CSC 411 Lecture 10: Neural Networks |

Ethan Fetaya, James Lucas and Emad Andrews

University of Toronto

CSCA411 Lecl0 1/41

@ Multi-layer Perceptron
@ Forward propagation

@ Backward propagation

CSC411 Lecl0 2 /41

Motivating Examples

CSC411 Lecl0 3/41

http://www.robots.ox.ac.uk/~szheng/crfasrnndemo
https://www.instapainting.com/ai-painter

Are You Excited about Deep Learning?

CSC411 Lecl0 4/ 41

Limitations of Linear Classifiers

@ Linear classifiers (e.g., logistic regression) classify inputs based on linear
combinations of features x;

@ Many decisions involve non-linear functions of the input

@ Canonical example: do 2 input elements have the same value?

0,1 @ 01,1
—
\Outw
OUtput S5~ ~—_
0,0 ° ®10

@ The positive and negative cases cannot be separated by a plane
@ What can we do?

CSC411 Lecl0 5/41

How to Construct Nonlinear Classifiers?

@ We would like to construct non-linear discriminative classifiers that utilize
functions of input variables

@ Use a large number of simpler functions

» If these functions are fixed (Gaussian, sigmoid, polynomial basis
functions), then optimization still involves linear combinations of (fixed
functions of) the inputs

» Or we can make these functions depend on additional parameters —
need an efficient method of training extra parameters

CSC411 Lecl0 6 /41

Inspiration: The Brain

@ Many machine learning methods inspired by biology, e.g., the (human) brain

@ Our brain has ~ 101! neurons, each of which communicates (is connected)
to ~ 10* other neurons

impulses carried
toward cell body

branches

dendrites

axon

nucleus terminals

impulses carried

away from cell body
cell body

Figure: The basic computational unit of the brain: Neuron

[Pic credit: http://cs231n.github.io/neural-networks-1/]
CSC411 Lecl0 7/ 41

Mathematical Model of a Neuron

@ Neural networks define functions of the inputs (hidden features), computed
by neurons

@ Artificial neurons are called units

o)) wy
synapse
WoZo

EEE——)
axon from a neuron

cell body

f (Zwiﬂ"‘i 3 b)
Z w;x; +b :

output axon

activation
function

Figure: A mathematical model of the neuron in a neural network

[Pic credit: http://cs231n.github.io/neural-networks-1/]
CSC411 Lecl0 8/ 41

Activation Functions

Most commonly used activation functions:
1
1+exp(—2z)

o Tanh: tanh(z) = 73;;8;:;55:3

@ RelU (Rectified Linear Unit): ReLU(z) = max(0, z)

@ Sigmoid: o(z) =

Sigmoid: {(z) = 1/(1+exp(-2)) Tanh: f(z) = [exp(z)-exp(-2)] / [exp(2)+exp(-2)] RelU: (z) = max(0, z)
1 1
09 08 ;
08 06
6
07 04
06 02 5
05 0 4
04 02 5
03 04
2
02 06
o1 08 1
ol -1 [s]
5 4 =2 0 2 4 6 E 5 4 =2 0 2 4 8 s 4 2 0 2 4 &8

CSCA411 Lecl0

Neural Network Architecture (Multi-Layer Perceptron

@ Network with one layer of four hidden units:

input layer

O O O inpUt units hidden layer

Figure: Two different visualizations of a 2-layer neural network. In this example: 3 input
units, 4 hidden units and 2 output units

output units

Q

output layer

@ Each unit computes its value based on linear combination of values of units
that point into it, and an activation function

[http://cs231n.github.io/neural-networks-1/]

CSC411 Lecl0 10 / 41

Neural Network Architecture (Multi-Layer Perceptron)

@ Network with one layer of four hidden units:

input layer

O O O inpUt units hidden layer

Figure: Two different visualizations of a 2-layer neural network. In this example: 3 input
units, 4 hidden units and 2 output units

output units

Q

output layer

@ Naming conventions; a 2-layer neural network:

> One layer of hidden units
» One output layer
(we do not count the inputs as a layer)

[http://cs231n.github.io/neural-networks-1/]

CSC411 Lecl0 11 / 41

Neural Network Architecture (Multi-Layer Perceptron)

@ Going deeper: a 3-layer neural network with two layers of hidden units

input layer

hidden layer 1 hidden layer 2

Figure: A 3-layer neural net with 3 input units, 4 hidden units in the first and second
hidden layer and 1 output unit

