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Overview

- Motivation: why is optimization of discrete distributions hard?
- REINFORCE (Williams, 1992)
- a.k.alog-derivative trick/policy gradient algorithm
- Control variates for variance reduction
- Reparameterization trick (Kingma & Welling; Jimenez et al., 2014)
- generalizing reparameterization w/ rejection sampling (RSVI, Naesseth et al., 2017)

- Concrete random variables (Maddison et al., 2016)
- a.k.a Gumbel-softmax random variables (Jang et al., 2016)

- Generalizing control variates in modern ML

- using concrete random variables (REBAR, Tucker et al., 2017)
- using neural networks (RELAX, Grathwohl et al., 2017)

- Other Very Recent Developments



https://link.springer.com/article/10.1007/BF00992696
https://statweb.stanford.edu/~owen/mc/Ch-var-basic.pdf
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1401.4082
https://arxiv.org/abs/1610.05683
https://arxiv.org/abs/1611.00712
https://arxiv.org/abs/1611.01144
https://arxiv.org/abs/1703.07370
https://arxiv.org/abs/1711.00123

Motivation



Motivation: why is optimization of discrete distributions hard?

-  Problems we care about are sometimes of the form:
0: Parameters optim. w.r.t.

l
43}(6; 9@

b: Random variable f: Loss function

- Goal: optimize this expected loss w.r.t parameters 6



Computing gradients is hard

- For gradient-based optim., we need the gradient of expected loss w.r.t. O:

Vo ip(b;@) [f(ba 9)]

- Difficulties:

the expected loss might NOT have closed form formulae
f might NOT be differentiable
b might be a discrete random variable; this makes Monte Carlo solutions hard



REINFORCE



REINFORCE: simple Monte Carlo gradients

- a.k.a score-function/log-derivative trick in statistics
- a.k.a policy gradient algorithm in RL

Vo E, 1. b Note: if f(.) is also a

0 p(b,@) [‘f( )] function of 6, there
would be an extra

— VQ f f b; b term to this gradient.

Try deriving yourself.

— [ f(b)p(b; 9 vg log p(b; 6)db
= Ep0 )[f(b)Ve log p(b; 6)]
~ 3 Sl 100 Vs logp(t;0

b2{(i)}:i-th Monte Carlo sample from the distribution



REINFORCE: simple Monte Carlo gradients

Example (RL):

<1:p(b;H) [f(ba 0)]

b is the action sampled from a policy p(.; 0); in RL it's usually denoted as x(.)
f(.) is the reward function; in RL it's usually denoted as R(.)
Implementation of “f(b) grad-log p(b)” simple:

- use ‘tf.stop _gradient’ in TensorFlow
- use torch.no_grad’ context manager in PyTorch

def diffable_loss_torch(policy, f):
def diffable_loss_tf(policy, f): b = policy.sample()
b = policy.sample() torch.no_grad():

surr_loss = tf.stop_gradient(f(b)) * policy.logp(b) blocked_f = f(b)

surr_loss = blocked_f * policy.logp(b)

surr_loss
surr_loss




REINFORCE: learning hard attention

- Using REINFORCE to learn hard attention in Neural Turing Machines:
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Figure from Dynamic Neural Turing Machine with Continuous and Discrete Addressing Schemes, Gulcehre et al., 2017




REINFORCE: learning hard attention

4.1 Training discrete D-NTM

To train discrete D-NTM, we use REINFORCE (Williams, 1992) together with the three
variance reduction techniques—global baseline, input-dependent baseline and variance
normalization— suggested in (Mnih and Gregor, 2014).
Let us define R(x) = logp(y|xi,...,xr;8) as a reward. We first center and re-

scale the reward by,

N R(x)—b

R(x) = ——,

() Voi+e

where b and ¢ is running average and standard deviation of R. We can further center it
for each input x separately, i.e.,

R(x) = R(x) - b(x),

where b(x) is computed by a baseline network which takes as input x and predicts its
estimated reward. The baseline network is trained to minimize the Huber loss (Huber,
1964) between the true reward 12(x) and the predicted reward b(x). This is also called
as input based baseline (IBB) which is introduced in (Mnih and Gregor, 2014).

