CSC 411 Lecture 11: Neural Networks Il

Ethan Fetaya, James Lucas and Emad Andrews

University of Toronto

CSC411 Lecl0 1/51

Neural Nets for Visual Object Recognition

@ People are very good at recognizing shapes

> Intrinsically difficult, computers are bad at it

@ Why is it difficult?

CSC411 Lecl0 2 /51

Why is it a Problem?

@ Difficult scene conditions

|

p
occlusion

[From: Grauman & Leibe]
CSC411 Lecl0 3/51

Why is it a Problem?

@ Huge within-class variations. Recognition is mainly about modeling variation.

X Y

[Pic from: S. Lazebnik]

CSC411 Lecl0 4 /51

o~
£
&
o)
(©)
=
o
T
=
ik
>
=

@ Tons of classes

/4
7/

{

d
=

v

Rl |
«

0

T

l e‘l"* ""‘c

to 30,00
16 |Q@es §

bt L ®

"40,000

> b | M AT Y

®E D h=Pl—-

™~
%)

@
3

kIS

e IR A SR AL P!

AL 1S~ akh~elod %
A< =EE @A T A> ">

TOB=0 KL »n—r——<9

[Biederman]

/ 51

10

CSC411 Lec

Neural Nets for Object Recognition

@ People are very good at recognizing object
> Intrinsically difficult, computers are bad at it
@ Some reasons why it is difficult:

» Segmentation: Real scenes are cluttered

> Invariances: We are very good at ignoring all sorts of variations that do
not affect class

» Deformations: Natural object classes allow variations (faces, letters,
chairs)

» A huge amount of computation is required

CSC411 Lecl0 6 /51

How to Deal with Large Input Spaces

@ How can we apply neural nets to images?

@ Images can have millions of pixels, i.e., x is very high dimensional
@ How many parameters do | have?

@ Prohibitive to have fully-connected layers

@ What can we do?

@ We can use a locally connected layer

CSC411 Lecl0 7 /51

Locally Connected Layer

Example: 200x200 image
40K hidden units
Filter size: 10x10
4M parameters

Note: This parameterization is good
when input image is registered (e.g., “
face recognition). Ranzatoll3

CSC411 Lecl0 8 /51

When Will this Work?

When Will this Work?

@ This is good when the input is (roughly) registered

CSCA411 Lecl0 9 /51

General Images

@ The object can be anywhere

[Slide: Y. Zhu]

CSC411 Lecl0 10 / 51

General Images

@ The object can be anywhere

_—————— e |

[Slide: Y. Zhu]

General Images

@ The object can be anywhere

[Slide: Y. Zhu]

Locally Connected Layer

STATIONARITY? Statistics is similar at
different locations

Example: 200x200 image
40K hidden units
Filter size: 10x10
4M parameters

Note: This parameterization is good
when input image is registered (e.g., .
face recognition). Ranzatolld

CSC411 Lecl0 13 / 51

The replicated feature approach

@ Adopt approach apparently used in
monkey visual systems
The red connections all

have the same weight. @ Use many different copies of the same

feature detector.

O O » Copies have slightly different

positions.

» Could also replicate across scale and
O orientation.
| t\

l — > Tricky and expensive

—_—

» Replication reduces number of free
parameters to be learned.

@ Use several different feature types, each
5 with its own replicated pool of detectors.

» Allows each patch of image to be
represented in several ways.

CSC411 Lecl0 14 / 51

Convolutional Neural Net

@ lIdea: statistics are similar at different locations (Lecun 1998)

@ Connect each hidden unit to a small input patch and share the weight across
space

@ This is called a convolution layer and the network is a convolutional network

Share the same parameters across
different locations (assuming input is
stationary):

Convolutions with learned kernels

36
Ra nzaton

CSC411 Lecl0 15 / 51

Convolutional Layer

Convolutional Layer

K
max(0, Z byt wi)
k=1

hi

Convolutional Layer

Convolutional Layer

Convolutional Layer

Convolutional Layer

Convolutional Layer

E.g.: 200x200 image
100 Filters
Filter size: 10x10
10K parameters

54
Ranzato
CSC411 Lecl0 22 /51

Convolutional Layer

32

32

>E§OOO(

]

