Probabilistic Graphical Models

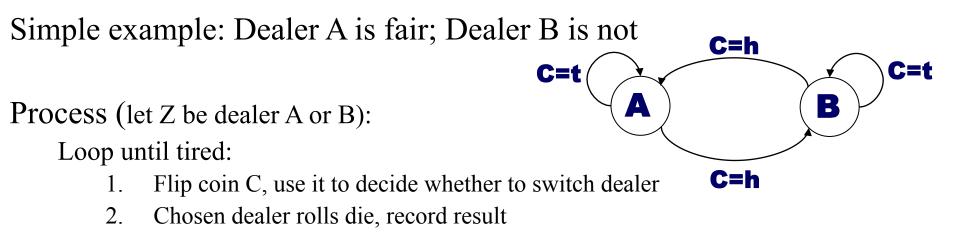
Lecture 8: State-Space Models

Based on slides by Richard Zemel

Sequential data

Turn attention to sequential data

- Time-series: stock market, speech, video analysis
- Ordered: text, gene



Simple example: Markov model

- If underlying process unknown, can construct model to predict next letter in sequence
- In general, product rule expresses joint distribution for sequence

$$P(X_1, X_2, ..., X_T) = \prod_{t=1}^T P(X_t | X_{t-1}, ..., X_1)$$

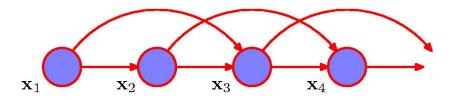
• *First-order Markov chain*: each observation independent of all previous observations except most recent

$$P(X_t | X_{t-1}, ..., X_1) = P(X_t | X_{t-1})$$

- ML parameter estimates are easy
- Each pair of outputs is a training case; in this example:
 P(X_t=B| X_{t-1}=A) = #[t s.t. X_t = B, X_{t-1} = A] / #[t s.t. X_{t-1} = A]

Higher-order Markov models

- Consider example of text
- Can capture some regularities with *bigrams* (e.g., **q** nearly always followed by **u**, very rarely by **j**) probability of a letter given just its preceding letter
- But probability of a letter depends on more than just previous letter
- Can formulate as *second-order* Markov model (*trigram* model)



