
Today’s lecture

Exact inference in graphical models.

Variable Elimination

Elimination as Graph Transformation

Treewidth

Sum-product belief propagation

Max-product belief propagation

Junction tree algorithm (during tutorial)

Figures from Koller book as well as Nowozin et al.
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Inference: conditional probabilities

Today we will look into exact inference in graphical models.

We will focus on conditional probability queries

p(Y|E = e) =
P(Y, e)

P(e)

Let W = X − Y − E be the random variables that are neither the query nor
the evidence. Each of the distributions can be computed by marginalizing
over the other variables:

p(Y, e) =
∑

w

P(Y, e,w), P(e) =
∑
y,w

P(y, e,w)

Naively marginalizing over all unobserved variables requires an exponential
number of computations. Why?

Is there a more efficient algorithm?
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Probabilistic inference in practice

Probabilistic inference in NP-hard (both Directed and Undirected models)

Should we give up?

NP-hardness simply says that there exist difficult inference problems

Real-world inference problems are not necessarily as hard as these worst-case
instances

It is easy to do inference in some graphs, e.g., inference in hidden Markov
models (HMMs) and other tree-structured models
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Variable Elimination (VE)

Exact algorithm for probabilistic inference in any graphical model

Running time will depend on the graph structure

Uses dynamic programming to avoid enumerating all assignments

Let’s first look at computing marginal probabilities p(Xi ) in Directed
models, and then generalize this to conditional queries on MRFs
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Basic idea of variable elimination

Let’s start with a simple chain A→ B → C → D, and we want to compute
P(D)

This is nothing but computing a table

By the chain rule we can write the joint distribution

p(A,B,C ,D) = p(A)p(B|A)p(C |B)p(D|C )

To compute p(D), we can marginalize all other variables

p(D) =
∑
a,b,c

p(A = a,B = b,C = c ,D)

This looks exponential, but · · ·
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Let’s be a bit more explicit...

There is structure on the summation (repeated terms)

Let’s modify the computation to first compute

P(a1)P(b1|a1) + P(a2)P(b1|a2)

P(a1)P(b2|a1) + P(a2)P(b2|a2)
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Let’s be a bit more explicit...

Let’s modify the computation to first compute

P(a1)P(b1|a1) + P(a2)P(b1|a2)

and
P(a1)P(b2|a1) + P(a2)P(b2|a2)

Then we get

We define τ1 : Val(B)→ <, τ1(bi ) = P(a1)P(bi |a1) + P(a2)P(bi |a2)
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Let’s be a bit more explicit...

We now have

We can once more reverse the order of the product and the sum and get

We have other repetitive patterns.
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Let’s be a bit more explicit...

We define τ2 : Val(C )→ <, with

τ2(c1) = τ1(b1)P(c1|b1) + τ1(b2)P(c1|b2)

τ2(c2) = τ1(b1)P(c2|b1) + τ1(b2)P(c2|b2)

Thus we can compute the marginal P(D) as
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Even more explicit...

The joint is

P(D) =
∑
a,b,c

p(a, b, c ,D) =
∑
a,b,c

P(a)P(b|a)P(c |b)P(D|c)

∑
c

∑
b

∑
a

P(D|c)P(c |b)P(b|a)P(a)

We can push the summation inside

P(D) =
∑
c

P(D|c)
∑
b

P(c |b)
∑
a

P(b|a)P(a)︸ ︷︷ ︸
ψ1(a,b)︸ ︷︷ ︸
τ1(b)

Let’s call ψ1(A,B) = P(A)P(B|A) and τ1(B) =
∑

A ψ1(A,B).

We can define ψ2(B,C ) = τ1(B)P(C |B) and τ2(C ) =
∑

B ψ1(B,C ).

This procedure is dynamic programming: computation is inside out instead
of outside in.
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Complexity of a chain

Generalizing to a chain X1 → X2 → · · · → Xn, and each node has k states.

