
Today’s lecture

Approximate inference in graphical models.

Forward and Backward KL divergence

Variational Inference

Mean Field: Naive and Structured

Marginal Polytope

Local Polytope

Relaxation methods

Loopy BP

LP relaxations for MAP inference

Figures from D. Sontag, Murphy’s book
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Approximate marginal inference

Given the joint p(x1, · · · , xn) represented as a graphical model, we want to
perform marginal inference, e.g., p(xi |e)

We showed in last lecture that doing this exactly is NP-hard

We also covered variable elimination (VE), which can solve these type of
queries for any graphical model, but · · ·

Almost all approximate inference algorithms in practice are

Variational algorithms (e.g., mean-field, loopy belief propagation)
Sampling methods (e.g., Gibbs sampling, MCMC)
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Variational Methods

Goal: Approximate a difficult distribution p(x|e) with a new distribution
q(x)

p(x|e) and q(x) should be ”close”
Computation on q(x) should be easy

How should we measure distance between distributions?

The Kullback-Leibler divergence (KL-divergence) between two
distributions p and q is defined as

D(p||q) =
∑

x

p(x) log
p(x)

q(x)

It measures the expected number of extra bits (nats) required to describe
samples from p(x) using a code based on q instead of p

D(p||q) ≥ 0 for all p, q, with equality if and only if p = q

The KL-divergence is asymmetric
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KL-divergence

Suppose p is the true distribution

D(p||q) =
∑

x

p(x) log
p(x)

q(x)

This is difficult to optimize because the expectations w.r.t. p are typically
intractable

We can reverse the KL

D(q||p) =
∑

x

q(x) log
q(x)

p(x)

Typically the expectation w.r.t. q will be tractable, but · · ·

· · · computing p(x) is still hard, due to the partition function

What can we do?
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Variational Inference

Let’s look at the unnormalized distribution

J(q) =
∑

x

q(x) log
q(x)

p̃(x)

=
∑

x

q(x) log
q(x)

Z · p(x)

=
∑

x

q(x) log
q(x)

p(x)
− log Z

= KL(q||p)− log Z

Since Z is constant, by minimizing J(q), we will force q to become close to p

The KL is always non-negative, so we see that J(q) is an upper bound on
the negative log likelihood (NLL)

J(q) = KL(q||p)− log Z ≥ − log Z = − log p(D)
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Alternative Interpretations

(1). We can alternatively write

J(q) = Eq[log q(x)] + Eq[−log p̃(x)]

= −H(q) + Eq[E (x)]

which is the expected energy minus the entropy.

In physics, J(q) is called the variational free energy or Helmholtz free
energy

(2). Another alternative:

J(q) = Eq[log q(x)− log p(x)p(D)]

= Eq[log q(x)− log p(x)− log p(D)]

= Eq[− log p(D)] + KL(q||p)

This is the expected NLL plus a penalty term that measures how far apart
the two distributions are
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KL-divergence

Before we do something let’s inspect again

KL(p||q) =
∑

x

p(x) log
p(x)

q(x)

What is the difference between the solution to

arg min
q

KL(p||q)

and
arg min

q
KL(q||p)

They differ only when q is minimized over a restricted set of probability
distribution Q = {q1, · · · }, and p 6= q. Why?
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Forward or Reverse KL

Minimizing KL(p||q) or KL(q||p) will give different results

I projection, or Information projection

KL(q||p) =
∑

x

q(x) log
q(x)

p(x)

This is infinite if p(x) = 0 and q(x) > 0. Thus we must ensure that if
p(x) = 0 then q(x) = 0

Thus the reverse KL is zero forcing and q will under-estimate the support
of p

M projection or moment projection

KL(p||q) =
∑

x

p(x) log
p(x)

q(x)

This is infinite if q(x) = 0 and p(x) > 0. This is zero avoiding, and the
forward KL over-estimates the support of p
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q(x) log
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KL divergence - M projection

q∗ = arg min
q∈Q

KL(p||q) =
∑

x

p(x) log
p(x)

q(x)

p(x) is a 2D Gaussian and Q is the set of all Gaussian distributions with diagonal
covariance matrices
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KL divergence - I projection

q∗ = arg min
q∈Q

KL(q||p) =
∑

x

q(x) log
q(x)

p(x)

p(x) is a 2D Gaussian and Q is the set of all Gaussian distributions with diagonal
covariance matrices
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KL Divergence (single Gaussian)

In this example, both the M-projection and I-projection find an approximate
q(x) that has the correct mean (i.e., Ep(z) = Eq(x))