• Need to take care: many counts may be zero in training dataset

Character recognition: Transition probabilities

Table 3	
Bigrams as Graphen	tes

Genet	Relative	Court	Time occurs as a	Encode and	Time combine to form
Graph- eme	frequency as a string	Count as a string	graph- eme (%)	Example used as grapheme	graphen (%)
AE AH	0.0002	39.0	84.62	AERO	0.00
AI	0.0001 0.0017	20.0 325.0	20.00 83.08	AUTOBAHN WAIT	0.00
AL	0.0084	1.623.0	40.11	FRUGAL	0.00
AO	0.0000	8.0	25.00	E+X+TRAORDINARY	0.00
AU	0.0012	239.0	81.17	SAUCER	18.83
AW	0.0006	108.0	77.31	FLAW	3.70
AY BB	0.0008 0.0004	160.0 87.0	99.38 99.43	E SS AY R A BB I T	0.62
BT	0.0001	18.0	44.44	DEBT	0.00
CC	0.0005	99.0	72.73	SOCCER	3.03
CE	0.0037	726.0	0.62	OCEAN	0.00
СН	0.0037	719.0	89.01	ARCH	10.99
CI	0.0024 0.0018	473.0 344.0	16.03 99.27	FACIAL PICK	0.85
8	0.0000	6.0	50.00	ACQUIT	50.00
CS	0.0002	32.0	50.00	OPTI+CS+*	0.00
CT	0.0025	479.0	0.21	INDICT	0.00
CZ	0.0000	2.0	100.00	CZAR	0.00
DD DG	0.0005	100.0 60.0	97.00	ODD	0.00
DI	0.0003	750.0	100.00 0.33	MIDGET CORDIAL	0.00
DJ	0.0001	18.0	94.44	ADJUST	0.00
EA	0.0031	606.0	72.61	TWEAK	9.49
ED	0.0027	515.0	4.27	V OI C ED	0.00
EE	0.0017	337.0	93.62	DEER	4.60
EI EL	0.0007 0.0035	133.0 682.0	50.00 20.53	HEIST LEVEL	26.32
EN	0.0085	1,643.0	8.22	EATEN	0.00
EO	0.0007	140.0	22.50	PIGEON	6.43
ES	0.0043	831.0	3.53	H OO V ES	0.00
ET	0.0039	762.0	2.23	SACHET	0.00
EU EW	0.0004	86.0	81.40	FEUD	4.65
EY	0.0006	108.0 81.0	63.89 92.59	GREW MONEY	7.41 7.41
FF	0.0009	176.0	100.00	OFF	0.00
FT	0.0004	69.0	1.45	SOFTEN	0.00
GG	0.0004	73.0	98.63	JUGGLE	0.00
GH	0.0009	171.0	12.28	ROUGH	82.46
GI GM	0.0014 0.0001	267.0 28.0	8.05 14.29	R E GI O N PH L E GM	0.00
GN	0.0006	126.0	33.33	GNASH	0.00
IA	0.0034	667.0	6.37	PARLIAMENT	0.45
1E	0.0018	340.0	41.13	BRIEF	12.50
IL.	0.0038	737.0	6.51	VIGIL	0.00
IN KH	0.0113 0.0001	2,188.0 14.0	3.20 57.14	LATIN SHEIKH	0.00
KN	0.0002	43.0	94.19	KNOT	0.00
LD	0.0006	121.0	3.72	WOULD	0.00
LE	0.0085	1,652.0	43.70	PICKLE	0.00
LF	0.0002	46.0	13.04	HALF	0.00
LK LL	0.0002	47.0 649.0	48.94	WALK	0.00
LM	0.0033 0.0002	649.0 48.0	97.92 29.17	DWELL PALM	0.00
LV	0.0003	55.0	10.91	CALVES	0.00
MB	0.0011	221.0	16.06	THUMB	0.00
MM	0.0009	178.0	98.88	R U MM Y	0.00
MN	0.0002	43.0	25.58	AUTUMN	0.00
NG NN	0.0032	616.0 164.0	58.44	PING	0.32
OA	0.0008	164.0	97.56 87.50	TENNIS LOAN	0.00
OE	0.0003	61.0	41.80	SHOE	0.00
OH	0.0001	19.0	31.58	OHM	0.00

Hidden Markov model (HMM)

 \mathbf{z}_{n-1}

 \mathbf{z}_{n+1}

- Return to casino example -- now imagine that do not observe ABBAA, but instead just sequence of die rolls (1-6)
- Generative process: Loop until tired: 1.Flip coin C (Z = A or B)

2.Chosen dealer rolls die, record result X

Z is now hidden *state* variable – 1st order Markov chain generates state sequence (path), governed by *transition matrix* **A**

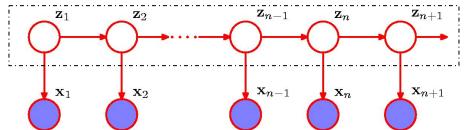
$$P(Z_t = k | Z_{t-1} = j) = A_{jk}$$

State as multinomial variable: $P(\mathbf{z}_t | \mathbf{z}_{t-1}) = \prod_k \prod_j A_{jk}^{z_{t-1,j} z_{t,k}}$

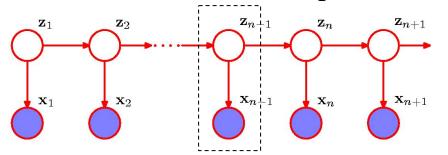
Observations governed by *emission probabilities,* convert state path into sequence of observable symbols or vectors: $P(X_t|Z_t)$

