
CSC 411 Lecture 11: Neural Networks II

Ethan Fetaya, James Lucas and Emad Andrews

University of Toronto

CSC411 Lec10 1 / 51

Neural Nets for Visual Object Recognition

People are very good at recognizing shapes

◮ Intrinsically difficult, computers are bad at it

Why is it difficult?

CSC411 Lec10 2 / 51

Why is it a Problem?

Difficult scene conditions

[From: Grauman & Leibe]

CSC411 Lec10 3 / 51

Why is it a Problem?

Huge within-class variations. Recognition is mainly about modeling variation.

[Pic from: S. Lazebnik]
CSC411 Lec10 4 / 51

Why is it a Problem?

Tons of classes

[Biederman]

CSC411 Lec10 5 / 51

Neural Nets for Object Recognition

People are very good at recognizing object

◮ Intrinsically difficult, computers are bad at it

Some reasons why it is difficult:

◮ Segmentation: Real scenes are cluttered
◮ Invariances: We are very good at ignoring all sorts of variations that do

not affect class
◮ Deformations: Natural object classes allow variations (faces, letters,

chairs)
◮ A huge amount of computation is required

CSC411 Lec10 6 / 51

How to Deal with Large Input Spaces

How can we apply neural nets to images?

Images can have millions of pixels, i.e., x is very high dimensional

How many parameters do I have?

Prohibitive to have fully-connected layers

What can we do?

We can use a locally connected layer

CSC411 Lec10 7 / 51

34

Locally Connected Layer

Example: 200x200 image
 40K hidden units
 Filter size: 10x10

 4M parameters

Ranzato

Note: This parameterization is good
when input image is registered (e.g.,
face recognition).

CSC411 Lec10 8 / 51

When Will this Work?

When Will this Work?

This is good when the input is (roughly) registered

CSC411 Lec10 9 / 51

General Images

The object can be anywhere

[Slide: Y. Zhu]

CSC411 Lec10 10 / 51

General Images

The object can be anywhere

[Slide: Y. Zhu]

CSC411 Lec10 11 / 51

General Images

The object can be anywhere

[Slide: Y. Zhu]

CSC411 Lec10 12 / 51

35

STATIONARITY? Statistics is similar at
different locations

Ranzato

Note: This parameterization is good
when input image is registered (e.g.,
face recognition).

Locally Connected Layer

Example: 200x200 image
 40K hidden units
 Filter size: 10x10

 4M parameters

CSC411 Lec10 13 / 51

The replicated feature approach

The red connections all

have the same weight.

5

Adopt approach apparently used in
monkey visual systems

Use many different copies of the same
feature detector.

◮ Copies have slightly different
positions.

◮ Could also replicate across scale and
orientation.

◮ Tricky and expensive

◮ Replication reduces number of free
parameters to be learned.

Use several different feature types, each
with its own replicated pool of detectors.

◮ Allows each patch of image to be
represented in several ways.

CSC411 Lec10 14 / 51

Convolutional Neural Net

Idea: statistics are similar at different locations (Lecun 1998)

Connect each hidden unit to a small input patch and share the weight across
space

This is called a convolution layer and the network is a convolutional network

CSC411 Lec10 15 / 51

Convolutional Layer

Ranzato

hnj = max(0,
K∑

k=1

hn−1
k ∗ wn

jk)

CSC411 Lec10 16 / 51

Convolutional Layer

Ranzato

hnj = max(0,

K∑

k=1

hn−1
k ∗ wn

jk)

CSC411 Lec10 17 / 51

Convolutional Layer

Ranzato

hnj = max(0,

K∑

k=1

hn−1
k ∗ wn

jk)

CSC411 Lec10 18 / 51

Convolutional Layer

Ranzato

hnj = max(0,

K∑

k=1

hn−1
k ∗ wn

jk)

CSC411 Lec10 19 / 51

Convolutional Layer

Ranzato

hnj = max(0,
K∑

k=1

hn−1
k ∗ wn

jk)

CSC411 Lec10 20 / 51

Convolutional Layer

Ranzato

hnj = max(0,
K∑

k=1

hn−1
k ∗ wn

jk)

CSC411 Lec10 21 / 51

54

Learn multiple filters.

E.g.: 200x200 image
 100 Filters
 Filter size: 10x10

 10K parameters

Ranzato

Convolutional Layer

CSC411 Lec10 22 / 51

Convolutional Layer

Figure: Left: CNN, right: Each neuron computes a linear and activation function

Hyperparameters of a convolutional layer:

The number of filters (controls the depth of the output volume)

The stride: how many units apart do we apply a filter spatially (this
controls the spatial size of the output volume)

The size w × h of the filters
[http://cs231n.github.io/convolutional-networks/]

CSC411 Lec10 23 / 51

Output size

If the input is HxWxCin and the kernel size is k1xk2xCout what is the output
size?

