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Organization:

● Clustering
○ Motivation

● K-Means
○ Review & Demo

● Gaussian Mixture Models
○ Review

● EM Algorithm (time permitting)
○ Free Energy Justification



Clustering



● Important assumption we make when doing any form of 
learning:

“Similar data-points have similar behaviour”

● Eg. In the context of supervised learning

“Similar inputs should lead to similar predictions”*

Clustering: Motivation

*sometimes our trained models don’t follow these assumption (cf. literature on adversarial examples)



● Discretizing colours for compression using a codebook

Clustering: Examples



● Doing a very basic form of 
boundary detection
○ Discretize colours
○ Draw boundaries between 

colour groups

Clustering: Examples



Clustering: Examples

● Like all unsupervised learning algorithms, clustering can 
be incorporated into the pipeline for training a supervised 
model

● We will go over an example of this very soon



Clustering: Challenges
● What is a good notion of “similarity”?
● Euclidean distance bad for Images
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Clustering: Challenges

● The notion of similarity used can make the same algorithm 
behave in very different ways and can in some cases be a 
motivation for developing new algorithms (not necessarily 
just for clustering algorithms)

● Another question is how to compare different clustering 
algorithms
○ May have specific methods for making these decisions 

based on the clustering algorithms used
○ Can also use performance on down-the-line tasks as a 

proxy when choosing between different setups



Clustering: Some Specific Algorithms

● Today we shall review:
○ K-Means
○ Gaussian Mixture Models

● Hopefully there will be some time to go over EM as well



K-Means



K-Means: The Algorithm

1. Initialize K centroids
2. Iterate until convergence

a. Assign each data-point to it’s closest centroid
b. Move each centroid to the center of data-points 

assigned to it



K-Means: A look at how it can be used

<< Slides from TA’s past >>



Tomato sauce

A major tomato sauce company wants to tailor their brands to sauces
to suit their customers

They run a market survey where the test subject rates different sauces

After some processing they get the following data

Each point represents the preferred sauce characteristics of a specific
person
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Tomato sauce data
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lic
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More Sweet →

This tells us how much different customers like different flavors
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Some natural questions

How many different sauces should the company make?

How sweet/garlicy should these sauces be?

Idea: We will segment the consumers into groups (in this case 3), we
will then find the best sauce for each group
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Approaching k-means

Say I give you 3 sauces whose garlicy-ness and sweetness are marked
by X
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More Sweet →
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Approaching k-means

We will group each customer by the sauce that most closely matches
their taste
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Approaching k-means

Given this grouping, can we choose sauces that would make each
group happier on average?
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lic
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More Sweet →
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Approaching k-means

Given this grouping, can we choose sauces that would make each
group happier on average?

M
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lic

→

More Sweet →

Yes !

Shikhar Sharma (UofT) Unsupervised Learning October {27,29,30}, 2015 10 / 29



Approaching k-means

Given these new sauces, we can regroup the customers
M

or
e

G
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lic
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More Sweet →
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Approaching k-means

Given these new sauces, we can regroup the customers
M

or
e
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lic
→

More Sweet →
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K-Means: Challenges

● How to initialize?
○ You saw k-means++ in lecture slides
○ Can come up with other heuristics

● How do you choose K?
○ You may come up with criteria for the value of K based 

on:
■ Restrictions on the magnitude of K

● Everyone can’t have their own tomato sauce
■ Performance on some down-the-line task

● If used for doing supervised learning later, must 
choose K such that you do not under/over fit



K-Means: Challenges

● K-Means algorithm converges to a local minimum:
○ Can try multiple random restarts
○ Other heuristics such as splitting discussed in lecture

● Questions about K-Means?