Relationship to other models

- Can think of HMM as:
 - Markov chain with stochastic measurements

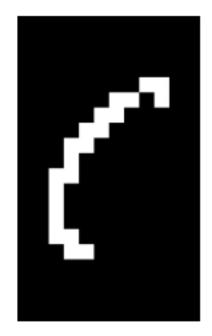


– Mixture model with states coupled across time



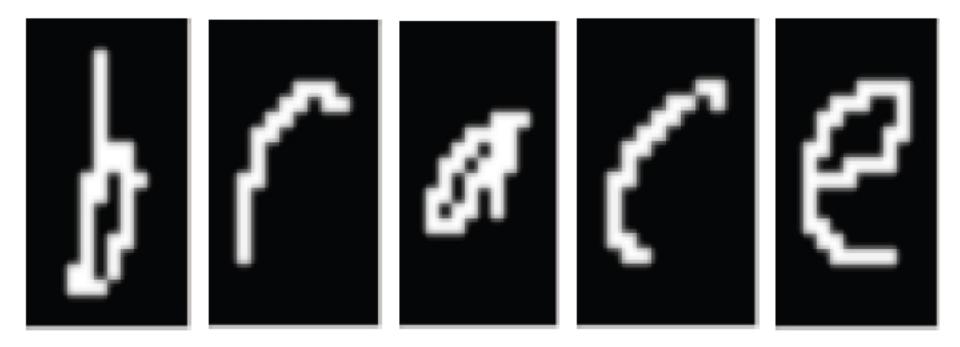
- Hidden state is 1st-order Markov, but output not Markov of any order
- Future is independent of past give present, but conditioning on observations couples hidden states

Character Recognition Example



Which letters are these?

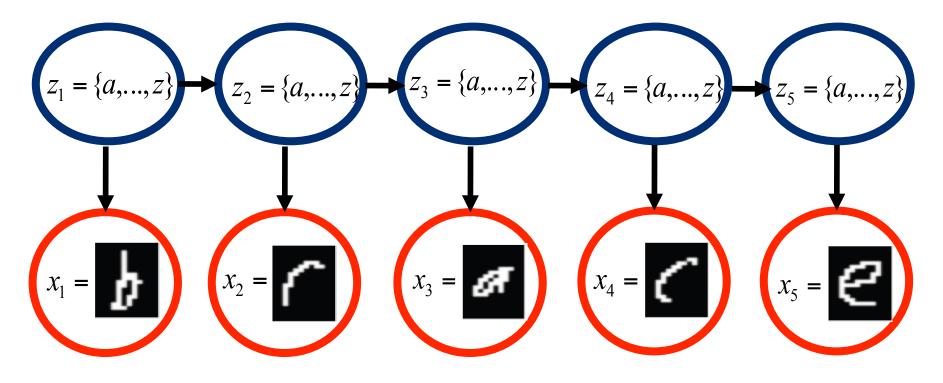
HMM: Character Recognition Example



Context matters: recognition easier based on sequence of characters

How to apply HMM to this character string? Main elements: states? emission, transition probabilities?

HMM: Semantics



Need 3 distributions:

- 1. Initial state: $P(Z_1)$
- 2. Transition model: $P(Z_t | Z_{t-1})$
- 3. Observation model (emission probabilities): $P(X_t | Z_t)$

HMM: Main tasks

• Joint probabilities of hidden states and outputs:

$$P(\mathbf{x}, \mathbf{z}) = P(z_1) P(x_1 | z_1) \prod_{t=2}^{T} P(z_t | z_{t-1}) P(x_t | z_t)$$

- Three problems
 - 1. Computing probability of observed sequence: forwardbackward algorithm [good for recognition]
 - 2. Infer most likely hidden state sequence: Viterbi algorithm [useful for interpretation]
 - Learning parameters: Baum-Welch algorithm (version of EM)

Fully observed HMM

Learning fully observed HMM (observe both X and Z) is easy:

- 1. Initial state: $P(Z_1)$ proportion of words start with each letter
- 2. Transition model: $P(Z_t | Z_{t-1})$ proportion of times a given letter follows another (bigram statistics)
- 3. Observation model (emission probabilities): $P(X_t|Z_t)$ how often particular image represents specific character, relative to all images
- But still have to do inference at test time: work out states given observations
- HMMs often used where hidden states are identified: words in speech recognition; activity recognition; spatial position of rat; genes; POS tagging

HMM: Inference tasks

Important to infer distributions over hidden states:

- If states are interpretable, infer interpretations
- Also essential for learning

Can break down hidden state inference tasks to solve (each based on all observations up to current time, $X_{0:t}$)