Excerpt from Dynamic Neural Turing Machine with Continuous and Discrete Addressing Schemes, Gulcehre et al., 2017



Control Variate



Control Variate: variance reduction for Monte Carlo

- Observation: expectation doesn’t change if we add and subtract same R.V.

A A

X |=E X+Y -Y]
~~ ———

old estimator new estimator

|



Control Variate: variance reduction for Monte Carlo

- If X' hatand Y are correlated, then the overall variance may be reduced
- We typically design Y so that its expectation can be computed in closed form

E[X]=E[X +Y -]
= E[X +Y]-E[Y]
~ LM (XY 4 Y0) ~E[Y]

-  What’s the variance of the new estimator in Blue?



Control Variate: variance reduction for Monte Carlo

- Variance analysis in the case of a single Monte Carlo sample (M=1)
- In RL, a constant baseline (or running avg) is used as Y

Var(X +Y — E[Y])
= Var(X +Y)
= Var(X) + Var(Y) + 2Cov(X,Y)

-  When is this variance lower than before?



Control Variate: antithetic variates

- Say we want to estimate the expectation of a function of some Gaussian R.V.
- We can sample in an i.i.d. manner:

Exnus [F(X)] = & S £(z0)
1.1.d.

~ N (i, %)

where z(9

- But this may given high variance...



Control Variate: antithetic variates
- We may sample in opposite directions when the distribution is symmetric:

Ex a0, [f(X)]

F(X)+f(=X)
— ]EXNN(O,I) [ 2 ]

~ o (S, £(a) + T, f(-20))

- This may reduce the variance of the estimator. When?




Reparameterization



Reparameterization trick (Kingma et al.; Rezende et al., 2014)

-  Works for a restricted set of continuous distributions

- Take Gaussian random variables for instance:
Instead of sampling direction from a Gaussian w/ mean g and covariance X
we first sample € from a unit Gaussian, and then perform the linear transformation:

- X=e\Z+p
This is also because most Autodiffs do not recognize functions such as ‘torch.randn’!
VoEyw:0) | f(0)]
= VyEp [ f(g(€,0))]
= E,) [Vaf(g(e, 0))]
~ LS Vo f(g(e®,0))



RSVI: generalizing reparam. for more distributions

- Up to now, this only works for Gaussians

- But what is we want to “differentiably” sample from Dirichlet, gamma, inverse
gamma, Von-mises distributions?

- Rejection Sampling VI (RSVI, Naesseth et al., 2016)

Algorithm 1 Reparameterized Rejection Sampling

Input: target ¢(z;6), proposal r(z;8), and constant
My, with q(z;0) < Mpr(z;0)

Output: € such that h(e,0) ~ q(z;0)

1: 10

2: repeat

3 11+l
4:  Propose ¢; ~ s(¢)
5. Simulate u; ~ U[0, 1]
6: until u; < Jvz,ﬁlf(ie’f,a;)a;())
7: return ¢;




RSVI: generalizing reparam. for more distributions

def sample_gamma(alpha, B, batch_size):

epsilon = sample_pi(alpha + B, 1., (batch_size,))

z_tilde = h(epsilon, alpha + B, 1.)

z_gamma = shape_augmentation(z_tilde, B, alpha)

lp_i = [log_pil(epsilon, alpha + B, 1., z=z_tilde)
z_gamma, lp_i

Code snippet courtesy of Will Grathwohl



Discrete Relaxations



Concrete random variables

Continuous relaxation of discrete variable
There is no simple way to reparameterize discrete RVs

- But we can for a continuously relaxed one

The Gumbel-Max trick (Luce 1959)

log-prob for i-th category
independent Gumbel sample

Y; =loga; + G,
X = argmaxY

Figure from Chris Maddison’s field institute talk

one-hot encoding for n=3
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Concrete random variables

Figure from Chris Maddison’s field institute talk



Concrete random variables

- Study this random variable called concrete (Maddison et al., 2017) or
Gumbel-softmax (Jang et al., 2017).

Y; =loga; + G;

~ o exp(yi/A)
T = 5 exp 43/ %)
X < §(Y,))

- Assume that the loss is well-defined on ~X
- But gradient is biased w.r.t. the original loss due to softmax approximation!