@ Naming conventions; a N-layer neural network:
» N — 1 layers of hidden units
» One output layer

[http://cs231n.github.io/neural-networks-1/]
CSC411 Lecl0 12 /41

Representational Power

@ Neural network with at least one hidden layer is a universal approximator

(can represent any function).
Proof in: Approximation by Superpositions of Sigmoidal Function, Cybenko, paper

3 hidden neurons 6 hidden neurons 20 hidden neurons
e © ® o ® Il o s o ° o
° ® ° ® ® ®
® ® @
° e o ® CRS) °® ° o
® L L ® L | @ ® L @
* °® ® ® @ ®
o —@ A J
® ° ®
- o & N S e © *© * R, o
® ® P ® ® 2 @ ® 8
® ° ° ® ® 0
(<} L o @ o » ® o L
L] * °
® °)

@ The capacity of the network increases with more hidden units and more
hidden layers

® Why go deeper (still kind of an open theory question)? One hidden layer
might need exponential number of neurons, deep can be more compact.

CSCA411 Lecl0

http://www.dartmouth.edu/~gvc/Cybenko_MCSS.pdf

Demo

@ Great tool to visualize networks http://playground.tensorflow.org/

@ Highly recommend playing with it!

CSC411 Lecl0 14 / 41

http://playground.tensorflow.org/

Neural Networks

@ Two main phases:

» Forward pass: Making predictions
» Backward pass: Computing gradients

CSC411 Lecl0 15 / 41

Forward Pass: What does the Network Compute?

@ Output of the network can be
written as:

hi(x) = f(vo+ Y xivi)

i=1

J
o(x) = g(wko+ Z hj(x)wi;)

= output layer

input layer
(j indexing hidden units, k hidden layer
indexing the output units, D
number of inputs)

@ Activation functions f, g: sigmoid/logistic, tanh, or rectified linear (ReLU)

o(z) = 1 tanh(z) = —exp(z) — exp(=2)

1+exp(—2z)’ exp(2) + exp(—2)’ ReLU(z) = max(0, z)

@ What if we don't use any activation function?

CSC411 Lecl0 16 / 41

Special Case

® What is a single layer (no hiddens) network with a sigmoid act. function?

O
O

@)

Input Output
Layer Layer
@ Network: 1
o(x) = T/~
1+ exp(—2¢)
J
Zk = Wi+ E Xj Wij
j=1

@ Logistic regression!

CSC411 Lecl0 17 / 41

Feedforward network

@ Feedforward network - Connections are a directed acyclic graphs (DAG)

@ Layout can be more complicated than just k hidden layers.

======= =

nn]}u l}r-

T EEEE

==. ﬁf.ﬁﬂ =

ooy =y =
o o
-
b ——
sommy s =y
-

el —— [———
L

CSC411 Lecl0 18 / 41

How do we train?

@ We've seen how to compute predictions.

@ How do we train the network to make sensible predictions?

CSC411 Lecl0 19 / 41

Training Neural Networks

@ How do we find weights?

N
w* = argmin Z loss(o(", (M)

w n=1

where 0 = f(x; w) is the output of a neural network
» can use any (smooth) loss function we want.
@ Problem: With hidden units the objective is no longer convex!

@ No guarantees gradient methods won't end up in a (bad) local minima/
saddle point.

@ Some theory/experimental evidence that most local minimas are good, i.e.
almost as good as the global minima.

@ SGD with some (critical) tweaks works well. It is not really well understood.

CSCA411 Lecl0 20 / 41

Training Neural Networks: Back-propagation

@ Back-propagation: an efficient method for computing gradients needed to
perform gradient-based optimization of the weights in a multi-layer network

(" Training neural nets:)
Loop until convergence:
» for each example n

1. Given input x'") | propagate activity forward (x(") — h - o("))
(forward pass)

2. Propagate gradients backward (backward pass)

_ 3. Update each weight (via gradient descent)

J

@ Given any error function E, activation functions g() and f(), just need to
derive gradients

CSCA411 Lecl0 21 /41

Key ldea behind Backpropagation

@ We don't have targets for a hidden unit, but we can compute how fast the
error changes as we change its activity

> Instead of using desired activities to train the hidden units, use error
derivatives w.r.t. hidden activities

» Each hidden activity can affect many output units and can therefore
have many separate effects on the error. These effects must be
combined

» We can compute error derivatives for all the hidden units efficiently

» Once we have the error derivatives for the hidden activities, its easy to
get the error derivatives for the weights going into a hidden unit

@ This is just the chain rule!

