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Neural Nets for Visual Object Recognition

@ People are very good at recognizing shapes

> Intrinsically difficult, computers are bad at it

@ Why is it difficult?
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Why is it a Problem?

@ Difficult scene conditions

|

p
occlusion

[From: Grauman & Leibe]
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Why is it a Problem?

@ Huge within-class variations. Recognition is mainly about modeling variation.

X Y

[Pic from: S. Lazebnik]

CSC411 Lecl0 4 /51



o~
£
&
o)
(©)
=
o
T
=
ik
>
=

@ Tons of classes

/4
7/

{

d
=

v

Rl |
«

0

T

l e‘l"* ""‘c

to 30,00
16 |Q@es §

bt L ®

"40,000

> b | M AT Y

®E D h=Pl—-

™~
%)

@
3

kIS

e IR A SR AL P!

AL 1S~ akh~elod %
A< =EE @A T A> ">

TOB=0 KL »n—r——<9

[Biederman]

/ 51

10

CSC411 Lec



Neural Nets for Object Recognition

@ People are very good at recognizing object
> Intrinsically difficult, computers are bad at it
@ Some reasons why it is difficult:

» Segmentation: Real scenes are cluttered

> Invariances: We are very good at ignoring all sorts of variations that do
not affect class

» Deformations: Natural object classes allow variations (faces, letters,
chairs)

» A huge amount of computation is required
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How to Deal with Large Input Spaces

@ How can we apply neural nets to images?

@ Images can have millions of pixels, i.e., x is very high dimensional
@ How many parameters do | have?

@ Prohibitive to have fully-connected layers

@ What can we do?

@ We can use a locally connected layer
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Locally Connected Layer

Example: 200x200 image
40K hidden units
Filter size: 10x10
4M parameters

Note: This parameterization is good
when input image is registered (e.g., “
face recognition). Ranzatoll3
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When Will this Work?

When Will this Work?

@ This is good when the input is (roughly) registered
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General Images

@ The object can be anywhere

[Slide: Y. Zhu]
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General Images

@ The object can be anywhere
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[Slide: Y. Zhu]



General Images

@ The object can be anywhere

[Slide: Y. Zhu]



Locally Connected Layer

STATIONARITY? Statistics is similar at
different locations

Example: 200x200 image
40K hidden units
Filter size: 10x10
4M parameters

Note: This parameterization is good
when input image is registered (e.g., .
face recognition). Ranzatolld
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The replicated feature approach

@ Adopt approach apparently used in
monkey visual systems
The red connections all

have the same weight. @ Use many different copies of the same

feature detector.

O O » Copies have slightly different

positions.

» Could also replicate across scale and
O orientation.
| t\

l — > Tricky and expensive

—_—

» Replication reduces number of free
parameters to be learned.

@ Use several different feature types, each
5 with its own replicated pool of detectors.

» Allows each patch of image to be
represented in several ways.
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Convolutional Neural Net

@ lIdea: statistics are similar at different locations (Lecun 1998)

@ Connect each hidden unit to a small input patch and share the weight across
space

@ This is called a convolution layer and the network is a convolutional network

Share the same parameters across
different locations (assuming input is
stationary):

Convolutions with learned kernels

36
Ra nzaton
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Convolutional Layer




Convolutional Layer

K
max(0, Z byt wi)
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Convolutional Layer
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Convolutional Layer

E.g.: 200x200 image
100 Filters
Filter size: 10x10
10K parameters

54
Ranzato
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Convolutional Layer
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Figure: Left: CNN, right: Each neuron computes a linear and activation function

Hyperparameters of a convolutional layer:

@ The number of filters (controls the depth of the output volume)

@ The stride: how many units apart do we apply a filter spatially (this
controls the spatial size of the output volume)

@ The size w x h of the filters

[http://cs231n.github.io/convolutional-networks /]

CSC411 Lecl0 23 /51



Output size

@ If the input is HxWxC;, and the kernel size is kixkoxC,,: what is the output
size?

