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Introduction
1. Today's focus: Q-learning [1] method.

1. Q-learning is a {
    discrete domain, 
    value-based, 
    off-policy,
    model-free,
    control,
    often shown up in ML finals

      } algorithm.

2. Related to Q-learning [2]:
1. Bellman-equation.
2. TD-learning.
3. SARSA algorithm.



Discrete Domain vs. 
Continous Domain

1. Discrete action space (our focus).
1. Only several actions are available (e.g. up, down, left, right).
2. Often solved by value based methods (DQN [3], or DQN + 

MCTS [4]).
3. Policy based methods work too (TRPO[5] / PPO[6], not our 

focus).



Discrete Domain vs. 
Continous Domain

1. Continuous action space (not our focus).
1. Action is a value from a continous interval.

1. Infinite number of choices.
2. E.g.: Locomotion control of robots (MuJoCo [7]).

Actions could be the forces applied to each joint (say: 0 - 100 N).

2. If we apply discretization to the action space, we have discrete 
domain problems (autonomous car).



Model Based vs. Model Free
1. Model Based RL make use of 

dynamical model of the environment. 
(not our focus).
1. Pros

1. Better sample efficiency and transferabilty 
(VIN [8]).

2. Security/performance gaurantee (if the 
model is good).

3. Monte-Carlo Tree Search (used in 
AlphaGo[4]).

4. ...

2. Cons
1. The dynamical models are difficult to train 

itself.
2. Time consuming.
3. ...



Model Based vs. Model Free
1. Model Free RL makes no assumption of 

the environments' dynamical model (our 
focus)
1. In the ML community, more focus has 

been put on Model-free RL.
2. E.g. : 

1. In Q-learning, we can choose our action by 
looking at Q(s, a), without worrying about what 
happens next.

2. In AlphaGo, the authors combine the model-free 
method with model-based method (much 
stronger performance given a perfect dynamical 
model for Chess/GO).



Value-based vs. Policy-based
1. Value based methods are more interested in "Value" (our 

focus)
1. Estimate the expected reward for different actions given the 

initial states (table from Silver's slides [9]).
2. Policies are chosen by looking at values.



Value-based vs. Policy-based
1. Policy-based methods directly model the policy (not our 

focus).

1. Objective function is the expected average reward.

1. Usually solved by policy gradient or evolutionary updates.

2. If using value function to reduce variance --> actor-critic 
methods.



On-policy vs. Off-policy
1. Behavior policy & target policy.

My own way of telling them (works most of the time):
1. Behavior policy is the policy used to generate training data.

1. Could be generated by other agents (learning by watching)

2. Could be that the agent just want to do something new to explore the world.

3. Re-use generated data.

2. Target policy is the policy the agent want to use if the agent is put into testing.
3. Behavior policy == target policy: On-policy, otherwise Off-policy
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Prediction: TD-learning and 
Bellman Equation

1. Prediction:
1. Evaluation certain policy (could be crappy).
2. Bellman Expectation Equation (covered in lecture slides).

Take out the Expectation if the process is deterministic.

3. Algorithms:
1. Monte-Carlo algorithm (not our focus).

1. It learns directly from episodes of experience.
2. Dynamic Programming (not our focus)

1. Only applicable when the dynamical model is known and small.
3. TD-learning algorithm (related to Q-learning, covered in lecture slides).

1. Update value V(St) toward estimated return Rt+1 + γV(St+1)



Prediction: TD-learning and 
Bellman Equation

1. Prediction Examples:

2. Since the trajectory is generated by the policy we want to evaluate, 
eventually the value function converges to the true value under 
this policy.



Control: Bellman Optimality 
Equation and SARSA

1. Control:
1. Obtaining the optimal policy.

1. Looping over Bellman Expectation Equation and improve policy.

2. Bellman Optimality Equation (covered in lecture slides).

3. SARSA:
1. Fix the policy to be epsilon-greedy policy from Bellman Optimality 

Equation.
2. Updating the policy using Bellman Expectation Equation (TD).
3. When the Bellman Expectation Equation converges, the Bellman 

Optimality Equation is met.



Control: Switching to Q-
learning Algorithm

1. Switching to off-policy method.
1. SARSA has the same target policy and behavior policy 

(epsilon-greedy).
2. Q-learning might has different target policy and behavior 

policy.
1. Target policy: greedy policy (Bellman Optimality Equation).
2. Common behavior policy for Q-learning: Epsilon-greedy policy. 

1. Choose random policy with probability of epsilon, greedy policy with 
probability of (1 - epsilon)

2. Decaying epsilon with time.
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Policy Based Algorithm
1. Policy Gradient (not our focus)

1. Objective function:

2. Takeing the gradient (Policy Gradient Theorem)

1. Variants:
1. If Qw is the empirical return: REINFORCE algorithm [10].
2. If Qw is the estimation of action-value function: Actor Critics [11].
3. If adding KL constraints on policy updates: TRPO / PPO.
4. If policy is deterministic: DPG [12] / DDPG [13] (Deterministic 

Policy Gradient).



NerveNet: Learning Stuctured 
Policy in RL

1. NerveNet:
1. In traditional reinforcement learning, policies of agents are learned by MLPs which 

take the concatenation of all observations from the environment as input for predicting 
actions.

2. We propose NerveNet to explicitly model the structure of an agent, which naturally 
takes the form of a graph. 
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