Concrete random variables: biasedness
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Figure from Chris Maddison’s field institute talk



REBAR: generalizing control variates w/ concrete

- REBAR (Tucker et al., 2017) instead uses the Concrete RV as control variate

/ z: Gumbel + log-prob.

(F(9(2)) — f(g(2))) Ve logp(b; 0) + V4 f(3(2))

REIY FORCE aram.

g: Argmax
tilde{g}: Softmax



REBAR: generalizing control variates w/ concrete

- How is the variance of the estimator controlled?
- We can optimize the variance w.r.t. temperature parameter!

A

d — K Ai
LV(0) =E |20 /\9

/N

Derivative w.r.t. temperature REBAR Gradient estimator




RELAX: generalizing control variates w/ neural nets

- Why assume the control variate is based on concrete?
- Base control variate on neural net, and optimize variance!

(£(9(2)) — c(2)) Vo log p(b; 0) + Vec(z)

N

c: Differentiable Neural Networks



RELAX: generalizing control variates w/ neural nets

REINFORCE
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Figure from Backpropagation through the Void: Optimizing control variates for black-box gradient estimation,
Grathwohl et al., 2017




RELAX: generalizing control variates w/ neural nets

To construct a more powerful gradient estimator, we incorporate a further refinement due to Tucker
et al. (2017). Specifically, we evaluate our control variate both at a relaxed input z ~ p(z|6), and also
at a relaxed input conditioned on the discrete variable b, denoted Z ~ p(z|b, #). Doing so gives us:

il , ad 0 "
greLax = [f(b) — cs(2)] 50 log p(b|6) + %Cd»(z) - %%(z) (8)

b= H(z),z ~ p(z|6),% ~ p(z|b,0)
This estimator is unbiased for any c,;. A proof and a detailed algorithm can be found in appendix A.

We note that the distribution p(z|b, #) must also be reparameterizable. We demonstrate how to perform
this conditional reparameterization for Bernoulli and categorical random variables in appendix B.

Excerpt from Backpropagation through the Void: Optimizing control variates for black-box gradient
estimation, Grathwohl et al., 2017



More Recent Developments

- Credit Assignment in Stochastic Computation Graphs (Weber et al.)
- generalizing existing techniques under the framework of stochastic computation graph

- Doubly Reparameterized Gradient Estimators (Tucker et al.)
- fixing high variance gradients in IWAE and more

- Gumbel-sinkhorn (Mena et al.)
- generalizing Concrete to distribution on permutations

- Implicit reparameterization gradients (Figurnov et al.)
- broadening the set of distributions we may reparameterize



https://arxiv.org/abs/1901.01761
https://arxiv.org/abs/1810.04152
https://arxiv.org/abs/1802.08665
https://papers.nips.cc/paper/7326-implicit-reparameterization-gradients.pdf

Summary

- REINFORCE

- generally applicable (in fact one of the most widely used tricks for RL and NLP!)
- butis generally of high variance
- Control variates
- an old idea to reduce variance
- takes into account a separate correlated R.V.
- Reparameterization trick
- simple reparameterization for multivariate Gaussian
- generalized reparameterization w/ rejection sampling (RSVI)
- Generalizing control variates with

- concrete variables (REBAR)
- neural networks (RELAX)



Other references

- Monte Carlo theory, methods and examples (by Art B. Owen)
- great book on the theory of Monte Carlo

- Learning Discrete Latent Structure (Duvenaud’s course)
- recently developed techniques for learning discrete structure and their applications

- Differentiable Inference and Generative Models (Duvenaud’s course)
- some not so recent stuff on differentiable generative models

- Chris Maddison’s Fields institute talk

- focused on discrete relaxations, video link



https://statweb.stanford.edu/~owen/mc/
https://duvenaud.github.io/learn-discrete/
https://www.cs.toronto.edu/~duvenaud/courses/csc2541/index.html
http://www.stats.ox.ac.uk/~cmaddis/pubs/relaxed_grad_estimators_talk.pdf
http://www.fields.utoronto.ca/talks/Relaxed-Gradient-Estimators