What if p(x) is multimodal?
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M projection (Mixture of Gaussians)

q∗ = arg min
q∈Q

KL(p||q) =
∑

x

p(x) log
p(x)

q(x)

p(x) is a mixture of two 2D Gaussians and Q is the set of all 2D Gaussian
distributions (with arbitrary covariance matrices)

M-projection yields a distribution q(x) with the correct mean and covariance.
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I projection (Mixture of Gaussians)

q∗ = arg min
q∈Q

KL(q||p) =
∑

x

q(x) log
q(x)

p(x)

The I-projection does not necessarily yield the correct moments
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Mean Field

One of the most popular variational inference algorithms [Opper & Saad 01]

Assume that the posterior fully factorizes

q(x) =
∏
i

qi (xi )

Our goal is to
min

q1,··· ,qD
KL(q||p)

where we optimize over the parameters of each marginal distribution qi

Minimize the upper bound J(q) ≥ − log p(D) or alternatively we want to
maximize the lower bound

L(q) = −J(q) =
∑

x

q(x) log
p̃(x)

q(x)
≤ log p(D)

We can do the maximization one node at a time, in an iterative fashion
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Mean Field Updates
Focus on qj (holding all other terms constant)

L(qj ) =
∑

x

∏
i

qi (x)

[
log p̃(x)−

∑
k

log qk (xk )

]

=
∑

xj

∑
x−j

qj (xj )
∏
i 6=j

qi (xi )

[
log p̃(x)−

∑
k

log qk (xk )

]

=
∑

xj

qj (xj )
∑
x−j

∏
i 6=j

qi (xi ) log p̃(x)−

∑
xj

qj (xj )
∑
x−j

∏
i 6=j

qi (xi )

∑
k 6=j

log qk (xk ) + log qj (xj )


=

∑
xj

qj (xj ) log fj (xj )−
∑

xj

qj (xj ) log qj (xj ) + const

where log fj(xj) =
∑
x−j

∏
i 6=j

qi (xi ) log p̃(x) = E−qj [log p̃(x)]

So we average out all the variables except xj , and can rewrite L(qj) as

L(qj) = −KL(qj ||fj)
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Variational Inference for Graphical Models

Suppose that we have an arbitrary graphical model

p(x; θ) =
1

Z(θ)

∏
c∈C

φc(xc) = exp

(∑
c∈C

θc(xc)− lnZ(θ)

)

We can compute the KL

KL(q||p) =
∑

x

q(x) ln
q(x)

p(x)

= −
∑

x

q(x) ln p(x)−
∑

x

q(x) ln
1

q(x)

= −
∑

x

q(x)

(∑
c∈C

θc(xc)− lnZ(θ)

)
− H(q(x))

= −
∑
c∈C

∑
x

q(x)θc(xc) +
∑

x

q(x) lnZ(θ)− H(q(x))

= −
∑
c∈C

Eq[θc(xc)] + lnZ(θ)− H(q(x))

The partition function can be considered as constant when minimizing over q
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Mean Field for Variational Inference

max
q∈Q

∑
c∈C

∑
xc

q(xc)θc(xc) + H(q(x))

Although this function is concave and thus in theory should be easy to
optimize, we need some compact way of representing q(x)

Mean field: assume a factored representation of the joint distribution

q(x) =
∏
i∈V

qi (xi )

This is called ”naive” mean field
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Naive Mean Field

Suppose that Q consists of all fully factorized distributions, then we can
simplify

max
q∈Q

∑
c∈C

∑
xc

q(xc)θc(xc) + H(q(x))

since q(xc) =
∏

i∈C qi (xi )

The joint entropy decomposes as a sum of local entropies

H(q) = −
∑

x

q(x) ln q(x)

= −
∑

x

q(x) ln
∏
i∈V

qi (xi ) = −
∑

x

q(x)
∑
i∈V

ln qi (xi )

= −
∑
i∈V

∑
x

q(x) ln qi (xi )

= −
∑
i∈V

∑
xi

qi (xi ) ln qi (xi )
∑
x−i

q(x−i |xi ) =
∑
i∈V

H(qi )
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Naive Mean Field for Pairwise MRFs

For pairwise MRFs we have

max
q

∑
ij∈E

∑
xi ,xj

θij(xi , xj)qi (xi )qj(xj)−
∑
i∈V

∑
xi

qi (xi ) ln qi (xi ) (1)

This is a non-concave optimization problem, with many local maxima!