> (H—k+ 1) x (W —ky+1) x Cout
@ Input is HxWxC;, and the kernel size is ki xkoxCoy: with stride s?
> out — L(H_kl)/s_FlJ

@ Input is HxWxC;, and the kernel size is kyxkoxC,,: with stride s with
padding p?

> outzl_(H+2p_k1)/s+1J

@ Without padding we can't have a very deep network (the size shrinks every
convolution)
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Pooling Layer

By “pooling” (e.g., taking max) filter

responses at different locations we gain
robustness to the exact spatial location
of features.

61
Ranzaton
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Pooling Options

@ Max Pooling: return the maximal argument
@ Average Pooling: return the average of the arguments

@ Other types of pooling exist.
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224x224x64
112x112x64 Single depth slice
pool
ik W 1 111]2]4
max pool with 2x2 filters
5|6 |7|8 and stride 2 6 | 8
} I 3l2l1]o0 3|4
1123 |4
224 downsampling 112
- 112
224 y

Figure: Left: Pooling, right: max pooling example

Hyperparameters of a pooling layer:

@ The spatial extent F
@ The stride

[http://cs231n.github.io/convolutional-networks/]
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Pooling Layer: Receptive Field Size

hn hn+l
Conv. Pool.
layer layer

If convolutional filters have size KxK and stride 1, and pooling layer
has pools of size PxP, then each unit in the pooling layer depends
upon a patch (at the input of the preceding conv. layer) of size:
(P+K-1)x(P+K-1)

hn—l

67
Ranzaton
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Backpropagation with Weight Constraints

@ It is easy to modify the backpropagation algorithm to incorporate linear
constraints between the weights
To constrain: wg = w»

we need: Awy = Awp

@ We compute the gradients as usual, and then modify the gradients so that
they satisfy the constraints.

OE and OE

compute: vy vy

) oE
use: BWI + 5o for wy and wo

@ So if the weights started off satisfying the constraints, they will continue to
satisfy them.

@ This is an intuition behind the backprop. In practice, write down the
equations and compute derivatives (it's a nice exercise, do it at home)
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Now let's make this very deep to get a real state-of-the-art object
recognition system
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Convolutional Neural Networks (CNN)

@ Basic filtering idea from computer vision/image processing
@ If our filter is [—1, 1], you get a vertical edge detector

@ Now imagine we want to have many filters (e.g., vertical, horizontal, corners,
one for dots). We will use a filterbank.

@ So applying a filterbank to an image yields a cube-like output, a 3D matrix
in which each slice is an output of convolution with one filter. We apply an
activation function on each hidden unit (typically a ReLU).

@ Do some additional tricks. A popular one is called max pooling. Any idea
why you would do this?

@ Do some additional tricks. A popular one is called max pooling. Any idea
why you would do this? To get invariance to small shifts in position.

@ Now add another “layer” of filters. For each filter again do convolution, but
this time with the output cube of the previous layer.
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Classification

@ Once trained we feed in an image or a crop, run through the network, and
read out the class with the highest probability in the last (classif) layer.

What's the class of this object?
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Example
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[http://cs231n.github.io/convolutional-networks/]
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Architecture for Classification
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Krizhevsky et al. “ImageNet Classification wlltlﬂpéjeep CNNs” NIPS 2012 Ranzaton




Architecture for Classification

category .
Total nr. params: 60M +prediction Total nr. flops: 832M
aM | LINEAR | 4M
I
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|
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442K | CONV | 74m
|
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Krizhevsky et al. “ImageNet Classification with'deep CNNs” NIPS 2012 Ranzato
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@ Imagenet, biggest dataset for object classification: nttp://image-net.org/

@ 1000 classes, 1.2M training images, 150K for test
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150 Layers!

34dayerplain  34-layer residual

@ Networks are now at 150 layers

They use a skip connections with special form

In fact, they don't fit on this screen

Amazing performance!

