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@ Unsupervised learning
@ Dimensionality Reduction

e PCA
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Unsupervised Learning

@ Supervised learning algorithms have a clear goal: produce desired outputs for
given inputs.

» You are given {(x(), t{))} during training (inputs and targets)
@ Goal of unsupervised learning algorithms less clear.

» You are given the inputs {x(} during training, labels are unknown.
» No explicit feedback whether outputs of system are correct.

@ Tasks to consider:

» Reduce dimensionality
» Find clusters

» Model data density

» Find hidden causes

@ Key utility

» Compress data
» Detect outliers
> Facilitate other learning
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Major Types

@ Primary problems, approaches in unsupervised learning fall into three classes:

1. Dimensionality reduction: represent each input case using a small
number of variables (e.g., principal components analysis, factor
analysis, independent components analysis)

2. Clustering: represent each input case using a prototype example (e.g.,
k-means, mixture models)

3. Density estimation: estimating the probability distribution over the
data space

@ Sometimes the main challenge is to define the right task.

@ Today we will talk about a dimensionality reduction algorithm
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@ What are the intrinsic latent dimensions in these two datasets?
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@ How can we find these dimensions from the data?
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Principal Components Analysis

@ PCA: most popular instance of dimensionality-reduction methods.

@ Aim: find a small number of “directions” in input space that explain
variation in input data; re-represent data by projecting along those directions

@ Important assumption: variation contains information
@ Data is assumed to be continuous:

> linear relationship between data and the learned representation
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PCA: Common Tool

@ Handles high-dimensional data

» Can reduces overfitting
» Can speed up computation and reduce memory usage.

@ Unsupervised algorithm.
@ Useful for:

» Visualization

» Preprocessing

» Better generalization
> Lossy compression
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PCA: Intuition

@ Aim to reduce dimensionality:

> linearly project to a much lower dimensional space, K << D:

where U is a D x K matrix and z a K-dimensional vector

x~ Uz+a

@ Search for orthogonal directions in
space with the highest variance

> project data onto this subspace

@ Structure of data vectors is encoded

in sample covariance
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Single dimension

@ To find the principal component directions, we center the data (subtract the
sample mean from each feature)

@ Calculate the empirical covariance matrix: ¥ = %XTX (some people divide
by 1/(N-1))
@ Look for a direction w that maximizes the projection variance y() = w7 x(")
» Normalize ||w|| = 1 or you can just increase the variance to infinity.
@ What is the variance of the projection?
Var(y) = Z %(WTX(i))z = %Zw,Tx(i)x(i)Tw =w'Iw
i

J

@ Our goal is to solve:

w* =arg max w’Xw
lw||=1
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Target: find w* = arg max||y||=1 w'Iw
@ 2 has an eigen-decomposition with orthonormal vy, ...,vy4 and
eigenvalues \1 > X > ... > Xy >0

@ Write w in that bases

W:E ajvi, E 3,2:1
i i

@ The objective is now arg maxy~ 2=1 EEDY
@ Simple solution! Put all weights in the larget eigenvalue! w = vy

@ What about reduction to dimension 27

» Second vector has another constrain - orthogonal to the first.
» Optimal solution - second largest eigenvector.

@ The best k dimensional subspace (max variance) is spanned by the
top-k eigenvectors.
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Another way to see it:
@ Y has an eigen-decomposition ¥ = UAUT
» where U is orthogonal, columns are unit-length eigenvectors

vlu=uUuT =1

and A is a diagonal matrix of eigenvalues in decreasing magnitude.

o What would happen if we take z() = UTx() as our features?
Y, = UTZXU =A
» The dimension of z are uncorrelated!

@ How can we maximize variance now? Just take the top k features,
i.e. first k eigenvectors.
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Algorithm

@ Algorithm: to find K components underlying D-dimensional data

1. Compute the mean for each feature m; = % ZJ. x,(.j).
2. Select the top M eigenvectors of C (data covariance matrix):

N
1
I-o ;(xw) —m)(x" —m)T = UNUT = Urk A Ul

3. Project each input vector x — m into this subspace, e.g.,

Z=ul(x-m)  z=Ul(x—m)

4. How can we (approximately) reconstruct the original x if we want to?
» x=Uikz+m=U.kUlxx+m
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Choosing K

We have the hyper-parameter K, how do we set it?
@ Visualization: k=2 (maybe 3)
@ If it is part of classification/regression pipeline - validation/cross-validation.

@ Common approach: Pick based on the percentage of variance explained by
each of the selected components.

» Total variance 27:1 Aj = Trace(X)
» Variance explained Z};l Aj

» Pick smallest k such that Zjl-;l Aj > aTrace(X) for some value o e.g.
0.9

@ Based on memory/speed constraints.
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Two Derivations of PCA

@ Two views/derivations:

» Maximize variance (scatter of green points)
» Minimize error (red-green distance per datapoint)
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PCA: Minimizing Reconstruction Error

@ We can think of PCA as projecting the data onto a lower-dimensional
subspace

@ Another derivation is that we want to find the projection such that the best
linear reconstruction of the data is as close as possible to the original data

J(u,z,b) ZHX( %2

where

%M = Zz}")uj +m zj(") = u; T(x("W —m)

@ Objective minimized when first M components are the eigenvectors with the
maximal eigenvalues
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Applying PCA to faces

Run PCA on 2429 19x19 grayscale images (CBCL data)

@ Compresses the data: can get good reconstructions with only 3 components

LS R O

PCA for pre-processing: can apply classifier to latent representation

» PCA with 3 components obtains 79% accuracy on face/non-face
discrimination on test data vs. 76.8% for GMM with 84 states

Can also be good for visualization
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Applying PCA to faces: Learned basis
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Applying PCA to digits

reconstructed with 2 bases reconstructed with 10 bases
reconstructed with 100 bases reconstructed with 506 bases

HEEEHB
2,
BEEBEa
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Relation to Neural Networks

@ PCA is closely related to a particular form of neural network

@ An autoencoder is a neural network whose outputs are its own inputs

@ The goal is to minimize reconstruction error
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Implementation details

What is the time complexity of PCA?

@ Main computation - generating ¥ matrix O(dn?) and computing
eigendecomposition O(d®)

@ For d > n can use a trick - compute eigenvalues of %XXT instead
¥ = £XTX (how is that helpful?). Complexity is O(d?n + n®)

@ Don't need full eigendecomposition - only top-k! (much) faster solvers for
that.

@ Common approach nowadays - solve using SVD (runtime of O(mdk))

» More numerically accurate
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Singular value decomposition

What is singular value decomposition (SVD)?

@ Decompose X, X = VAU with orthogonal U, V and diagonal with positive
elements A.

» Holds for every matrix unlike eigen-decomposition.

@ How do they connect to the eigenvectors of X X?

XX = (VAUT)T(VAUT) = UN\VTVAUT = UNUT

@ The column of U are the eigenvectors of X7 X.
» The corresponding eigenvalue is the square of the singular value.

@ Finding the top k singular values of X is equivalent to finding the top k
eigenvectors of X T X.
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@ PCA is the standard approach for dimensionality reduction
@ Main assumptions: Linear structure, high variance = important
@ Helps reduce overfitting, curse of dimensionality and runtime.
@ Simple closed form solution

» Can be expensive on huge datasets
@ Can be bad on non-linear structure

» Can be handled by extensions like kernel-PCA
@ Bad at fined-grained classification - we can easily throw away

important information.
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