We can do block coordinate ascent
1 For each i ∈ V

Fully maximize Eq. (1) wrt {qi (xi ),∀xi}
2 repeat until convergence

Constructing the Lagrangian, taking the derivatives and setting to zero
yields the update

qi (xi )←
1

Zi
exp

θi (xi ) +
∑

j∈N(i)

∑
xj

qj(xj)θij(xi , xj)


See Mean field example for the Ising Model, Murphy 21.3.2
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Structured mean-field approximations

Rather than assuming a fully-factored distribution for q, we can use a
structured approximation, such as a spanning tree

For example, for a factorial HMM, a good approximation may be a product
of chain-structured models (see Murphy 21.4.1)
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Approximate Inference via Loopy BP

Mean field inference approximates posterior as product of marginal
distributions

Allows use of different forms for each variable: useful when inferring
statistical parameters of models, or regression weights

An alternative approximate inference algorithm is loopy belief propagation

Same algorithm shown to do exact inference in trees last class

In loopy graphs, BP not guaranteed to give correct results, may not
converge, but often works well in practice
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Loopy BP on Pairwise Models
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Loopy BP for Factor Graph

mi→f (xi ) =
∏

h∈M(i)\f

mh→i (xi )

mf→i (xi ) =
∑
xc\xi

f (xc)
∏

j∈N(f )\i

mj→f (xj)

µi (xi ) ∝
∏

f∈M(i)

mf→i (xi )
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Convergence of LBP

Can we predict when will converge?

Unroll messages across time in a computation tree: T iterations of
LBP is exact computation in tree of height T + 1
if leaves’ effect on root diminishes over time will converge

Can we make it more likely to converge?

Damp the messages to avoid oscillations
Can we speed up convergence?

Change from synchronous to asynchronous updates

Update sets of nodes at a time, e.g., spanning trees (tree
reparameterization)
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LBP as Variational Inference

More theoretical analysis of LBP from variational point of view:
(Wainwright & Jordan, 2008)

Dense tome

Simplify by considering pairwise UGMs, discrete variables
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Variational Inference for Graphical Models

Suppose that we have an arbitrary graphical model

p(x; θ) =
1

Z(θ)

∏
c∈C

φc(xc) = exp

(∑
c∈C

θc(xc)− lnZ(θ)

)
We can compute the KL

KL(q||p) =
∑

x

q(x) ln
q(x)

p(x)

= −
∑

x

q(x) ln p(x)−
∑

x

q(x) ln
1

q(x)

= −
∑

x

q(x)

(∑
c∈C

θc(xc)− lnZ(θ)

)
− H(q(x))

= −
∑
c∈C

∑
x

q(x)θc(xc) +
∑

x

q(x) lnZ(θ)− H(q(x))

= −
∑
c∈C

Eq[θc(xc)] + lnZ(θ)− H(q(x))

The partition function is a constant when minimizing over q
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The log-partition Function

Since KL(q||p) ≥ 0 we have

−
∑
c∈C

Eq[θc(xc)] + ln Z (θ)− H(q(x)) ≥ 0

which implies

ln Z (θ) ≥
∑
c∈C

Eq[θc(xc)] + H(q(x))

Thus, any approximating distribution q(x) gives a lower bound on the
log-partition function

Recall that KL(p||q) = 0 if an only if p = q. Thus, if we optimize over all
distributions we have

ln Z (θ) = max
q

∑
c∈C

Eq[θc(xc)] + H(q(x))

This casts exact inference as a variational optimization problem
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Rewriting Objective in terms of Moments

ln Z (θ) = max
q

∑
c∈C

Eq[θc(xc)] + H(q(x))

= max
q

∑
c∈C

∑
x

q(x)θc(xc) + H(q(x))

= max
q

∑
c∈C

∑
xc

q(xc)θc(xc) + H(q(x))

Assume that p(x) is in the exponential family, and let f(x) be its sufficient
statistic vector

Define µq = E[f(x)] to be the marginals of q(x)

We can re-write the objective as

ln Z (θ) = max
µ∈M

max
q:Eq [f(x)]=µ

∑
c∈C

∑
xc

µc(xc)θc(xc) + H(q(x))

where M is the marginal polytope, having all valid marginal vectors
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Rewriting Objective in terms of Moments
We next push the max inside

lnZ(θ) = max
µ∈M

∑
c∈C

∑
xc

θc (xc )µc (xc ) + H(µ)

H(µ) = max
q:Eq [f(x)]=µ

H(q)

For discrete random variables, the marginal polytope M is the set of all
mean parameters for the given model that can be generated from a valid
prob. distribution

M =

µ ∈ <d | ∃p s.t. µ =
∑

x∈Xm

p(x)f(x) for some p(x) ≥ 0,
∑

x∈Xm

p(x) = 1


= conv {f(x), x ∈ Xm}
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Marginal Polytope for Discrete MRFs
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Relaxation

ln Z (θ) = max
µ∈M

∑
c∈C

∑
xc

θc(xc)µc(xc) + H(µ)

