
CSC 411 Lecture 19-20: Ensembles

Ethan Fetaya, James Lucas and Emad Andrews

University of Toronto

CSC411 Lec19 1 / 42

Today

Ensemble Methods

Bagging

Random forest

Boosting

CSC411 Lec19 2 / 42

Ensemble methods

Back to supervised learning.

Ensemble of predictors is a set of predictors whose individual decisions are
combined in some way to classify new examples

Simplest approach:

1. Generate multiple classifiers
2. Each votes on test instance
3. Take majority/average as prediction

Classifiers are different due to different sampling of training data, or
randomized parameters within the classification algorithm

Aim: take simple mediocre algorithm and transform it into a super classifier
without requiring any fancy new algorithm

CSC411 Lec19 3 / 42

Ensemble methods: Overview

Differ in training strategy, and combination method

I Parallel training with different training sets

1. Bagging (bootstrap aggregation) – train separate models on
overlapping training sets, average their predictions

I Sequential training, iteratively re-weighting training examples so
current classifier focuses on hard examples: boosting

I Parallel training with objective encouraging division of labor: mixture
of experts (not covered)

Notes:

I Also known as meta-learning

CSC411 Lec19 4 / 42

Bias-Variance decomposition

Best way to understand Bagging is via the bias-variance decomposition

Consider regression with L2 loss and define h∗(x) = E[t|x] to be the
Bayes-optimal classifier.

Define the ML algorithm prediction (trained on data D) as y(x;D)

We are interested in breaking ED,x,t [(t − y(x;D))2] into its core
components.

I The expected test error when we sample a random training set.

First step:

Et [(t − y(x;D))2|D, x] = Et [(t − h∗(x) + h∗(x)− y(x;D))2|D, x] =

Et [(t − h∗(x))2|D, x] + Et [(h
∗(x)− y(x;D))2|D, x]

The third term disappears because E[t|x] = h∗(x)

ED,x,t [(t − y(x;D))2] = ED,x,t [(t − h∗(x))2] + ED,x,t [(h∗(x)− y(x;D))2]

The first term is called the noise and we have no control over it.

CSC411 Lec19 5 / 42

Bias-Variance decomposition

ED,x,t [(t − y(x;D))2] = ED,x,t [(t − h∗(x))2] + ED,x,t [(h∗(x)− y(x;D))2]

We can use the same trick to break down the second term

ED[(h∗(x)− y(x;D))2|x] = ED[(h∗(x)− ED[y(x;D)] + ED[y(x;D)]− y(x;D))2|x] =

ED[(h∗(x)− ED[y(x;D)])2|x] + ED[(y(x;D)− ED[y(x;D)])2|x]

We get: Error = (bias)2 + Variance + noise

(bias)2 = Ex[(h
∗(x)− E[y(x;D)])2]

Variance = ED,x[(y(x;D)− E[y(x;D)])2]

noise = ED,x,t [(t − h∗(x))2]

If we overfit we have high variance

CSC411 Lec19 6 / 42

Example:

Fitting a polynomial to 1d input (linear regression) for various regularization
values.

We can sample different datasets and see the variance in predictions and
bias (loss of averaged prediction)

Left: Predictions trained on various sampled datasets. Low variance

Right: The mean prediction. High bias

CSC411 Lec19 7 / 42

Example:

Left: Predictions trained on various sampled datasets. high variance

Right: The mean prediction. Low bias

CSC411 Lec19 8 / 42

Example:

Left: Predictions trained on various sampled datasets. Higher variance

Right: The mean prediction. Lower bias

CSC411 Lec19 9 / 42

Bagging

We can decompose the error to bias and variance.

Over-fitting models have high variance (hopefully low bias).

How can we reduce variance?

Simple way - you average i.i.d samples - Var(1
m

∑
i xi) = 1

mVar(x1)

Problem: The samples are other training sets, we only have one.

Solution: Bootstrapping, generating many training sets from our one set.

How is this done? By sampling with replacement.

We can train a separate predictor for each training example and average
predictions.

If samples have correlation ρ: Var(1
m

∑
i xi) = 1

m (1− ρ)σ2 + ρσ2

Works well if they have low correlation.

CSC411 Lec19 10 / 42

Bootstrapping

Bootstrapping is a classical statistics technique.