A lot of “mistakes’ are due to wrong ground-truth

weight layer
weight layer

Hx)=F(x)+x @

F(x) identity

X

il

[He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition. arXiv:1512.03385, 2016]
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Results: Object Classification

Revolution of Depth

\ 152 layers

\
AY
\
22 layers 19 Iayers
\ 6.7

3 57 I I | 8layers K layers shallow

ILSVRC'15 ILSVRC'14 ILSVRC'14  ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition.
arXiv:1512.03385, 2016]
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Results: Object Detection

. 101 layers
Revolution of Depth A
/86
Engines of /
visual recognition
- 16 layers I
| shallow [_starer |
' -—4—--—1
HOG, DPM AlexNet VGG ResNet
(RCNN) (RCNN) (Faster RCNN)*

Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition.
arXiv:1512.03385, 2016]
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Results: Object Detection

person :0.998

“person 1).935

Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition.
arXiv:1512.03385, 2016]
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Results: Object Detection

person : 0.989 h
P refrigerator : 0.979

< powl : 0.927 ‘0971
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Results: Object Detection

person : 0.998

Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition.
arXiv:1512.03385, 2016]
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What do CNNs Learn?

Figure: Filters in the first convolutional layer of Krizhevsky et al
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What do CNNs Learn?
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Figure: Filters in the second layer

[http://arxiv.org/pdf/1311.2901v3.pdf]
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What do CNNs Learn?

Figure: Filters in the third layer

[http://arxiv.org/pdf/1311.2901v3.pdf]
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What do CNNs Learn?

[http://arxiv.org/pdf/1311.2901v3.pdf]
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How to Train Good CNNs

@ Normalize your data (standard trick: subtract mean, divide by standard
deviation)

@ Augment your data (add image flips, rotations, etc)

@ Keep training data balanced

@ Shuffle data before batching

@ In training: Random initialization of weights with proper variance

@ Monitor your loss function, and accuracy (performance) on validation

@ If your labeled image dataset is small: pre-train your CNN on a large dataset
(eg Imagenet), and fine-tune on your dataset

[Slide: Y. Zhu, check tutorial slides and code:
http://www.cs.utoronto.ca/~fidler/teaching/2015/CSC2523.html]
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Transfer learning

@ Main reason DL helps on (almost) any vision task, even when you don't
have a huge dataset!

1. Train on Imagenet 2. Small Dataset (C classes) 3. Bigger dataset

Fe [ree ]

Feao% ] Reinitialize [CFoaoss | Train these
this and train IECTa

[ MaxPool MaxPool | MaxPool

[_Conv-512 Conv512_| With bigger
[convsiz Conv-siz_| dataset, train

[ Waxpooi Pool | more layers
Conv-512 Convs12_|

[ Convsiz Convsiz |

[ MaxPool MaxPool | > Freeze these

[ Conv-256. Conv-256 | Freeze these

[ Conv-256

[ axpoo .

[ Conv-128. Lower learning rate
Conv-128 when finetuning;

[ MaxPool | MaxPool | 1/10 of original LR

[__Convs Conves | is good starting

[__Convs Convsd | point

[Cimage ]

[From: http://cs231n.github.io/]
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How to control overfitting?
@ Early stopping

» You don’t have to take the last iteration!
» Check validation during training (every few iterations/epoch) and take
the best one.

@ Weight decay
» L, regularization, usually around le — 4

@ Adding random noise

» Dropout
» Other ideas like Gaussian noise, batch normalization
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@ At each iteration "kill" each neuron with probability p (usually 0.5).

b) After applying dropout.

(

Standard Neural Net

(a)

@ The expected value decreased by p, fix by multiplying by 1/p.

@ At test time just use trained weights.

50 / 51
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@ Great course dedicated to NN: http://cs231n.stanford.edu
@ Over source frameworks:

» Pytorch http://pytorch.org/
» Tensorflow https://www.tensorflow.org/
» Caffe http://caffe.berkeleyvision.org/

@ Most cited NN papers:
https://github.com/terryum/awesome-deep-learning-papers
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