We still haven’t achieved anything, because:

The marginal polytope M is complex to describe (in general, exponentially
many vertices and facets)

H(µ) is very difficult to compute or optimize over

We now make two approximations:

We replace M with a relaxation of the marginal polytope, e.g. the local
consistency constraints ML

We replace H(µ) with a function H̃(µ) which approximates H(µ)
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Local Consistency Constraints

For every ”cluster” of variables to choose a local assignment

µi (xi ) ∈ {0, 1} ∀i ∈ V , xi∑
xi

µi (xi ) = 1 ∀i ∈ V

µij(xi , xj) ∈ {0, 1} ∀i , j ∈ E , xi , xj∑
xi ,xj

µij(xi , xj) = 1 ∀i , j ∈ E

Enforce that these local assignments are globally consistent

µi (xi ) =
∑
xj

µij(xi , xj) ∀ij ∈ E , xi

µj(xj) =
∑
xi

µij(xi , xj) ∀ij ∈ E , xj

The local consistency polytope, ML is defined by these constraints

The µi and µij are called pseudo-marginals
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polytope for a tree-structured MRF, and the pseudomarginals are the
marginals. marginal polytope, i.e., M ⊆ ML
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Mean-field vs relaxation

max
q∈Q

∑
c∈C

∑
xc

q(xc)θc(xc) + H(q(x))

Relaxation algorithms work directly with pseudo-marginals which may not
be consistent with any joint distribution

Mean-field algorithms assume a factored representation of the joint
distribution

q(x) =
∏
i∈V

qi (xi )
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Naive Mean-Field

Using the same notation naive mean-field is:

(∗) max
µ

∑
c∈C

∑
xc

µc(xc)θc(xc) +
∑
i∈V

H(µi ) subject to

µi (xi ) ≥ 0, ∀i ∈ V , xi∑
xi

µi (xi ) = 1 ∀i ∈ V

µc(xc) =
∏
i∈c

µi (xi )

Corresponds to optimizing over an inner bound on the marginal polytope:

We obtain a lower bound on the partition function, i.e., (*) ≤ ln Z (θ)
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MAP Inference

Recall the MAP inference task

arg max
x

p(x), p(x) =
1

Z

∏
c∈C

φc(xc)

we assume any evidence has been subsumed into the potentials

As the partition function is a constant we can alternatively

arg max
x

∏
c∈C

φc(xc)

This is the max product inference task

Since the log is monotonic, let θc(xc) = log φc(xc)

arg max
x

∑
c∈C

θc(xc)

This is called the max-sum
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Application: protein side-chain placement

Find ”minimum energy” configuration of amino acid side-chains along fixed
carbon backbone:

Orientations of the side-chains are represented by discretized angles called
rotamers

Rotamer choices for nearby amino acids are energetically coupled (attractive
and repulsive forces)
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Application: Dependency parser

Given a sentence, predict the dependency tree that relates the words

Arc from head word of each phrase to words that modify it

May be non-projective: each word and its descendants may not be a
contiguous subsequence

m words ⇒ m(m − 1) binary arc selection variables xij ∈ {0, 1}

We represent the problem as

max
x
θT (x) +

∑
ij

θij(xij) +
∑
i

θi|(xi|)

with x|i = {xij}j 6=i (all outgoing edges)
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Application: Semantic Segmentation

Use Potts to encode that neighboring pixels are likely to have the same
discrete label and hence belong to the same segment

p(x, θ) = max
x

∑
i

θi (xi ) +
∑
i,j

θi,j(xi , xj)

Zemel & Urtasun (UofT) CSC 412 Feb 23, 2016 41 / 47



MAP as an integer linear program (ILP)

MAP as a discrete optimization problem is

x∗ = arg max
x

∑
i∈V

θi (xi ) +
∑
ij∈E

θij(xi , xj)

To turn this into an integer linear program (ILP) we introduce indicator
variables

1 µi (xi ), one for each i ∈ V and state xi
2 µij(xi , xj), one for each edge ij ∈ E and pair of states xi , xj

The objective function is then

max
µ

∑
i∈V

∑
xi

θi (xi )µi (xi ) +
∑
ij

θij(xi , xj)µij(xi , xj)

What is the dimension of µ, if binary variables?

Are these two problems equivalent?
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2 µij(xi , xj), one for each edge ij ∈ E and pair of states xi , xj

The objective function is then

max
µ

∑
i∈V

∑
xi

θi (xi )µi (xi ) +
∑
ij

θij(xi , xj)µij(xi , xj)

What is the dimension of µ, if binary variables?