Example: We have an unbiased estimation of some parameter and want to
estimate the variance (e.g. for confidence intervals).

How can you estimate variance? You sample more from the data
distribution and estimate the variance using these extra samples.

What do you do if you cannot sample more? Bootstrap! Replace the data
distribution with the empirical distribution.

Sampling from the empirical distribution is the same as sampling with
replacement from your dataset.

Some theoretical justification (e.g. Glivenko-Cantelli theorem)

Bagging = Bootstrap Aggregation

CSC411 Lec19 11 / 42

Bagging algorithm

Input: dataset D, ML algorithm A, number of bags N.

For i = 1,...,N:

I Generate dataset Di by sampling with replacement from D (same
number of elements).

I fi = A(Di)

return: f1, ..., fN .

Doing predictions: given new example x return 1
N

∑
i fi (x) (or majority for

classification)

Thats it!

CSC411 Lec19 12 / 42

Random Forest

Bagging reduces overfitting by averaging predictions.

Works well with decision trees. Why?

I They overfit easily (high variance to reduce).
I Fast to perform inference.
I Powerful method on relational data

Random forest is decision trees+ bagging + one more trick.

To reduce correlation even more - each split only considers a random subset
of features.

How do decision boundaries look like?

CSC411 Lec19 13 / 42

Out-of-bag estimation

In bagging there is a nice way to cheaply estimate test loss

Each training example only appears in some of the ”bagged” trees.

I Probability of not being picked is ∼ 1/e

OOB estimation: We predict each training example using all the trees that
did not contain this in their training data.

CSC411 Lec19 14 / 42

Bagging Overview

Bagging reduces overfitting by averaging predictions.

Used in most competition winners

I Even if a single model is great, a small ensemble usually helps.

Easy to parallelize.

Limitations:

I Does not reduce bias.
I There is still correlation between classifiers.

Random forest solution: Add more randomness.

OOB estimation reduces the need of validation/cross-validation.

CSC411 Lec19 15 / 42

Boosting overview

Boosting is another ensemble method.

It reduces bias by making each classifier focus on previous mistakes

Training is sequentially.

We will talk about AdaBoost (binary classification)

Started by a theoretical question: Can you take a ”weak” classifier that does
ε better then chance and ”boost” it to get low training error?

Answer is yes! Our classifier is H(x) = sign (
∑

i αih(xi)) with hi weak
classifiers.

Note that we sum predictions (after sign) so sum of linear classifiers isn’t a
linear classifier!

CSC411 Lec19 16 / 42

AdaBoost

The first practical boosting algorithm is adaBoost (adaptive boosting).

The idea: At each iteration you reweigh the training sample, giving larger
weight to points that where classified wrongly and train a new weak
classifier.

The weak learner needs to minimize weighted accuracy.

Assume the weak learner can get ε better then chance (1/2).

CSC411 Lec19 17 / 42

AdaBoost Algorithm

Input: {x(n), t(n)}Nn=1, and WeakLearn: learning procedure, produces classifier H(x)

Initialize example weights: Dm
n (x) = 1/N

For m=1:M
I hm(x) = WeakLearn({x}, t,w), fit classifier by minimizing

Jm =
N∑

n=1

D(n)
m [hm(xn) 6= t(n)]

I Compute weighted error rate

εm =
Jm∑
D

(n)
m

I Compute classifier coefficient αm = 1
2

log 1−εm
εm

I Update data weights

D
(n)
m+1 = D(n)

m exp
(
−t(n)αmhm(x(n))

)
Final model

H(x) = sign(F (x)) = sign(
M∑

m=1

αmhm(x))

CSC411 Lec19 18 / 42

AdaBoost Example

εt is the weighted error, assuming less then 1/2.

αt = 1
2 log(1−εt

εt
) measures the classifier quality.

Weight the binary prediction of each classifier by the quality of that classifier:

H(x) = sign(F (x)) = sign

(
M∑

m=1

αmym(x)

)

This is how to do inference, i.e., how to compute the prediction for each
new example.