◮ (H − k1 + 1)× (W − k2 + 1)× Cout

Input is HxWxCin and the kernel size is k1xk2xCout with stride s?

◮ Hout = ⌊(H − k1)/s + 1⌋

Input is HxWxCin and the kernel size is k1xk2xCout with stride s with
padding p?

◮ Hout = ⌊(H + 2p − k1)/s + 1⌋

Without padding we can’t have a very deep network (the size shrinks every
convolution)

CSC411 Lec10 24 / 51

61

By “pooling” (e.g., taking max) filter
responses at different locations we gain
robustness to the exact spatial location
of features.

Ranzato

Pooling Layer

CSC411 Lec10 25 / 51

Pooling Options

Max Pooling: return the maximal argument

Average Pooling: return the average of the arguments

Other types of pooling exist.

CSC411 Lec10 26 / 51

Pooling

Figure: Left: Pooling, right: max pooling example

Hyperparameters of a pooling layer:

The spatial extent F

The stride

[http://cs231n.github.io/convolutional-networks/]

CSC411 Lec10 27 / 51

67

Ranzato

Pooling Layer: Receptive Field Size

Conv.

layer

h
n−1 h

n

Pool.

layer

h
n1

If convolutional filters have size KxK and stride 1, and pooling layer
has pools of size PxP, then each unit in the pooling layer depends
upon a patch (at the input of the preceding conv. layer) of size:
(P+K-1)x(P+K-1)

CSC411 Lec10 28 / 51

Backpropagation with Weight Constraints

It is easy to modify the backpropagation algorithm to incorporate linear
constraints between the weights

To constrain: w1 = w2

we need: ∆w1 = ∆w2

We compute the gradients as usual, and then modify the gradients so that
they satisfy the constraints.

compute: ∂E
∂w1

and ∂E
∂w2

use: ∂E
∂w1

+ ∂E
∂w2

for w1 and w2

So if the weights started off satisfying the constraints, they will continue to
satisfy them.

This is an intuition behind the backprop. In practice, write down the
equations and compute derivatives (it’s a nice exercise, do it at home)

CSC411 Lec10 29 / 51

Now let’s make this very deep to get a real state-of-the-art object
recognition system

CSC411 Lec10 30 / 51

Convolutional Neural Networks (CNN)

Basic filtering idea from computer vision/image processing

If our filter is [−1, 1], you get a vertical edge detector

Now imagine we want to have many filters (e.g., vertical, horizontal, corners,
one for dots). We will use a filterbank.

So applying a filterbank to an image yields a cube-like output, a 3D matrix
in which each slice is an output of convolution with one filter. We apply an
activation function on each hidden unit (typically a ReLU).

Do some additional tricks. A popular one is called max pooling. Any idea
why you would do this?

Do some additional tricks. A popular one is called max pooling. Any idea
why you would do this? To get invariance to small shifts in position.

Now add another “layer” of filters. For each filter again do convolution, but
this time with the output cube of the previous layer.

Keep adding a few layers. Any idea what’s the purpose of more layers? Why
can’t we just have a full bunch of filters in one layer?

In the end add one r tw fully (or densely) connected layers. In this layer,
we don’t do convolution we just d a dot-product between the “filter” and
the output of the previous layer.

Add one final layer: a classification layer. Each dimension of this vector tells
us the probability of the input image being of a certain class.

The trick is to not hand-fix the weights, but to train them. Train them such
that when the netw rk sees a picture of a dog, the last layer will say “dog”.

Or when the netw rk sees a picture of a cat, the last layer will say “cat”.

Or when the netw rk sees a picture of a boat, the last layer will say
“boat”... The m re pictures the netw rk sees, the better.

CSC411 Lec10 31 / 51

Classification

Once trained we feed in an image or a crop, run through the network, and
read out the class with the highest probability in the last (classif) layer.