Are these two problems equivalent?
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Constraints

max
µ

∑
i∈V

∑
xi

θi (xi )µi (xi ) +
∑
ij

θij(xi , xj)µij(xi , xj)

For every ”cluster” of variables to choose a local assignment

µi (xi ) ∈ {0, 1} ∀i ∈ V , xi∑
xi

µi (xi ) = 1 ∀i ∈ V

µij(xi , xj) ∈ {0, 1} ∀i , j ∈ E , xi , xj∑
xi ,xj

µij(xi , xj) = 1 ∀i , j ∈ E

Enforce that these local assignments are globally consistent

µi (xi ) =
∑
xj

µij(xi , xj) ∀ij ∈ E , xi

µj(xj) =
∑
xi

µij(xi , xj) ∀ij ∈ E , xj
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MAP as an integer linear program (ILP)

max
µ

∑
i∈V

∑
xi

θi (xi )µi (xi ) +
∑
ij

θij(xi , xj)µij(xi , xj)

subject to:

µi (xi ) ∈ {0, 1} ∀i ∈ V , xi

µij(xi , xj) ∈ {0, 1} ∀i , j ∈ E , xi , xj∑
xi

µi (xi ) = 1 ∀i ∈ V

µi (xi ) =
∑
xj

µij(xi , xj) ∀ij ∈ E , xi

µj(xj) =
∑
xi

µij(xi , xj) ∀ij ∈ E , xj

Many extremely good off-the-shelf solvers, such as CPLEX and Gurobi

But it might be too slow...
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Linear Programing Relaxation for MAP

MAP(θ) = max
µ

∑
i∈V

∑
xi

θi (xi )µi (xi ) +
∑
ij

θij(xi , xj)µij(xi , xj)

subject to:

µi (xi ) ∈ {0, 1} ∀i ∈ V , xi

µij(xi , xj) ∈ {0, 1} ∀i , j ∈ E , xi , xj∑
xi

µi (xi ) = 1 ∀i ∈ V

µi (xi ) =
∑
xj

µij(xi , xj) ∀ij ∈ E , xi

µj(xj) =
∑
xi

µij(xi , xj) ∀ij ∈ E , xj

Relax integrality constraints, allowing the variables to be between 0 and 1

µi (xi ) ∈ [0, 1] ∀i ∈ V , xi µij(xi , xj) ∈ [0, 1] ∀ij ∈ E , xi , xj
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Linear Programing Relaxation for MAP

LP(θ) = max
µ

∑
i∈V

∑
xi

θi (xi )µi (xi ) +
∑
ij

(xi , xj )µij (xi , xj )

µi (xi ) ∈ [0, 1] ∀i ∈ V , xi

µij (xi , xj ) ∈ [0, 1] ∀i, j ∈ E , xi , xj∑
xi

µi (xi ) = 1 ∀i ∈ V

µi (xi ) =
∑
xj

µij (xi , xj ) ∀ij ∈ E , xi

µj (xj ) =
∑
xi

µij (xi , xj ) ∀ij ∈ E , xj

Linear programs can be solved relatively efficient via Simplex method,
interior point, ellipsoid algorithm

Since the LP relaxation maximizes over a larger set of solutions, its value
can only be higher

MAP(θ) ≤ LP(θ)

LP relaxation is tight for tree-structured MRFs

Faster algorithms by deriving the dual (dual variables represent messages)

Zero limit temperature of the variational inference for Marginals
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Loopy Belief Propagation (Max Product)

Introducing Lagrange multipliers and solving we get (see Murphy 22.3.5.4)

Mi→j(xi ) ∝ max
xj

exp{θij(xi , xj) + θj(xj)}
∏

u∈N(j)\i

Mu→j(xj)



Thus we pass messages for a fixed number of iterations, or until the
messages do not change too much

We decode the local scoring functions by

µs(xs) ∝ exp(θs(xs))
∏

t∈N(s)

Mt→s(xs)

We then compute the maximal value of µs(xs)

What if two solutions that have the same score?
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Stereo Estimation

Tsukuba images from Middlebury stereo database

MRF for each pixel, with states the disparity

Our unary is the matching term

θi (di ) = |L(x + di , y)− R(x , y)|

where pixel pi = (x , y)

The pairwise factor θij between neighboring pixels favor smoothness
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Stereo Estimation

If we only use the unary terms. How would you do inference in this case?

If full graphical model

[Credit: Coughlan BP Tutorial]
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Stereo Estimation
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