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Undirected Graphical Model

I Also called Markov Random Field (MRF) or Markov networks

I Nodes in the graph represent variables, edges represent
probabilistic interactions

I Examples

Chain model for NLP
problems

Grid model for computer
vision problems



Parameterization

x = (x1, ..., xm), a vector of random variables
C, set of cliques in the graph
xc is the subvector of x restricted to clique c
θ, model parameters

I Product of Factors

pθ(x) =
1

Z(θ)

∏
c∈C

ψc(xc|θc)

I Gibbs distribution, sum of potentials

pθ(x) =
1

Z(θ)
exp

(∑
c∈C

φc(xc|θc)

)
I Log-linear model

pθ(x) =
1

Z(θ)
exp

(∑
c∈C

φc(xc)
>θc

)



Partition Function

Z(θ) =
∑
x

exp

(∑
c∈C

φc(xc|θc)

)

I This is usually hard to compute as the sum over all possible x
is a sum over an exponentially large space.

I This makes inference and learning in undirected graphical
models challenging.



A Simple Image Denoising Example

Observe as input
a noisy image x

Want to predict
a clean image y

I x = (x1, ..., xm) is the observed noisy image, each pixel
xi ∈ {−1,+1}. y = (y1, ..., ym) is the output, each pixel
yi ∈ {−1,+1}.

I We can model the conditional distribution p(y|x) as a
grid-structured MRF for y.



Model Specification

x

y

p(y|x) = 1

Z
exp

α∑
i

yi + β
∑
i,j

yiyj + γ
∑
i

xiyi


I Very similar to an Ising model on y, except that we are

modeling the conditional distribution.

I α, β, γ are model parameters.

I The higher α
∑

i yi + β
∑

i,j yiyj + γ
∑

i xiyi is, the more
likely y is for the given x.



Model Specification

p(y|x) = 1

Z
exp

α∑
i

yi + β
∑
i,j

yiyj + γ
∑
i

xiyi


I α

∑
i yi represents the ‘prior’ for each pixel to be +1. Larger

α encourages more pixels to be +1.

I β
∑

i,j yiyj encourages smoothness when β > 0. If
neighboring pixels i and j take the same output then
yiyj = +1 otherwise the product is -1.

I γ
∑

i xiyi encourages the output to be the same as the input
when γ > 0, we believe only a small part of the input data is
corrupted.



Making Predictions

Given a noisy input image x, we want to predict what the
corresponding clean image y is.

I We may want to find the most likely y under our model
p(y|x), this is called MAP inference.

I We may want to get a few candiate y from our model by
sampling from p(y|x).

I We may want to find representative candidates, a set of y
that has high likelihood as well as diversity.

I More...



MAP Inference

y∗ = argmax
y

1

Z
exp

α∑
i

yi + β
∑
i,j

yiyj + γ
∑
i

xiyi


= argmax

y
α
∑
i

yi + β
∑
i,j

yiyj + γ
∑
i

xiyi

I As y ∈ {−1,+1}m, this is a combinatorial optimization
problem. In many cases it is (NP-)hard to find the exact
optimal solution.

I Approximate solutions are acceptable.



Iterated Conditional Modes

Idea: instead of finding the best configuration of all variables
y1, ..., ym jointly, optimize one single variable at a time and iterate
through all variables until convergence.

I Optimizing a single variable is much easier than optimizing a
large set of varibles jointly - usually we can find the exact
optimum for a single variable.

I For each j, we hold y1, ..., yi−1, yi+1, ..., ym fixed and find

y∗j = argmax
yj∈{−1,+1}

α
∑
i

yi + β
∑
i,j

yiyj + γ
∑
i

xiyi

= argmax
yj∈{−1,+1}

αyj + β
∑

i∈N (j)

yiyj + γxjyj

= sign

α+ β
∑

i∈N (j)

yi + γxj





Results

Inference with Iterated Conditional Modes,
α = 0.1, β = 0.5, γ = 0.5

Input Output Ground-Truth



Find the Best Parameter Setting

Different parameter settings result in different models
α = 0.1, γ = 0.5

β = 0.1 β = 0.2 β = 0.5

How to choose the best parameter setting?

I Manually tune the parameters?



The Learning Approach

When the number of parameters becomes large, it is infeasible to
tune them by hand.

Instead we can use a data set of training examples to learn the
optimal parameter setting automatically.

I Collect a set of training examples - pairs of (x(n),y(n))

I Formulate an objective function that evaluates how well our
model is doing on this training set

I Optimize this objective to get the optimal parameter setting

This objective function is usually called a loss function (and we
want to minimize it).



Maximum Likelihood

Maximize the log-likelihood, or minimize the negative
log-likelihood of data

I So that the true output y(n) will have high probability under
our model for x(n).