We can compute at each step i = 1 up to n − 1

P(Xi+1) =
∑
xi

P(Xi+1|xi )P(xi )

We need to multiply P(xi ) with each CPD P(Xi+1|Xi ) for each value of xi .

P(Xi ) has k values, and the CPD P(Xi+1|Xi ) has k2 values.

k2 multiplications and k(k − 1) additions.

The cost of the total chain is O(nk2).

In comparison, generating the full joint and summing it up has complexity
O(kn).

We have done inference over the joint without generating it explicitly.
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Summary so far

Worst case analysis says that computing the joint is NP-hard.

In practice due to the structure of the Bayesian network some subexpressions
in the joint depend only on a subset of variables.

We can catch up computations that are otherwise computed exponentially
many times.

This depends on our having a good variable elimination ordering
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Sum-product Inference

We want an algorithm to compute P(Y) for directed and undirected models

This can be reduced to the following sum-product inference task

τ(Y) =
∑

z

∏
φ∈Φ

φ(zScope[φ]∩Z, yScope[φ]∩Y) ∀Y

where Φ is a set of potentials or factors

For directed models, Φ is given by the conditional probability distributions
for all variables,

Φ = {φXi}ni=1 = {p(Xi |XPa(Xi ))}
n
i=1

where the sum is over the set Z = X − Y

For MRFs, the factors Φ correspond to the set of potentials

Sum product returns unnormalized distributions, so we normalize by
dividing by

∑
y τ(y)
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Variable elimination

Let φ(X,Y ) be a factor where X is a set of variables and Y /∈ X

Factor marginalization of φ over Y (also called ”summing out Y in φ”) to
be a new factor

τ(X) =
∑
Y

φ(X,Y )

We only sum up the entries that X matches up
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Sum-product Variable Elimination

Order the variables Z (called the elimination ordering)

Iteratively marginalize out variable Zi one at a time

For each i

1 Multiply all factors that have Zi in their scope, generating a new
product factor

2 Marginalize this product factor over Zi , generating a smaller factor
3 Remove the old factors from the set of all factors, and add the new one
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Some properties

If we sum out all the variables in a normalized distribution, what do we get?

If we sum out all the variables in an unnormalized distribution, what do we
get?

Important property is that sum and product are commutative, and the
product is associative, i.e., (φ1φ2)φ3 = φ1(φ2φ3).

Therefore, if X /∈ Scope(φ1) then∑
X

(φ1φ2) = φ1

∑
X

φ2
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Chain example again

Let’s look at the chain again

P(A,B,C ,D) = φAφBφCφD

The marginal distribution over D

P(D) =
∑
A,B,C

φAφBφCφD

=
∑
C

(
φD
∑
B

(
φC
∑
A

(φBφA)

))

where we have used the limited scope of the factors.

Marginalizing involves taking the product of all CPDs and sum over all but
the variables in the query.

We can do this in any order we want; some more efficient than others.

Effective as the scope is limited, we push in some of the summations.
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Example of Directed Graph

The joint distribution

p(C ,D, I ,G , S , L,H, J) = p(C)p(D|C)p(I )p(G |D, I )p(L|G)P(S |I )P(J|S , L)p(H|J,G)

with factors

Φ = {φc(C), φD(C ,D), φI (I ), φG (G ,D, I ), φL(L,G),

φS(S , I ), φJ(J,S , L), φH(H, J,G)}

Let’s do variable elimination with ordering {C ,D, I ,H,G ,S , L} on the board!
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Example of Directed Graph
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Elimination Ordering

We can pick any order we want, but some orderings introduce factors with
much larger scope.

Alternative ordering...
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Semantics of Factors

In the chain example the factors were marginal or conditional probabilities,
but this is not true in general.

The result of eliminating X is not a marginal or conditional probability of
the network

τ(A,B,C ) =
∑
X

P(X )P(A|X )P(C |B,X )
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How to introduce evidence?