CSC411 Lecl0 22 /41

Useful Derivatives

name function derivative
Sigmoid o(z) = m a(z) - (1 —o(2))
Tanh tanh(z) = % 1/ cosh?(z)
ReLU ReLU(z) = max(0, z) {(1): ::i Z 8

CSC411 Lecl0 23 /41

Computing Gradients: Single Layer Network

@ Let's take a single layer network and draw it a bit differently
Output layer oL

Input layer Z;

Output of unit k
Output layer Output layer activation function
Net input to output unit k

Weight from inputi to k

Input layer Input uniti

CSCA411 Lecl0 24 / 41

Computing Gradients: Single Layer Network

Output layer

Input layer

@ Error gradients for single layer network:
OF _ OE doi 02,
6Wk,' o 8ok 82/(8Wk,'

@ Error gradient is computable for any smooth activation function g(), and
any smooth error function

CSC411 Lecl0 25 / 41

Computing Gradients: Single Layer Network

Ok op = —8E
80k
Output layer
2k
Wi
Input layer Xy

@ Error gradients for single layer network:

OF _ OF Do 0z
8Wk,' a f)ok 8Zk awk,‘
~~~

o

CSCA411 Lecl0 26 / 41



Computing Gradients: Single Layer Network

Output layer

Input layer

@ Error gradients for single layer network:

OE o OE 60;( 8Zk ank 8Zk

aWk,' o Tw@izkawk; - kaawk;

CSCA411 Lecl0 27 / 41



Computing Gradients: Single Layer Network

Output layer
é?()k
E)Zk

Input layer

@ Error gradients for single layer network:

OE - OE 8ok 8zk 8ok sz

[ — §O —
8Wk,' 80k 821( 6Wk,‘ K azk 8Wk;
——

5%

CSCA411 Lecl0 28 / 41



Computing Gradients: Single Layer Network

Output layer

Input layer

@ Error gradients for single layer network:

OF _ OE 00 0z _ 0%y
Bwk,- - aOk 8zk aWk,' h kaWk,' Tk !

CSCA411 Lecl0 29 / 41



Gradient Descent for Single Layer Network

@ Assuming the error function is mean-squared error (MSE), on a single
training example n, we have

E

o)

ol _ ¢,

=6

o
Output layer

Using logistic activation functions

T o) = az”)=1+en(-z")"
>
'u';..,‘ aO,En) _ o(")(l 3 O(n))
Input layer x; 8Z(n) k k
k

@ The error gradient is then:
N (n) q_(n)
oE OE 9o, 9z, (M) _ () (n) (MY, (n)
= =) (07 =)o, (1 — 0" )x;
; 80’((n) az‘((n) 8Wki Z k

n=1

8Wk,'

@ The gradient descent update rule is given by:

Wi < Wii —

OE (n)y (n )y (n
1o = w03 (e~ ) )

CSC411 Lecl0 30/ 41



Multi-layer Neural Network

Output layer

Hidden layer

Input layer

CSCA411 Lecl0

Output of unit k

Output layer activation function

Net input to output unit k

Weight from hidden unit j to output k
Output of hidden unit j

Hidden layer activation function

Net input to unit j
Weight from inputito j

Input unit i

31 /41



Back-propagation: Sketch on One Training Case

@ Convert discrepancy between each output and its target value into an error
derivative

1 OE
E = — — 2. _— = —
5 gk (o — )% 9or Ok — tk

@ Compute error derivatives in each hidden layer from error derivatives in layer
above. [assign blame for error at k to each unit j according to its influence
on k (depends on w;j)]

&) O

@ Use error derivatives w.r.t. activities to get error derivatives w.r.t. the
weights.

CSC411 Lecl0 32 /41



Gradient Descent for Multi-layer Network

@ The output weight gradients for a
multi-layer network are the same as for a
single layer network

Output layer

N
OE OE dok 92" 0
= 6
8wkj ;aok 8Wk Z

where dj is the error w.r.t. the net input
for unit k

Hidden layer

Input layer

@ Hidden weight gradients are then computed via back-prop:
OE

(m
oht

CSCA411 Lecl0 33 /41



Gradient Descent for Multi-layer Network

@ The output weight gradients for a
multi-layer network are the same as for a
single layer network

Output layer

OE IZN: dE (?ok sz" 25 40

Owyg do\"

Hidden layer

where §y is the error w.r.t. the net input
for unit k

Input layer

@ Hidden weight gradients are then computed via back-prop:

8E 8E OO,EH) 82,((17) z,(n) . h,(n)