- 1. Filtering: compute posterior over *current* hidden state: $P(Z_t | X_{0:t})$
- 2. Prediction: compute posterior over *future* hidden state: $P(Z_{t+k} | X_{0:t})$
- 3. Smoothing: compute posterior over *past* hidden state: $P(Z_k | X_{0:t}), 0 \le k \le t$
- 4. Fixed-lag smoothing: $P(Z_{t-a} | X_{0:t})$: compute posterior over hidden state a few steps back

Filtering, Smoothing & Prediction

$$P(Z_t | X_{1:t}) = P(Z_t | X_t, X_{1:t-1})$$

$$\propto P(X_t | Z_t, X_{1:t-1})P(Z_t | X_{1:t-1})$$

$$= P(X_t | Z_t)P(Z_t | X_{1:t-1})$$

$$= P(X_t | Z_t) \sum_{z_{t-1}} P(Z_t | z_{t-1}, X_{1:t-1})P(z_{t-1} | X_{1:t-1})$$

$$= P(X_t | Z_t) \sum_{z_{t-1}} P(Z_t | z_{t-1})P(z_{t-1} | X_{1:t-1})$$
Filtering: for **online** estimation of state
Pr(state) = observation probability * transition-model

Smoothing: **post hoc** estimation of state (similar computation) Prediction is filtering, but with no new evidence:

$$P(Z_{t+k} \mid X_{1:t}) = \sum_{z_{t+k-1}} P(Z_{t+k} \mid z_{t+k-1}) P(z_{t+k-1} \mid X_{1:t})$$

HMM: Maximum likelihood

Having observed some dataset, use ML to learn the parameters of the HMM

Need to marginalize over the latent variables:

$$p(\mathbf{X}|\theta) = \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\theta)$$

Difficult:

- does not factorize over time steps
- involves generalization of a mixture model

Approach: utilize EM for learning

Focus first on how to do inference efficiently

Forward recursion (α)

Define
$$\alpha(z_{t,j}) = P(x_1, ..., x_t, z_t = j)$$

Clever recursion can compute huge sum efficiently $\alpha(z_{1,j}) = P(x_1, z_1 = j) = P(x_1 | z_1 = j) P(z_1 = j)$ $\alpha(z_{2,j}) = P(x_2|z_2 = j) \left[\sum_k P(z_2 = j|z_1 = k) P(x_1|z_1 = k) P(z_1 = k) \right]$ $= P(x_{2}|z_{2} = j) \left[\sum_{k}^{k} A_{kj} \alpha(z_{1,k}) \right] \qquad \begin{array}{c} \alpha(z_{n-1,1}) & \alpha(z_{n,1}) \\ k = 1 & A_{11} & A_{11} \\ A_{21} & A_{21} & A_{21} & A_{21} \\ A_{21} & A_{22} & A_{21} & A_{21} \\ A_{22} & A_{22} & A_$

Backward recursion (β)

Define
$$\beta(z_{t,j}) = P(x_{t+1}, ..., x_T | z_t = j)$$

$$\beta(z_{t,j}) = \left[\sum_k A_{jk} P(x_{t+1} | z_{t+1} = k) \beta(z_{t+1,k})\right]$$

$$\beta(z_{T,j}) = 1$$

$$\beta(z_{n,j}) = 1$$

$$\beta$$

Forward-Backward algorithm

Estimate hidden state given observations

Define
$$\gamma(z_{t,i}) = P(z_t = i | x_1, ..., x_T)$$

 $\gamma(z_{t,i}) = P(\mathbf{X} | z_t = i) P(z_t = i) / P(\mathbf{X})$
 $= P(x_1, ..., x_t | z_t = i) P(x_{t+1}, ..., x_T | z_t = i) P(z_t = i) / P(\mathbf{X})$
 $= P(x_1, ..., x_t, z_t = i) P(x_{t+1}, ..., x_T | z_t = i) / P(\mathbf{X})$
 $= \alpha(z_{t,i}) \beta(z_{t,i}) / P(\mathbf{X})$