CSC411 Lec19 19 / 42

AdaBoost Example

Training data

[Slide credit: Verma & Thrun]

CSC411 Lec19 20 / 42

AdaBoost Example

Round 1

[Slide credit: Verma & Thrun]

CSC411 Lec19 21 / 42

AdaBoost Example

Round 2

[Slide credit: Verma & Thrun]

CSC411 Lec19 22 / 42

AdaBoost Example

Round 3

[Slide credit: Verma & Thrun]

CSC411 Lec19 23 / 42

AdaBoost Example

Final classifier

[Slide credit: Verma & Thrun]
CSC411 Lec19 24 / 42

AdaBoost example

Each figure shows the number m of base learners trained so far, the decision
of the most recent learner (dashed black), and the boundary of the ensemble
(green)

CSC411 Lec19 25 / 42

Algorithm analysis

We will now show that the overall training error decreases exponentially
(and it will explain αt)

Theorem:
Let εm be the WL error at iteration m and define γm = 1/2− εm. The

training loss of the boosted classifier H(x) = sign
(∑M

m=1 αmhm(x)
)

LS(H) =
1

N

N∑
i=1

1[H(x(i)) 6= t(i))] ≤ exp

(
−2

M∑
m=1

γ2m

)

If we assume γm ≥ γ then we can simplify the bound to exp
(
−2γ2M

)

CSC411 Lec19 26 / 42

Proof Intuition

The idea before we dive into the math:

The boosted classifier does a (weighted) majority voting.

For it to make a mistake on x(i) most (weighted) rounds must be erroneous.

Weight of x(i) increases exponentially with mistakes so it has a large weight.

The weak classifier is better than chance so the total weight decreases.

This means there can only be few items with large weight so few mistakes.

CSC411 Lec19 27 / 42

Proof I *

Proof: We have F (x) =
∑M

m=1 αmhm(x) and define H(x) = sign(F (x)).

We can write D
(i)
M using the algorithm recursive formula:

D
(i)
M = D

(i)
M−1 exp(−αMt(i)hM(x)) =

D
(i)
M−2 exp(−αM−1t

(i)hM−1(x)) exp(−αMt(i)hM(x)) = D
(i)
1 exp(−t(i)F (x(i)))

Next we note that the 0-1 loss is bounded by the exponential loss
1[H(x) 6= t] ≤ exp(−tF (x))
We now have

LS(H) =
N∑
i=1

D
(i)
1 1[H(x(i)) 6= t(i)] ≤

N∑
i=1

D
(i)
1 exp(−t(i)F (x(i))) =

N∑
i=1

D
(i)
M

The number of mistakes is bounded by the total weight!

CSC411 Lec19 28 / 42

Proof II *

We need to bound the total weight ZM =
∑N

i=1 D
(i)
M .

Zm+1 =
N∑
i=1

D
(i)
m+1 =

N∑
i=1

D(i)
m exp(−αm+1t

(i)hm+1(x(i)))

=
∑

t(i)=hm+1(x(i))

D(i)
m e−αm+1 +

∑
t(i) 6=hm+1(x(i))

D(i)
m eαm+1

= Zm

(
e−αm+1(1− εm+1) + εm+1e

αm+1
)

Can show αm+1 picked by the algorithm minimizes this term and it is equal to

Zm

√
1− 4γ2m+1.

This gives a bound of
∏M

m=1

√
1− 4γ2m ≤ exp(−2

∑
γ2m) finishing the proof (with

a few last steps skipped)

CSC411 Lec19 29 / 42

AdaBoost generalization

We have seen how AdaBoost training loss converges to zero, what about
test loss?

Can show the complexity (defined in some manner) grows linearly with
iterations.

If you run AdaBoost long enough it can overfit.

CSC411 Lec19 30 / 42

AdaBoost generalization

However, many times it does not.

Sometimes the test error decreases even after the training error is zero!

How does that happen?

CSC411 Lec19 31 / 42

AdaBoost alternative viewpoint

Another way to see AdaBoost sheds some light on this.

We defined F (x) =
∑M

m=1 αmhm(x) and define H(x) = sign(F (x)). Can
think of AdaBoost as a greedy optimization of the exponential loss
exp(−t(i)F (x(i)))

Can show this leads to a large margin.

Can show the margin leads to good generalization.