Zo Wo
synapse
woxo

—e
axon from a neuron

cell body

Zwm +b b f<Zw'zt+b)

output axon
activation
function

Figure: Left: CNN, right: Each neuron computes a linear and activation function

Hyperparameters of a convolutional layer:

@ The number of filters (controls the depth of the output volume)

@ The stride: how many units apart do we apply a filter spatially (this
controls the spatial size of the output volume)

@ The size w x h of the filters

[http://cs231n.github.io/convolutional-networks /]

CSC411 Lecl0 23 /51

Output size

@ If the input is HxWxC;, and the kernel size is kixkoxC,,: what is the output
size?

> (H—k+ 1) x (W —ky+1) x Cout
@ Input is HxWxC;, and the kernel size is ki xkoxCoy: with stride s?
> out — L(H_kl)/s_FlJ

@ Input is HxWxC;, and the kernel size is kyxkoxC,,: with stride s with
padding p?

> outzl_(H+2p_k1)/s+1J

@ Without padding we can't have a very deep network (the size shrinks every
convolution)

CSC411 Lecl0 24 / 51

Pooling Layer

By “pooling” (e.g., taking max) filter

responses at different locations we gain
robustness to the exact spatial location
of features.

61
Ranzaton

CSC411 Lecl0 25 /51

Pooling Options

@ Max Pooling: return the maximal argument
@ Average Pooling: return the average of the arguments

@ Other types of pooling exist.

CSC411 Lecl0 26 / 51

224x224x64
112x112x64 Single depth slice
pool
ik W 1 111]2]4
max pool with 2x2 filters
5|6 |7|8 and stride 2 6 | 8
} I 3l2l1]o0 3|4
1123 |4
224 downsampling 112
- 112
224 y

Figure: Left: Pooling, right: max pooling example

Hyperparameters of a pooling layer:

@ The spatial extent F
@ The stride

[http://cs231n.github.io/convolutional-networks/]
CSC411 Lecl0 27 / 51

Pooling Layer: Receptive Field Size

hn hn+l
Conv. Pool.
layer layer

If convolutional filters have size KxK and stride 1, and pooling layer
has pools of size PxP, then each unit in the pooling layer depends
upon a patch (at the input of the preceding conv. layer) of size:
(P+K-1)x(P+K-1)

hn—l

67
Ranzaton

CSC411 Lecl0 28 / 51

Backpropagation with Weight Constraints

@ It is easy to modify the backpropagation algorithm to incorporate linear
constraints between the weights
To constrain: wg = w»

we need: Awy = Awp

@ We compute the gradients as usual, and then modify the gradients so that
they satisfy the constraints.

OE and OE

compute: vy vy

) oE
use: BWI + 5o for wy and wo

@ So if the weights started off satisfying the constraints, they will continue to
satisfy them.

@ This is an intuition behind the backprop. In practice, write down the
equations and compute derivatives (it's a nice exercise, do it at home)

CSC411 Lecl0 29 /51

Now let's make this very deep to get a real state-of-the-art object
recognition system

CSC411 Lecl0 30 /51

Convolutional Neural Networks (CNN)

@ Basic filtering idea from computer vision/image processing
@ If our filter is [—1, 1], you get a vertical edge detector

@ Now imagine we want to have many filters (e.g., vertical, horizontal, corners,
one for dots). We will use a filterbank.

@ So applying a filterbank to an image yields a cube-like output, a 3D matrix
in which each slice is an output of convolution with one filter. We apply an
activation function on each hidden unit (typically a ReLU).

@ Do some additional tricks. A popular one is called max pooling. Any idea
why you would do this?

@ Do some additional tricks. A popular one is called max pooling. Any idea
why you would do this? To get invariance to small shifts in position.