One forward pass to compute all $\alpha(z_{t,i})$, one backward pass to compute all $\beta(z_{t,i})$: total cost $O(K^2T)$ Can compute likelihood at any time *t* based on $\alpha(z_{t,j})$ and $\beta(z_{t,j})$ $L = P(\mathbf{X}) = \sum_i \alpha(z_{t,i})\beta(z_{t,i})$

Baum-Welch training algorithm: Summary

Can estimate HMM parameters using maximum likelihood

If state path known, then parameter estimation easy Instead must estimate states, update parameters, reestimate states, etc. -- *Baum-Welch* (form of EM)

State estimation via forward-backward, also need transition statistics (see next slide)

Update parameters (transition matrix **A**, emission parameters) to maximize likelihood

Transition statistics

Need statistics for adjacent time-steps: Define $\xi(z_{ij}(t)) = P(z_{t-1} = i, z_t = j | \mathbf{X})$ $\xi(z_{i,j}(t)) = P(z_{t-1} = i, x_1, ..., x_{t-1})$ $P(z_t = j, x_t, ..., x_T | z_{t-1} = i, x_1, ..., x_{t-1}) / P(\mathbf{X})$ $= P(z_{t-1} = i, x_1, ..., x_{t-1}) P(z_t = j | z_{t-1} = i)$ $P(x_t | z_t = j) P(x_{t+1}, ..., x_T | z_t = j) / L$

 $= \alpha(z_{t-1,i})A_{ij}P(x_t|z_t=j)\beta(z_{t,j})/L$

Expected number of transitions from state *i* to state *j* that begin at time *t*-1, given the observations

Can be computed with the same $\alpha(z_{t,j})$ and $\beta(z_{t,j})$ recursions

Parameter updates

Initial state distribution: expected counts in state *k* at time 1

$$\pi_k = \frac{\gamma(z_{1,k})}{\sum_{j=1}^K \gamma(z_{1,j})}$$

Estimate transition probabilities:

$$A_{ij} = \frac{\sum_{t=2}^{T} \xi(z_{ij}(t))}{\sum_{t=2}^{T} \sum_{k} \xi(z_{ik}(t))} = \frac{\sum_{t=2}^{T} \xi(z_{ij}(t))}{\sum_{t=2}^{T} \gamma(z_{t,i})}$$

Emission probabilities are expected number of times observe symbol in particular state:

$$\mu_{i,k} = \frac{\sum_{t=1}^{T} \gamma(z_{t,k}) x_{t,i}}{\sum_{t=1}^{T} \gamma(z_{t,k})}$$

Using HMMs for recognition

Can train an HMM to classify a sequence:

- 1. train a separate HMM per class
- 2. evaluate prob. of unlabelled sequence under each HMM
- 3. classify: HMM with highest likelihood

Assumes can solve two problems:

- 1. estimate model parameters given some training sequences (we can find local maximum of parameter space near initial position)
- 2. given model, can evaluate prob. of a sequence

Probability of observed sequence

Want to determine if given observation sequence is likely under the model (for learning, or recognition)

Compute marginals to evaluate prob. of observed seq.: sum across all paths of joint prob. of observed outputs and state $P(\mathbf{X}) = \sum_{\mathbf{Z}} P(\mathbf{X}, \mathbf{Z})$

Take advantage of factorization to avoid exp. cost (# paths = K^T)

$$P(\mathbf{X}) = \sum_{z_1} \sum_{z_2} \cdots \sum_{z_T} \prod_{t=1}^T P(z_t | z_{t-1}) P(x_t | z_t)$$

=
$$\sum_{z_1} P(z_1) P(x_1 | z_1) \sum_{z_2} P(z_2 | z_1) P(x_2 | z_2)$$

$$\cdots \sum_{z_T} P(z_T | z_{T-1}) P(x_T | z_T)$$

Variants on basic HMM

- Input-output HMM
 - Have additional observed variables *U*
- Semi-Markov HMM
 - Improve model of state duration
- Autoregressive HMM
 - Allow observations to depend on some previous observations directly
- Factorial HMM
 - Expand dim. of latent state

State Space Models

Instead of discrete latent state of the HMM, model Z as a continuous latent variable

Standard formulation: linear-Gaussian (LDS), with (hidden state *Z*, observation *Y*, other variables *U*)