But we wanted to answer conditional probability queries

p(Y|E = e) =
p(Y, e)

p(e)

Apply variable elimination algorithm to the task of computing P(Y, e).

Replace each factor φ ∈ Φ that has E ∩ Scope[φ] 6= 0 with

φ′(xScope[φ]−E) = φ(xScope[φ]−E, eE∩Scope[φ])

Then eliminate the variables X −Y − E. The return factor φ∗(Y) is p(Y, e)

To obtain the conditional p(Y|e) normalize the resulting product of factors
– the normalization constant is p(e).
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Sum-product VE for conditional distributions
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Example

We want to compute P(J).

To compute P(J|i1, h0)
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Complexity of Variable Elimination

Let n be the number of random variables and m the number of initial factors.

At each step we pick a variable Xi and multiply all factors involving the
variable, resulting in a single factor ψi . The variable gets sum out of ψi ,
resulting in a new factor τi with scope(τ) = scope(φ)− Xi .

Let Ni be the number of entries in the factor ψi , and let Nmax = maxi Ni .

Therefore the total cost is O(mkNmax ), with k = |Val(X )|.

Problem: Nmax can be as large as n
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Complexity in Graph terms

Let’s try to analyze the complexity in terms of the graph structure.

The algorithm does not care if the graph is directed or undirected, only
depends on the scope of the factors.

Let GΦ be the undirected graph with one node per variable, where we have
an edge iff there exists a factor φ ∈ Φ such that Xi ,Xj ∈ Scope(φ).

Ignoring evidence, this is either the original MRF or the ”moralized” directed
graph
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Elimination as Graph Transformation

When a variable X is eliminated:

We create a single factor ψ that contains X and all of the variables Y with
which it appears in factors.

We eliminate X from ψ, replacing it with a new factor τ that contains all of
the variables Y, but not X . Let’s call this ΦX .

How does this modify the graph from GΦ to GΦX
?

Constructing ψ generates edges between all of the variables Y ∈ Y.

Some of these edges were in GΦ, some are new.

The new edges are called fill edges.

The step of removing X from φ to construct τ removes X and all it’s
incident edges from the graph.
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Example

(Graph) (Elim. C )

(Elim. D) (Elim. I )
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Induced Graph

We can summarize the computation cost using a single graph that is the
union of all the graphs resulting from each step of the elimination

We call this the induced graph IΦ,≺ where ≺ is the elimination ordering

Nmax is the size of the largest clique in IΦ,≺

The running time is O(mkNmax ), exponential in the size of the largest clique
of the induced graph
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Example

(Induced graph) (Maximal Cliques)
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Example

(Maximal Cliques) (VE)

The maximal cliques in IG,≺ are

C1 = {C ,D}
C2 = {D, I ,G}
C3 = {G , L,S , J}
C4 = {G , J,H}
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Induced Width

The width of an induced graph is #nodes in the largest clique -1.

We define the induced width wG,≺ to be the width of the graph IG,≺
induced by applying VE to G using ordering ≺.

We define the tree width or minimal induced width of a graph K to be

w∗G = min
≺

w(IK,≺)

The treewidth provides a bound on the best running time achievable by VE
on a distribution that factorizes over G: O(mkw∗G+1)

Finding the best elimination ordering (also computing the tree width) is
NP-hard

Use heuristics to find a good elimination ordering
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Choosing an Elimination Ordering

Set of possible heuristics:

Min-fill: the cost of a vertex is the number of edges that need to be added
to the graph due to its elimination.

Weighted-Min-Fill: the cost of a vertex is the sum of weights of the edges
that need to be added to the graph due to its elimination. Weight of an
edge is the product of weights of its constituent vertices.

Min-neighbors: The cost of a vertex is the number of neighbors it has in
the current graph.

Min-weight: the cost of a vertex is the product of weights (domain
cardinality) of its neighbors.

Which one better?

None of these criteria is better than others.

Often try several
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Sum-product belief propagation (BP)

What if you want to compute marginals for many variables, e.g.,
p(Xi ),∀Xi ∈ X ?

