages can De sent. Car
by
\
A Y
owns R
name > R registraionNumber
address make
dateOfLicence 1 7| model
numherDl’Con\ricIinﬂ_s_ ______ carobject1d colour
iy placed in the
cwner sy

= Owner needs to send messages to Car, not vice versa.

= Association may be implemented by placing an attribute
to hold the identifier for the Car class in Owner objects.

© 2004 Jaelson Castro and John Mylopoulos Class Design -- 19

Information Systems Analysis and Design csc340
% Designing Associations:
= One-to-Many, One-Way
-« manageC: .
= The Advert object Ll g
identifiers could workOnGampaign .| -stafiName
be held in a . L4 oaaion
simple one- Gampaign SncTonoe
dimensional array o
inthe Campaign | ‘& ignsiannae L, oo
object, but -campaignFinshDate S i
program code -comgstionDate M\Jvfm
would have to be | -actacost
written to sassigniianager ey -t
manipulate the “eheckBudge! asmocictir -targetDate
+eheokStaff -estimatedCost
array. +completed -completionDate
R embers +gelCost
o o
Tistadves
+recordPayment
©2004 Jaelson Castro and John Mylopoaios Ciass sl - 2u

Information Systems Analysis and Design csC340
¥ collection p——
litle
Classes -campaignStartDate AdveriCollection
.nar_npaE:Flms'hDate 1 has e 1
These are “completionDate advertid [
-datePaid
classes whose Setvelost gty
inStances are -advertCollectionld addAdvert
- +assignManager removeAdvert)
ISts, bags, or +assignStaff
list ! b gs, hﬂng dget !
. +cneckBuage
sets. Collection +cne|:kl§:alf & ouns
‘+complete
classes are sgeiburion .
+getTeamMembers
useful for one-to- inkToNcte Advert
+listAdverts
many +recordPayment -3;
associations targetDate
-gstimatedCost
~complstionDate
+getCost
+setCompleted
view

Information Systems Analysis and Design €sC340

V. Integrity Constraints

= We'll discuss three types of integrity constraints
(...there are many others,....)

= Referential Integrity ensures that an object identifier
mentioned in one object actually refers to an object
that exists.

= Dependency Integrity ensures that attribute
dependencies are maintained, where one attribute
may be calculated from other attributes.

= Domain Integrity ensures that attributes only hold
permissible values.

Class Design -- 21

© 2004 Jaelson Castro and John Mylopoulos

© 2004 Jaelson Castro and John Mylopoulos Class Design -- 22

= A Canpai gn must have a CreativeStaff instance
as its manager.

= What happens if the manager is deleted?

Referential integrity is maintained by ensuring that the

deletion of a CreativeStaff object that is a

campaign manager always involves allocating a new

campaign manager.

© 2004 Jaelson Castro and John Mylopoulos Class Design -- 23

Information Systems Analysis and Design csc340 Information Systems Analysis and Design csc340
2 2
v Referential Integrity L2 Dependency Constraints:
Derived Attibutes
CreativeStaff Campaign . X
o Tritie = The value of a derived attribute may be calculated
-staffNo SRS dateraia from other attributes.
-StaffStartbate -actualCost = For example, total advertising cost can be calculated
-Qualification . . L. .
by summing individual advert costs and storing value

in the attribute totalAdvertCost in the Campaign class
or by re-calculating every time it is required.

= However, whenever the cost of an advert changes, or
an advert is added to/removed from a campaign the
totalAdvertCost attribute has to be adjusted.

= This can be done by sending message adjustCost()
to the Campaign object.

Class Design -~ 24

© 2004 Jaelson Castro and John Mylopoulos

Information Systems Analysis and Design CSC340

®
¥. Constraints Between Associations

* -l isAMemberOf
Committee
Employes
memberCollection[*] {subset of}
comChairld
assignChair()
N -=f chairs 0.1 ‘

= Enforced by placing a check in assignChair() to
confirm that the Employee object identifier passed as
a parameter is already in the collection class of
committee members.

© 2004 Jaelson Castro and John Mylopoulos Class Design -- 25

Information Systems Analysis and Design CSC340

®

v Designing Operations

= Determine the best algorithm for the required function.
= Factors constraining algorithm design:

+ The cost of implementation;

» Performance constraints;

+ Requirements for accuracy;

+ The capabilities of the chosen platform.

= Factors to be considered when choosing among
alternative algorithm designs

+ The computational complexity of candidates;

+ Ease of implementation and understandability;
+ Flexibility;

+ Fine-tuning the object model.

© 2004 Jaelson Castro and John Mylopoulos Class Design -- 26