– Transition model is linear

$$\mathbf{z}_t = \mathbf{A}_t \mathbf{z}_{t-1} + \mathbf{B}_t \mathbf{u}_t + \epsilon_t$$

- with Gaussian noise $\epsilon_t = \mathcal{N}(0, \mathbf{Q}_t)$
- Observation model is linear

$$\mathbf{y}_t = \mathbf{C}_t \mathbf{z}_t + \mathbf{D}_t \mathbf{u}_t + \delta_t$$

– with Gaussian noise

 $\delta_t = \mathcal{N}(0, \mathbf{R}_t)$

Model parameters typically independent of time: stationary

Kalman Filter

Algorithm for filtering in linear-Gaussian state space model Everything is Gaussian, so can compute updates exactly

Dynamics update: predict next belief state

$$p(\mathbf{z}_t | \mathbf{y}_{1:t-1}, \mathbf{u}_{1:t}) = \int \mathcal{N}(\mathbf{z}_t | \mathbf{A}_t \mathbf{z}_{t-1} + \mathbf{B}_t \mathbf{u}_t, \mathbf{Q}_t) \mathcal{N}(\mathbf{z}_{t-1} | \mu_{t-1}, \Sigma_{t-1}) d\mathbf{z}_{t-1}$$

$$= \mathcal{N}(\mathbf{z}_t | \mu_{t|t-1}, \Sigma_{t|t-1})$$
$$\mu_{t|t-1} = \mathbf{A}_t \mu_{t-1} + \mathbf{B}_t \mathbf{u}_t$$
$$\Sigma_{t|t-1} = \mathbf{A}_t \Sigma_{t-1} \mathbf{A}_t^T + \mathbf{Q}_t$$

Kalman Filter: Measurement Update

Key step: update hidden state given new measurement: $p(\mathbf{z}_t | \mathbf{y}_{1:t}, \mathbf{u}_{1:t}) \propto p(\mathbf{y}_t | \mathbf{z}_t, \mathbf{u}_t) p(\mathbf{z}_t | \mathbf{y}_{1:t-1}, \mathbf{u}_{1:t})$

First term a bit complicated, but can apply various identities (such as the matrix inversion lemma, Bayes rule), obtain:

$$p(\mathbf{z}_t | \mathbf{y}_{1:t}, \mathbf{u}_{1:t}) = \mathcal{N}(\mathbf{z}_t | \mu_t, \Sigma_t)$$

The mean update depends on Kalman gain matrix **K**, and the residual or innovation **r** = **y** – **E**[**y**]

$$\mu_t = \mu_{t|t-1} + \mathbf{K}_t \mathbf{r}_t$$
$$\mathbf{K}_t = \Sigma_{t|t-1} \mathbf{C}_t^T \mathbf{S}_t^{-1}$$
$$\hat{\mathbf{y}} = \mathbb{E}[\mathbf{y}_t | \mathbf{y}_{1:t-1}, \mathbf{u}_t] = \mathbf{C}_t \mu_{t|t-1} + \mathbf{D}_t \mathbf{u}_t$$
$$\mathbf{S}_t = \operatorname{cov}[\mathbf{r}_t | y_{1:t-1}, \mathbf{u}_{1:t}] = \mathbf{C}_t \Sigma_{t|t-1} \mathbf{C}_t^T + \mathbf{R}_t$$

Kalman Filter: Extensions

Learning similar to HMM

- Need to solve inference problem local posterior marginals for latent variables
- Use Kalman smoothing instead of forward-backward in E step, re-derive updates in M step

Many extensions and elaborations

- Non-linear models: extended KF, unscented KF
- Non-Gaussian noise
- More general posteriors (multi-modal, discrete, etc.)
- Large systems with sparse structure (sparse information filter)

Viterbi decoding

How to choose single best path through state space?Choose state with largest probability at each time *t*: maximize expected number of correct statesBut this may not be the best path, with highest likelihood of

generating the data

To find best path – *Viterbi decoding,* form of dynamic programming (forward-backward algorithm)
Same recursions, but replace ∑ with max ("brace" example)
Forward: retain best path into each node at time *t*Backward: retrace path back from state where most probable path ends