Gaussian Mixture Models



Generative Models

● One important class of methods in machine learning
● The goal is to define some parametric family of probability 

distributions and then maximize the likelihood of your data 
under this distribution by finding the best parameters



Back to GMM

A Gaussian mixture distribution:

p(x) =
K∑

k=1

πkN (x|µk ,Σk)

We had: z ∼ Categorical(π) (where πk ≥ 0,
∑

k πk = 1)

Joint distribution: p(x, z) = p(z)p(x|z)

Log-likelihood:

`(π, µ,Σ) = ln p(X|π, µ,Σ) =
N∑

n=1

ln p(x(n)|π, µ,Σ)

=
N∑

n=1

ln
K∑

z(n)=1

p(x(n)| z (n);µ,Σ)p(z (n)|π)

Note: We have a hidden variable z (n) for every observation

General problem: sum inside the log

How can we optimize this?
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Expectation Maximization for GMM Overview

Elegant and powerful method for finding maximum likelihood solutions for
models with latent variables

1. E-step:
I In order to adjust the parameters, we must first solve the inference

problem: Which Gaussian generated each datapoint?
I We cannot be sure, so it’s a distribution over all possibilities.

γ
(n)
k = p(z (n) = k|x(n);π, µ,Σ)

2. M-step:
I Each Gaussian gets a certain amount of posterior probability for each

datapoint.
I We fit each Gaussian to the weighted datapoints
I We can derive closed form updates for all parameters
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Gaussian Mixture Models: Connection to K-Means

● You saw soft K-means in lecture
● If you look at the update equations (and maybe some 

back of the envelope calculations) you will see that the 
update rule for soft k-means is the same as the GMMs 
where each Gaussian is spherical (0 mean, Identity 
covariance matrix)



Gaussian Mixture Models: Miscellany

● Can try initializing the centers with the k-means algorithm
● Your models will train a lot fast if you use diagonal 

covariance matrices (but it might not necessarily be a 
good idea)



EM



EM: Review

● The update rule for GMMs is a special case of the EM 
algorithm



EM: Free Energy Justification

● Let’s try doing this on the board



General EM Algorithm

1. Initialize Θold

2. E-step: Evaluate p(Z|X,Θold) and compute

Q(Θ,Θold) =
∑
z

p(Z|X,Θold) ln p(X,Z|Θ)

3. M-step: Maximize
Θnew = arg max

Θ
Q(Θ,Θold)

4. Evaluate log likelihood and check for convergence (or the parameters). If
not converged, Θold = Θnew , Go to step 2
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EM alternative approach *

Our goal is to maximize

p(X|Θ) =
∑
z

p(X, z|Θ)

Typically optimizing p(X|Θ) is difficult, but p(X,Z|Θ) is easy

Let q(Z) be a distribution over the latent variables. For any distribution
q(Z) we have

ln p(X|Θ) = L(q,Θ) + KL(q||p(Z|X,Θ))

where

L(q,Θ) =
∑
Z

q(Z) ln

{
p(X,Z|Θ)

q(Z)

}
KL(q||p) = −

∑
Z

q(Z) ln

{
p(Z|X,Θ)

q(Z)

}
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E-step and M-step *

ln p(X|Θ) = L(q,Θ) + KL(q||p(Z|X,Θ))

In the E-step we maximize q(Z) w.r.t the lower bound L(q,Θold)

This is achieved when q(Z) = p(Z|X,Θold)

The lower bound L is then

L(q,Θ) =
∑
Z

p(Z|X,Θold) ln p(X,Z|Θ)−
∑
Z

p(Z|X,Θold) ln p(Z|X,Θold)

= Q(Θ,Θold) + const

with the content the entropy of the q distribution, which is independent of Θ

In the M-step the quantity to be maximized is the expectation of the
complete data log-likelihood

Note that Θ is only inside the logarithm and optimizing the complete data
likelihood is easier
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Visualization of E-step

The q distribution equal to the posterior distribution for the current
parameter values Θold , causing the lower bound to move up to the same
value as the log likelihood function, with the KL divergence vanishing.
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Visualization of M-step

The distribution q(Z) is held fixed and the lower bound L(q,Θ) is
maximized with respect to the parameter vector Θ to give a revised value
Θnew . Because the KL divergence is nonnegative, this causes the log
likelihood ln p(X|Θ) to increase by at least as much as the lower bound does.
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