CSC 411: Lecture 4 - Logistic regression

Ethan Fetaya, James Lucas and Emad Andrews

Key Concepts:

m Logistic Regression
m Regularization

m Cross validation

note: we are still talking about binary classification (with {0,1} labels)

T

x=wp -1+ S, w; - x; to binary decision by

So far: Turned a real score w
thresholding.

Alternative: Model the probability P(y = 1|x).
Need to squash wlx into [0,1], p(y = 1|x) = f(w!x).
What about P(y = —1|w)? P(y = —1jw)=1—-P(y =1lw) =1 — f(wTx)

How to chose label? Pick the most probable (when shouldn’t you do that?).

Benefits:

m Models uncertainty (in a limited manor)

m Can use probability for decision making.
m Can use probabilistic objective (ML/MAP).

Sigmoid

Useful squashing function: sigmoid or logistic function

() — ;
A + exp(—2)

1

y 0.5
0 | —
oz

= Smooth function.
m Monotonic increasing.
mo(0)=0.5
mo(z) =0, 0(2) Z=2=1

Logistic re
oeo

Sigmoid

m Let’s look at how modifying w changes the shape of the function

m 1D example:

08
08
07
06
05
04
03
0.2

y=o (wiz + wp)

The magnitude of w;; decides the slope.

It can be seen as a smooth alternative to the step function.

w,=0,w =1 w,=0,w =0.5 W, 2,w =1
0 1 0 1 0 1
e) ! —
/ g 03 /,"/ . 03| /
v 08 /’ 03|
/ /
/ 07| 07| /
/ /
/ 05 p 05 /
,/‘ 05 / 05| //
/ 04 04 /
/" 03 03) /
02 P 02 /
) b 01 /
— = g 2 0 0 2 g 2 B % % 2 0

Logistic re
ooe

Sigmoid

m What is the decision boundary for logistic regression?
mp(y=1x,w) =c(wlx) >05=wlx>0

m Decision boundary: wlx = wg + Z?Zl wjz; = 0.

m Logistic regression has a linear decision boundary

m The decision boundary is invariant to scaling but the probability isn’t.

\)\f X+ WDI:D (dedswon bc;undary‘)

p(C=0lx) = p(C=1lx)= 05 |

®000000

Optimization

m When we have a d-dim input x € R¢
m How should we learn the weights w = (wg, w1, -+ ,wq)?

m We have a probabilistic model

m Let’s use maximum likelihood

0O@00000

Optimization

m Assume y € {0, 1}, we can write the probability distribution of each of our training
points p(y(1)7 . ’y(N)|X(1)’ e X(N); W)

m Assuming that the training examples are sampled IID: independent and identically
distributed, we can write the likelihood function:

N
Liw) =py®, - g™ x® . xV). w) = Hp(y(i)|x(i);w)
i=1
m We can write each probability as (will be useful later):
@) | (i i @ i -
pyVxDsw) = ply =1xDs W)Y py = 0x V5 w)

. i . 1-y

()
()
m We can learn the model by maximizing the likelihood

max L(w mapr D1x: w)

w

m Easier to maximize the log likelihood log L(w)

p(y[x®) (likelihood)

N
Liw) = H

=1

Ly 1-y@) i
(1-ply=1xD)) " ply=1x0)"

|
_EZ

s
Il
-

m We can convert the maximization problem into minimization the negative
log-likelihood (NLL):

N
Liog(w) = —log L(w) = — Zlogp(y(i)\x(i); w)
i=1
Ling(w) = — log L(w)
N N
==y log(py = 1x, w)) = > (1 —y)logp(y = 0[x'; w)
i=1

m Is there a Close(zizflorm solution?

Logistic regression

[e]e]e] le]ele)

Optimization

N N
min L(w) = min {— >y Plogp(y =11x, w) = > (1 - y?)log(1 - ply = 1lx(i>7W))}

w
i=1 i=1

m Gradient descent: iterate and at each iteration compute steepest direction towards
optimum, move in that direction, step-size A

WD, AaL(W)
J J ow;

® You can write this in vector form

_ [0L(w) OL(w) r
T Bwy T Owy

vL(w) wttD w® AV L(w®)

m But where is w?

1 exp(—w’ x
—“1x)= - - = = =
ply = 1x) = 5 Foxp (—wx)’ p(y = 0[x)

Logistic regression

0000e00

Optimization

m The loss is

N N
Liog—toss(w) = =Yy logp(y = 1x'V, w) = > (1= ¢y log p(y = 0|x'), w)
i=1

i=1
where the probabilities are

1 exp(—z) 1

1+ exp(—=2) ply = O, w) = 1+exp(—z) 1+ exp(2)

ply=1x,w) =

and z = wix

m We can simplify

L(W)iog—toss = >y log(1+ exp(—2")) + Z (1—y®)z® +Z (1= y@)log(1 + exp(—2"))

7

S log(1 + exp(—=()) + (1~ y)z(0

m Now it’s easy to take derivatives

[e]e]e]e]