The paper for whoever is interested https:

//www.cc.gatech.edu/~isbell/tutorials/boostingmargins.pdf

CSC411 Lec19 32 / 42

https://www.cc.gatech.edu/~isbell/tutorials/boostingmargins.pdf
https://www.cc.gatech.edu/~isbell/tutorials/boostingmargins.pdf

AdaBoost alternative viewpoint

How do we see this other viewpoint?

Define Ft(x) =
∑t

m=1 αmhm(x). If we fix Ft and try to find Ft+1 that
maximizes

1

N

N∑
i=1

exp(−t(i)Ft+1(x(i))) =
1

N

N∑
i=1

exp(−t(i)Ft(x
(i))) exp(−t(i)αt+1ht+1x

(i))

N∑
i=1

D
(i)
t exp(−t(i)αt+1ht+1x

(i))

If ht+1 has weighted accuracy ε then the optimal α is the one used by
AdaBoost and the total loss is 2

√
ε(1− ε)

This is minimized when ε is minimized - so ht+1 should minimized the
weighted accuracy which is what AdaBoost does.

CSC411 Lec19 33 / 42

Loss Functions

Misclassification: 0/1 loss

Exponential loss: exp(−t · f (x)) (AdaBoost)

Squared error: (t − f (x))2

Soft-margin support vector (hinge loss): max(0, 1− t · y)

CSC411 Lec19 34 / 42

An impressive example of boosting

Viola and Jones created a very fast face detector that can be scanned across
a large image to find the faces.

The base classifier/weak learner just compares the total intensity in two
rectangular pieces of the image.

I There is a neat trick for computing the total intensity in a rectangle in
a few operations.

I So its easy to evaluate a huge number of base classifiers and they are
very fast at runtime.

I The algorithm adds classifiers greedily based on their quality on the
weighted training cases.

CSC411 Lec19 35 / 42

AdaBoost in Face Detection

Famous application of boosting: detecting faces in images

Few twists on standard algorithm

I Pre-define weak classifiers, so optimization=selection
I Change loss function for weak learners: false positives less costly than

misses
I Smart way to do inference in real-time (in 2001 hardware)

CSC411 Lec19 36 / 42

AdaBoost Face Detection Results

CSC411 Lec19 37 / 42

Boosting recap

Boosting is an ensemble method that reduces bias

We have shown AdaBoost a boosting algorithm for binary classification.

Viewing AdaBoost as a greedy optimization of the exponential loss lead to
many extensions.

I Boosting for ranking (RankBoost)
I Boosting for multiclass classification
I Boosting for regression
I Gradient boosting (in tutorial)

Exponential loss also shows this isn’t robust to outliers (some extensions try
to fix this)

Quiet resistant to overfitting but can still overfit

Usually used with decision stumps, axis aligned or linear classifiers.

CSC411 Lec19 38 / 42

Ensembles recap

Ensembles combine classifiers to improve performance.

Boosting

I reduce bias.
I Increases variance (large ensemble can cause overfitting).
I Sequential.
I High dependency between ensemble elements.

Bagging can reduce variance

I reduce variance (large ensemble can’t cause overfitting).
I Bias isn’t changed
I Parallel.
I Minimizes correlation between ensemble elements.

CSC411 Lec19 39 / 42

Supervised learning recap

This was the last lecture about supervised learning, what have we seen so far?

We have seen various ML algorithms - each has its pros and cons.

I No silver-bullet (not even deep learning), need to fit your solution to
the problem.

Need to understand the inductive bias of each algorithm

I Can be explicit, e.g. linear classifier.
I Can be implicit, e.g. nearest neighbor.

Many times (classification) you cannot optimize the loss you care about.

I Be sure you understand what it is your optimizing.
I Does it makes sense as a surrogate loss?

How do you optimize?

I Analytic solution (rare cases)
I Gradient descent/SGD
I EM algorithm
I Other alternatives exist, but SGD is the most common.

CSC411 Lec19 40 / 42

Kaggle survey

Recent survey on Kaggle on what ML methods people use

Classic methods like logistic regression still dominate!

Most where covered in this course.
CSC411 Lec19 41 / 42

Kaggle survey - data

Why isn’t everyone just using deep learning?

Deep learning is great for vision/text but not the best at relational data.

Vision benchmarks dominate the academic ML community, but in industry
there are a lot different tasks.

Most kaggle competitions are won with random forest/gradient boosting.

CSC411 Lec19 42 / 42