CSC411 Lec10 32 / 51

Example

[http://cs231n.github.io/convolutional-networks/]

CSC411 Lec10 33 / 51

95

Architecture for Classification

CONV

LOCAL CONTRAST NORM

MAX POOLING

FULLY CONNECTED

LINEAR

CONV

LOCAL CONTRAST NORM

MAX POOLING

CONV

CONV

CONV

MAX POOLING

FULLY CONNECTED

Krizhevsky et al. “ImageNet Classification with deep CNNs” NIPS 2012

category
prediction

input
Ranzato

CSC411 Lec10 34 / 51

96
CONV

LOCAL CONTRAST NORM

MAX POOLING

FULLY CONNECTED

LINEAR

CONV

LOCAL CONTRAST NORM

MAX POOLING

CONV

CONV

CONV

MAX POOLING

FULLY CONNECTED

Total nr. params: 60M
4M

16M

37M

442K

1.3M

884K

307K

35K

Total nr. flops: 832M
4M

16M

37M

74M

224M

149M

223M

105M

Krizhevsky et al. “ImageNet Classification with deep CNNs” NIPS 2012

category
prediction

input
Ranzato

Architecture for Classification

CSC411 Lec10 35 / 51

ImageNet

Imagenet, biggest dataset for object classification: http://image-net.org/

1000 classes, 1.2M training images, 150K for test

CSC411 Lec10 36 / 51

http://image-net.org/

150 Layers!

Networks are now at 150 layers

They use a skip connections with special form

In fact, they don’t fit on this screen

Amazing performance!

A lot of “mistakes” are due to wrong ground-truth

[He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition. arXiv:1512.03385, 2016]

CSC411 Lec10 37 / 51

Results: Object Classification

Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition.
arXiv:1512.03385, 2016]

CSC411 Lec10 38 / 51

Results: Object Detection

Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition.
arXiv:1512.03385, 2016]

CSC411 Lec10 39 / 51

Results: Object Detection

Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition.
arXiv:1512.03385, 2016]

CSC411 Lec10 40 / 51

Results: Object Detection

Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition.
arXiv:1512.03385, 2016] CSC411 Lec10 41 / 51

Results: Object Detection

Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition.
arXiv:1512.03385, 2016]

CSC411 Lec10 42 / 51

What do CNNs Learn?

Figure: Filters in the first convolutional layer of Krizhevsky et al

CSC411 Lec10 43 / 51

What do CNNs Learn?

Figure: Filters in the second layer

[http://arxiv.org/pdf/1311.2901v3.pdf]

CSC411 Lec10 44 / 51

What do CNNs Learn?

Figure: Filters in the third layer

[http://arxiv.org/pdf/1311.2901v3.pdf]

CSC411 Lec10 45 / 51

What do CNNs Learn?

[http://arxiv.org/pdf/1311.2901v3.pdf]

CSC411 Lec10 46 / 51

How to Train Good CNNs

Normalize your data (standard trick: subtract mean, divide by standard
deviation)

Augment your data (add image flips, rotations, etc)

Keep training data balanced

Shuffle data before batching

In training: Random initialization of weights with proper variance

Monitor your loss function, and accuracy (performance) on validation

If your labeled image dataset is small: pre-train your CNN on a large dataset
(eg Imagenet), and fine-tune on your dataset

[Slide: Y. Zhu, check tutorial slides and code:
http://www.cs.utoronto.ca/~fidler/teaching/2015/CSC2523.html]

CSC411 Lec10 47 / 51

http://www.cs.utoronto.ca/~fidler/teaching/2015/CSC2523.html

Transfer learning

Main reason DL helps on (almost) any vision task, even when you don’t
have a huge dataset!

[From: http://cs231n.github.io/]

CSC411 Lec10 48 / 51

Overfitting

How to control overfitting?

Early stopping

◮ You don’t have to take the last iteration!
◮ Check validation during training (every few iterations/epoch) and take

the best one.

Weight decay

◮ L2 regularization, usually around 1e − 4

Adding random noise

◮ Dropout
◮ Other ideas like Gaussian noise, batch normalization

CSC411 Lec10 49 / 51

Dropout

At each iteration ”kill” each neuron with probability p (usually 0.5).

The expected value decreased by p, fix by multiplying by 1/p.

At test time just use trained weights.

CSC411 Lec10 50 / 51

Links

Great course dedicated to NN: http://cs231n.stanford.edu

Over source frameworks:

◮ Pytorch http://pytorch.org/
◮ Tensorflow https://www.tensorflow.org/
◮ Caffe http://caffe.berkeleyvision.org/

Most cited NN papers:
https://github.com/terryum/awesome-deep-learning-papers

CSC411 Lec10 51 / 51

http://cs231n.stanford.edu
http://pytorch.org/
https://www.tensorflow.org/
http://caffe.berkeleyvision.org/
https://github.com/terryum/awesome-deep-learning-papers

	Introduction