@ Now add another “layer” of filters. For each filter again do convolution, but
this time with the output cube of the previous layer.

CSC411 Lecl0 31 /51

Classification

@ Once trained we feed in an image or a crop, run through the network, and
read out the class with the highest probability in the last (classif) layer.

What's the class of this object?

27

13 13 13
N
1 -
5 _-“—";~ = N
IN - - % N~ T\ |3 =% 3
220 [hassnfsaNainnsynsinne ;...\\............ 'l

Ry 3 =T)
Wssmug\gnans ssmuns
5 384 384 256
Max
i 256 - pooling 409 4096
Stride\| g4 pooling pooling
224\ || of &

CSC411 Lecl0

32 /51

Example

ELU RELU RELU RELU RELU RELU

CONV | CONV CONV | CONV CONV [CONV EC
Ll lil iyl]
08 u | mm(-|-sE (=l =
- == — = I .plane
|- (mm| (=== m|m) i
=) 1 —] = 1 I10rse
— B — = =l

[http://cs231n.github.io/convolutional-networks/]
CSC411 Lecl0 33 /51

Architecture for Classification
+§Z‘§%§Lyn
LINEAR
FULLYCJNNECTED
FULLYCdNNECTED
MAXPéOUNG

| |
| |
| |
| |
| CONV |
| |
| |
| |

|
CONV

CONV
|
MAX POOLING

LOCALCONfRASTNORM

CONV
1
| MAX POOLING |

LOCAL CONTRAST NORM
CONV

95
input
Krizhevsky et al. “ImageNet Classification wlltlﬂpéjeep CNNs” NIPS 2012 Ranzaton

Architecture for Classification

category .
Total nr. params: 60M +prediction Total nr. flops: 832M
aM | LINEAR | 4M
I
16M | FULLY CONNECTED | 16M
37M | FULLY CONNECTED | 37M
|
| MAX POOLING |
442K | CONV | 74m
|
1.3M | CONV | 224m
884K | CONV | 149M
I
| MAX POOLING |
LOCAL CONTRAST NORM
307K CONV 223M
I
| MAX POOLING |
LOCAL CONTRAST NORM
35K CONV 105M

96
, . fication whRP4L . £
Krizhevsky et al. “ImageNet Classification with'deep CNNs” NIPS 2012 Ranzato
CSC411 Lecl0 35 /51

@ Imagenet, biggest dataset for object classification: nttp://image-net.org/

@ 1000 classes, 1.2M training images, 150K for test
N ECe o0 .Cil..ﬂﬁﬂﬁﬂ@(-’o l ﬁé‘iu ¥ Eﬁ rS@ VEEoBE om

. ,,!ﬂlEL HOECIGQ%IHiQO 3 s 3mq T [
CSC411 Lecl0 36 / 51

http://image-net.org/

150 Layers!

34dayerplain 34-layer residual

@ Networks are now at 150 layers

They use a skip connections with special form

In fact, they don't fit on this screen

Amazing performance!

A lot of “mistakes’ are due to wrong ground-truth

weight layer
weight layer

Hx)=F(x)+x @

F(x) identity

X

il

[He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition. arXiv:1512.03385, 2016]

CSC411 Lecl0

Results: Object Classification

Revolution of Depth

\ 152 layers

\
AY
\
22 layers 19 Iayers
\ 6.7

3 57 I I | 8layers K layers shallow

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition.
arXiv:1512.03385, 2016]

CSC411 Lecl0

Results: Object Detection

. 101 layers
Revolution of Depth A
/86
Engines of /
visual recognition
- 16 layers I
| shallow [_starer |
' -—4—--—1
HOG, DPM AlexNet VGG ResNet
(RCNN) (RCNN) (Faster RCNN)*

Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition.
arXiv:1512.03385, 2016]

CSC411 Lecl0 39 /51

Results: Object Detection

person :0.998

“person 1).935

Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition.
arXiv:1512.03385, 2016]

CSC411 Lecl0 40 / 51

Results: Object Detection

person : 0.989 h
P refrigerator : 0.979

< powl : 0.927 ‘0971

Eb w i 0. 969&0?1‘0 :

= o1E Do oo Docid o oo fo oo Do ool o
CSC411 Lecl0 41 /51

Results: Object Detection

person : 0.998

Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition.
arXiv:1512.03385, 2016]

CSC411 Lecl0 42 /51

What do CNNs Learn?