We can run VE for each variable, but, can we do something more efficient?

Consider a tree, we have

p(x1, · · · , xn) =
1

Z

∏
i

φi (xi )
∏

(i,j)∈T

φi,j(xi , xj)

The sum-product BP computes all marginals with just two passes

It is based on message-passing of ”messages” (tables of partial
summations) between neighboring vertices of the graph
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Sum-product message

The message sent from variable j to i ∈ N (j) is

ii"

ii"

ii" ii"

i 

j 

k l 

Mj i mj→i (xi ) =
∑
xj

φj(xj)φij(xi , xj)
∏

k∈N (j)\i

mk→j(xj)

Each message mj→i is a vector with one value for each state of xi

In order to compute mj→i , we must already have mk→j(xj) for k ∈ N (j) \ i

Thus we need a specific ordering of the messages
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Example

Suppose we want to compute p(x1), with x1 the root

p(x1) ∝
∑

x2,··· ,xn

∏
i

φi (xi )
∏

(i,j)∈T

φi,j(xi , xj)

ii"

ii"

ii" ii"

1 

2 

3 4 

ii"5 

m5→1(x1) =
∑
x5

φ5(x5)φ15(x1, x5)

m3→2(x2) =
∑
x3

φ3(x3)φ23(x2, x3)

m4→2(x2) =
∑
x4

φ4(x4)φ24(x2, x4)

m2→1(x1) =
∑
x2

φ2(x2)φ12(x1, x2)m3→2(x2)m4→2(x2)

p(x1) ∝ φ1(x1)m2→1(x1)m5→1(x1), Z =
∑
x1

p(x1)

Elimination algorithm in trees is equivalent to message passing

What about we want p(x5)? rerun the algorithm?
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Belief Propagation (BP)

Input: Tree T with potentials φi (xi ), φij(xi , xj)∀(i , j) ∈ T
Choose root r arbitrarily

Pass messages from leafs to r

Pass messages from r to leafs

Compute

p(xi ) ∝ φi (xi )
∏

j∈N (i)

mj→i (xi ), ∀i

Running time is 2 times the cost of VE = O(nk2) with n = #nodes and
k = #states per node

Numerically difficult: renormalized the messages to sum to 1 as constants
are taking care by normalization constant later

mnew
j→i (xi ) =

mold
j→i (xi )∑

x̂i
mold

j→i (x̂i )

Even better to work in log domain
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Generalization to Tree-Structured Factor Graphs

Iteratively updates and passes messages:

rF→yi ∈ <Yi : factor to variable message

qyi→F ∈ <Yi : variable to factor message
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Variable to factor

Let M(i) be the factors adjacent to variable i, M(i) = {F ∈ F : (i ,F ) ∈ E}

Variable-to-factor message

qyi→F (yi ) =
∑

F ′∈M(i)\{F}

rF ′→yi (yi )

Zemel & Urtasun (UofT) CSC 412 Feb 9, 2016 42 / 56



Factor to variable

Factor-to-variable message

rF→yi (yi ) = log
∑

y ′F∈YF ,y ′i =yi

exp

θ(y ′F ) +
∑

j∈N(F )\{i}

qy ′j→F (y ′j )
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Message Scheduling

1 Select one variable as tree root

2 Compute leaf-to-root messages

3 Compute root-to-leaf messages
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Computing marginals

Partition function can be evaluated at the root

logZ = log
∑
yr

exp

 ∑
F∈M(r)

rF→yr (yr )


Marginal distributions, for each factor

µF (yF ) = p(yF ) =
1

Z
exp

θF (yF ) +
∑

i∈N(F )

qyi→F (yi )



Marginals at every node

µyi (yi ) = p(yi ) =
1

Z
exp

 ∑
F∈M(i)

rF→yi (yi )
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MAP Inference

Recall the MAP inference task

arg max
x

p(x), p(x) =
1

Z

∏
c∈C

φc(xc)

we assume any evidence has been subsumed into the potentials

As the partition function is a constant we can alternatively

arg max
x

∏
c∈C

φc(xc)