L = − 1

N

∑
n

log p(y(n)|x(n))

I L is a function of model parameters α, β and γ

L = − 1

N

∑
n

α∑
i

y
(n)
i + β

∑
i,j

y
(n)
i y

(n)
j + γ

∑
i

y
(n)
i x

(n)
i


− log

∑
y

exp

α∑
i

yi + β
∑
i,j

yiyj + γ
∑
i

yix
(n)
i





Maximum Likelihood

Minimize L using gradient-based methods. For example for β

∂L

∂β
= − 1

N

∑
n

∑
i,j

y
(n)
i y

(n)
j −

∑
y exp(...)

∑
i,j yiyj∑

y exp(...)


= − 1

N

∑
n

∑
i,j

y
(n)
i y

(n)
j −

∑
y

p(y|x(n))
∑
i,j

yiyj


= − 1

N

∑
n

∑
i,j

y
(n)
i y

(n)
j −

∑
i,j

Ep(y|x(n))[yiyj ]


Ep(y|x(n))[yiyj ] is usually hard to compute as it is a sum over
exponentially many terms.

Ep(y|x(n))[yiyj ] =
∑
y

p(y|x(n))yiyj



Pseudolikelihood

I The partition function makes it hard to use exact
gradient-based method.

I Pseudolikelihood avoids this problem by using an
approximation to the exact likelihood function.

p(y|x) =
∏
j

p(yj |y1, ..., yj−1,x)

≈
∏
j

p(yj |y1, ..., yj−1, yj+1, ..., ym,x) =
∏
j

p(yj |y−j ,x)

I p(yj |y−j ,x) does not have the partition function problem.

p(yj |y−j ,x) =
1
Z exp(...)∑
yj

1
Z exp(...)

=
exp(...)∑
yj
exp(...)

The denominator is a sum over a single variable, which is easy
to compute.



Pseudolikelihood

For our denoising model,

p(yj |y−j ,x) =
exp

((
α+ β

∑
i∈N (j) yi + γxj

)
yj

)
∑

yj∈{−1,+1} exp
((
α+ β

∑
i∈N (j) yi + γxj

)
yj

)

Therefore

L = − 1

N

∑
n

log p(y(n)|x(n)) ≈ − 1

N

∑
n

∑
j

log p(y
(n)
j |y

(n)
−j ,x

(n))

= − 1

N

∑
n

∑
j

α+ β
∑

i∈N (j)

y
(n)
i + γx

(n)
j

 y
(n)
j

− log
∑

yj∈{−1,+1}

exp

α+ β
∑

i∈N (j)

y
(n)
i + γx

(n)
j

 yj





Pseudolikelihood

For our denoising model,

p(yj |y−j ,x) =
exp

((
α+ β

∑
i∈N (j) yi + γxj

)
yj

)
∑

yj∈{−1,+1} exp
((
α+ β

∑
i∈N (j) yi + γxj

)
yj

)
Therefore

L = − 1

N

∑
n

log p(y(n)|x(n)) ≈ − 1

N

∑
n

∑
j

log p(y
(n)
j |y

(n)
−j ,x

(n))

= − 1

N

∑
n

∑
j

α+ β
∑

i∈N (j)

y
(n)
i + γx

(n)
j

 y
(n)
j

− log
∑

yj∈{−1,+1}

exp

α+ β
∑

i∈N (j)

y
(n)
i + γx

(n)
j

 yj





Pseudolikelihood

∂L

∂β
= − 1

N

∑
n

∑
i,j

y
(n)
i y

(n)
j −

∑
j

∑
i∈N (j)

y
(n)
i E

p(yj |y
(n)
−j ,x

(n))
[yj ]


= − 1

N

∑
n

∑
j

∑
i∈N (j)

y
(n)
i

[
y
(n)
j − E

p(yj |y
(n)
−j ,x

(n))
[yj ]

]

The key term E
p(yj |y

(n)
−j ,x

(n))
[yj ] is easy to compute as it is an

expectation over a single variable.

Then follow the negative gradient to minimize L.



Pseudolikelihood

I If the data is generated from a distribution in the defined form
with some α∗, β∗, γ∗, then as N →∞, the optimal solution of
α, β, γ that maximizes the pseudolikelihood will be α∗, β∗, γ∗.

I You can prove it yourself.



Comments

p(y|x) = 1

Z
exp

α∑
i

yi + β
∑
i,j

yiyj + γ
∑
i

xiyi


I We can use different α, γ parameters for different i, different
β parameters for different i, j pairs to make the model more
powerful.

I We can define the potential functions to have more
sophisticated form, for example the pairwise potential can be
some function φ(yi, yj) rather than just a product yiyj .

I The same model can be used for semantic image
segmentation, where the output are object class labels for all
pixels.



Comments

p(y|x) = 1

Z
exp

α∑
i

yi + β
∑
i,j

yiyj + γ
∑
i

xiyi


I We will study more methods to do inference (compute MAP

or expectation) in the future.

I There are also many other loss functions that can be used as
the training objective.
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