Figure: Filters in the first convolutional layer of Krizhevsky et al

CSC411 Lecl0 43 / 51

What do CNNs Learn?

L o0 T
N7/l |
~+ 77 TN

||
£

| /
¥
Y
r

E

Figure: Filters in the second layer

[http://arxiv.org/pdf/1311.2901v3.pdf]
CSC411 Lecl0 44 / 51

What do CNNs Learn?

Figure: Filters in the third layer

[http://arxiv.org/pdf/1311.2901v3.pdf]

CSC411 Lecl0 45 / 51

What do CNNs Learn?

[http://arxiv.org/pdf/1311.2901v3.pdf]

CSC411 Lecl0 46 / 51

How to Train Good CNNs

@ Normalize your data (standard trick: subtract mean, divide by standard
deviation)

@ Augment your data (add image flips, rotations, etc)

@ Keep training data balanced

@ Shuffle data before batching

@ In training: Random initialization of weights with proper variance

@ Monitor your loss function, and accuracy (performance) on validation

@ If your labeled image dataset is small: pre-train your CNN on a large dataset
(eg Imagenet), and fine-tune on your dataset

[Slide: Y. Zhu, check tutorial slides and code:
http://www.cs.utoronto.ca/~fidler/teaching/2015/CSC2523.html]

CSC411 Lecl0 47 / 51

http://www.cs.utoronto.ca/~fidler/teaching/2015/CSC2523.html

Transfer learning

@ Main reason DL helps on (almost) any vision task, even when you don't
have a huge dataset!

1. Train on Imagenet 2. Small Dataset (C classes) 3. Bigger dataset

Fe [ree]

Feao%] Reinitialize [CFoaoss | Train these
this and train IECTa

[MaxPool MaxPool | MaxPool

[_Conv-512 Conv512_| With bigger
[convsiz Conv-siz_| dataset, train

[Waxpooi Pool | more layers
Conv-512 Convs12_|

[Convsiz Convsiz |

[MaxPool MaxPool | > Freeze these

[Conv-256. Conv-256 | Freeze these

[Conv-256

[axpoo .

[Conv-128. Lower learning rate
Conv-128 when finetuning;

[MaxPool | MaxPool | 1/10 of original LR

[__Convs Conves | is good starting

[__Convs Convsd | point

[Cimage]

[From: http://cs231n.github.io/]

CSC411 Lecl0

How to control overfitting?
@ Early stopping

» You don’t have to take the last iteration!
» Check validation during training (every few iterations/epoch) and take
the best one.

@ Weight decay
» L, regularization, usually around le — 4

@ Adding random noise

» Dropout
» Other ideas like Gaussian noise, batch normalization

CSC411 Lecl0 49 / 51

@ At each iteration "kill" each neuron with probability p (usually 0.5).

b) After applying dropout.

(

Standard Neural Net

(a)

@ The expected value decreased by p, fix by multiplying by 1/p.

@ At test time just use trained weights.

50 / 51

CSC411 Lecl0

@ Great course dedicated to NN: http://cs231n.stanford.edu
@ Over source frameworks:

» Pytorch http://pytorch.org/
» Tensorflow https://www.tensorflow.org/
» Caffe http://caffe.berkeleyvision.org/

@ Most cited NN papers:
https://github.com/terryum/awesome-deep-learning-papers

CSC411 Lecl0 51 /51

http://cs231n.stanford.edu
http://pytorch.org/
https://www.tensorflow.org/
http://caffe.berkeleyvision.org/
https://github.com/terryum/awesome-deep-learning-papers

	Introduction