This is the max product inference task

Since the log is monotonic, let θc(xc) = log φc(xc)

arg max
x

∑
c∈C

θc(xc)

This is called the max-sum
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Semi-rings

Compare the sum-product problem with the max-product (equivalently,
max-sum in log space):

sum-product
∑

x

∏
c∈C

φc(xc)

max-product max
x

∑
c∈C

θc(xc)

Can exchange operators (+,*) for (max, +) and, because both are semirings
satisfying associativity and commutativity, everything works!

We get ”max-product variable elimination” and ”max-product belief
propagation”
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Simple Example

Suppose we have a chain, A− B − C − D and we want MAP

max
a,b,c,d

φAB(a, b)φBC (b, c)φCD(c , d)

We can push the maximizations inside

max
a,b

φAB(a, b) max
c
φBC (b, c) max

d
φCD(c , d)

or equivalently

max
a,b

θAB(a, b) + max
c
θBC (b, c) + max

d
φCD(c , d)

To find the actual maximizing assignment, we do a traceback
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Max Product VE
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Max-product belief propagation (for tree-structured MRFs)

Same as sum-product BP except that the messages are now

mj→i (xi ) = max
xj

φj(xj)φij(xi , xj)
∏

k∈N (j)\i

mk→j(xj)

After passing all messages, can compute single node max

mi (xi ) = φi (xi )
∏

j∈N (i)

mj→i (xi ), ∀i

If the MAP assignment x∗ is unique, we can find it by locally decoding each
of the single node max-marginals

x∗i = arg max
xi

mi (xi )
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Max-sum belief propagation (for tree-structured MRFs)

Same as sum-product BP except that the messages are now

mj→i (xi ) = max
xj

θj(xj) + θij(xi , xj)
∑

k∈N (j)\i

mk→j(xj)

After passing all messages, can compute single node max

mi (xi ) = θi (xi ) +
∑

j∈N (i)

mj→i (xi ), ∀i

If the MAP assignment x∗ is unique, we can find it by locally decoding each
of the single node max-marginals

x∗i = arg max
xi

mi (xi )

Working in log-space prevents numerical underflow/overflow
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Factor Graph Max Product

Iteratively updates and passes messages:

rF→yi ∈ <Yi : factor to variable message

qyi→F ∈ <Yi : variable to factor message
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Variable to factor

Let M(i) be the factors adjacent to variable i, M(i) = {F ∈ F : (i ,F ) ∈ E}

Variable-to-factor message

qyi→F (yi ) =
∑

F ′∈M(i)\{F}

rF ′→yi (yi )
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Factor to variable

Factor-to-variable message

rF→yi (yi ) = max
y ′F∈YF ,y ′i =yi

θ(y ′F ) +
∑

j∈N(F )\{i}

qyj→F (y ′j )
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Message Scheduling

1 Select one variable as tree root

2 Compute leaf-to-root messages

3 Compute root-to-leaf messages
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Max Product v Sum Product (log domain)

Max sum version of max-product

1 Compute leaf-to-root messages

qyi→F (yi ) =
∑

F ′∈M(i)\{F}

rF ′→yi (yi )

2 Compute root-to-leaf messages

rF→yi (yi ) = max
y ′F∈YF ,y ′i =yi

θ(y ′F ) +
∑

j∈N(F )\{i}

qyj→F (y ′j )


Sum-product

1 Compute leaf-to-root messages

qyi→F (yi ) =
∑

F ′∈M(i)\{F}

rF ′→yi (yi )

2 Compute root-to-leaf messages

rF→yi (yi ) = log
∑

y ′F∈YF ,y ′i =yi

exp

θ(y ′F ) +
∑

j∈N(F )\{i}

qy ′j→F (y ′j )


Zemel & Urtasun (UofT) CSC 412 Feb 9, 2016 56 / 56