Optimization

Liw) = Y (1—y")® +Zlog(1 + exp(—2))

i

m Now it’s easy to take derivatives

m Remember z = wix = 8‘972 =z,
w;

ot ol 0z () () exp(—21") () ! ()
ow; 0z dw, Z K (YTy exp(—z(l))> 21: K (1 + exp(—z(®) Y)

(3

m What'’s xg-i)? The j—th dimension of the i—th training example x(*)

m And simplifying
ol i . .
= E xg) <p(y =1xD; w) — y(’))

ow;
J K2

m Don’t get confused with indices: j for the weight that we are updating and ¢ for the
training example

[e]e]e]e]

Optimization

m Putting it all together (plugging the update into gradient descent): Gradient
descent for logistic regression:

AT o= 105)
where:

1
1+ exp (—wTx)

p(y = 1xD;w) =

m This is all there is to learning in logistic regression. Simple, huh?

Non-probabilistic perspective

We are optimizing Y,(1 -)= + 3, og(1 + exp(—2())).

loss function

We can forget the probabilistic interpretation and just think about a surrogate

U(y,9) = (1 —y)§ + log(1 + exp(—7))

_ {log(l +exp(=9)), y=1,

log(1 + exp(y)),

y =0,

=l

logistic
/regression

1

least squares
regression

If the right answer is 1 and the
model says 1.5, it loses, so it
changes the boundary to avoid
being “too correct” (tilts aways
from outliers)

Regularization
[le]

Prior

Regularization:

m We can also look at

p(wl{y} {x}) o< p({y}[{x}, W) p(w)
with {y} = (@, ,y™), and {x} = (xV), ..., x)
m We can define priors on parameters w
m This is a form of regularization

m Helps avoid large weights and overfitting

max log |p(w) [[p(yx®, w)

m This is called maximum-a-posteriori estimation (MAP)?

m What’s p(w)?

Prior

m For example, define prior: normal distribution, zero mean and identity covariance
p(w) oc N (0, 1) (best to exclude wp)

m This prior pushes parameters towards zero (why is this a good idea?)
m Equivalent to Lo regularization
m Including this prior the new gradient is

Lt)\LL(W) — xaw'?
J J

(
w;
J ow;

where t here refers to iteration of the gradient descent

m The parameter « is the importance of the regularization, and it’s a hyper-parameter

m How do we decide the best value of « (or a hyper-parameter in general)?

am

MNIST digit data-set: 60,000 training 28 x 28 digit images, 10,000 test images.
Need to classify as 0-9.

Only take zero and ones - binary classification.

/1]
Olojelojo

Regularization

(o] lo}

Example

Train logistic regression with various regularization parameters-

1.05 T T T T T T T T T T T T T T
— test accuracy
— train accuracy

075 L L L L L L 1 L L 1 L 1 1 1
10%10%10* 10 107 10° 10% 107 10 10° 10° 107 10° 10! 10%° 10%®
alpha

How do the classifiers look?

underfit best model overfit
* - -
- . * .

~ b

” ’t"»\‘.’ av

(doesn’t overfit that much, still great on test)

Validation
[]

Validation set

Tuning hyper-parameters:

m Never use test data for tuning the hyper-parameters

m We can divide the set of training examples into two disjoint sets: training and
validation.

m Use the first set (i.e., training) to estimate the weights w for different values of a.

m Use the second set (i.e., validation) to estimate the best «, by evaluating how well
the classifier does on this second set.

m This tests how well it generalizes to unseen data.
m Trade-off: Large validation set — less training data to use.

m Trade-off: Small validation set — less accurate estimation.

m Can overfit on the validation set!

Validation

@00

Cross-validation

m Leave-p-out cross-validation:

m We use p observations as the validation set and the remaining observations as
the training set.
m This is repeated on all ways to cut the original training set.
m It requires (g) for a set of n examples
m Leave-1-out cross-validation: When p = 1, does not have this problem

m k-fold cross-validation:

m The training set is randomly partitioned into k equal size subsamples.

m Of the k subsamples, a single subsample is retained as the validation data for
testing the model, and the remaining k& — 1 subsamples are used as training
data.

m The cross-validation process is then repeated k times (the folds).

m The k results from the folds can then be averaged (or otherwise combined) to
produce a single estimate

Cross-validation

Train your model:

m Leave-one-out cross-validation:
m k-fold cross-validation:

Training examples A

Validation
ooe

Cross-validation

Logistic Regression wrap-up

Pros:
m Probabilistic view of class predictions
m Quick to train, convex loss
m Fast at classification
m Good accuracy for many simple data sets
m Resistant to overfitting (Rule of thumb: #data >= 10 - # features)

m Can interpret model coefficients as indicators of feature importance

Cons:

m Linear decision boundary (too simple for more complex problems?)

m Very simple model of the conditional probabilities

	Logistic regression
	Sigmoid
	Optimization
	Non-probabilistic perspective

	Regularization
	Prior
	Example

	Validation
	Validation set
	Cross-validation