o Z O OPTORE Z5k wyj 1= 0;
ORS00l 02 O -

CSCA411 Lecl0 34 /41



Gradient Descent for Multi-layer Network

@ The output weight gradients for a
multi-layer network are the same as for a
single layer network

Output layer

N

(n)
" OE oy OE OE dok oz" 25

u; 8ij —1 8ok 8Wk

Hidden layer

where § is the error w.r.t. the net input
for unit k

Input layer

@ Hidden weight gradients are then computed via back-prop:

8E 0E 80,((") 82,‘(11) z,(n) . h,(n)
m — Z OO Z 0 wig 1= 9;
oh; do,” 0z, Oh; B

N (M) gy N (")
OE _ Z OE 8/71 auj _ Zéh’(n)f,(u(n))auj _
i = on" ou" Ovi ’ 77 Oy

CSC411 Lecl0 35 /41



Gradient Descent for Multi-layer Network

@ The output weight gradients for a
multi-layer network are the same as for a
single layer network

Output layer

N

OE OE (?Ok 8Zk )
= (S
Owig ; 6Ok Z

Hidden layer

where & is the error w.r.t. the net input
for unit k

Input layer

@ Hidden weight gradients are then computed via back-prop:

8E aE 80£n) (’)z,g") z,(n) . h,(n)
o = Z ) A () Ay Z(Sk wij 1= 9
(9hj 0o, 0z, ahj P

9E <. 9E Oh" auf ou” N

0 = 22 on 5 vy 25 =2 "

CSC411 Lecl0 36 / 41



Backprob in deep networks

@ The exact same ideas (and math) can be used when we have multiple
hidden layer - compute aE

hL 1
@ Two phases:

» Forward: Compute output layer by layer (in order)
» Backwards: Compute gradients layer by layer (reverse order)

@ Modern software packages (theano, tensorflow, pytorch) do this
automatically.

» You define the computation graph, it takes care of the rest.

CSC411 Lecl0 37 /41



Training neural networks

Why was training neural nets considered hard?
@ With one or more hidden layers the optimization is no longer convex.

» No Guarantees, optimization can end up in a bad local minima/ saddle
point.

@ Vanishing gradient problem.
@ Long compute time.
» Training on imagenet can take 3 weeks on GPU (~ x30 speedup!)

We will talk about a few simple tweaks that made it easy!

CSC411 Lecl0 38 /41



Activation functions

@ Sigmoid and tanh can saturate.
» 0'(z) = o(z) - (1 — 0(z)) what happens when z is very large/small?
@ Even without saturation gradients can vanish in deep networks

@ RelU have 0 or 1 gradients, as long as not all path to the error are zero the
gradient doesn't vanish.

» Neurons can still "die".

@ Other alternatives: maxout, leaky ReLU, ELU (ReLU is by far the most
common).

@ On output layer usually no activations or sigmoid/softmax (depends on what
do we want to represent)

CSC411 Lecl0 39 /41



Initialization

How do we initialize the weights?
@ What if we initialize all to a constant ¢?

> All neurons will stay the same!
> Need to break symmetry - random initialization

@ Standard approach - Wj; ~ N (0, 0?)

» If we pick 02 too small - output will converge to zero after a few layers.
» If we pick o2 too large - output will diverge.

@ Xavier initialization - 02 = 2/(nj, + Nout)

> nj, and nyy are the number of units in the previous layer and the next
layer

@ He initialization - 02 = 2/n;,

» Builds on the math of Xavier initialization but takes ReLU into account.
» Recommended method for ReLUs (i.e. almost always)

CSC411 Lecl0 40 / 41



Momentum

"Vanilla” SGD isn't good enough to train - bad at ill-conditioned problems.

@ Solution - add momentum

Viyl = ﬁVt + VL(Wt)
Xt41 = Xt — QViqa

» Builds up when we continue at the same direction.
> decreases when we change signs

@ Normality pick = 0.9

@ More recent algorithms like ADAM still use momentum (just add a few more
tricks).

Nice visualization - http:
//www.denizyuret.com/2015/03/alec-radfords-animations-for.html

CSC411 Lecl0 41 / 41


http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html
http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

	Introduction

