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Outline

• Basics
• Probability	rules
• Exponential	family	models
• Maximum	likelihood
• Conjugate	Bayesian	inference	(time	
permitting)



Why	Represent	Uncertainty?

• The	world	is	full	of	uncertainty
– “What	will	the	weather	be	like	today?”
– “Will	I	like	this	movie?”
– “Is	there	a	person	in	this	image?”

• We’re	trying	to	build	systems	that	understand	
and	(possibly)	interact	with	the	real	world

• We	often	can’t	prove	something	is	true,	but	we	
can	still	ask	how	likely	different	outcomes	are	or	
ask	for	the	most	likely	explanation

• Sometimes	probability	gives	a	concise	description	
of	an	otherwise	complex	phenomenon.



Why	Use	Probability	to	Represent	
Uncertainty?

• Write	down	simple,	reasonable	criteria	that	
you'd	want	from	a	system	of	uncertainty	
(common	sense	stuff),	and	you	always	get	
probability.

• Cox	Axioms	(Cox	1946);	See	Bishop,	Section	
1.2.3

• We	will	restrict	ourselves	to	a	relatively	
informal	discussion	of	probability	theory.



Notation
• A random	variable	X represents	outcomes	or	
states	of	the	world.	

• We	will	write	p(x)	to	mean	Probability(X	=	x)
• Sample	space:	the	space	of	all	possible	
outcomes	(may	be	discrete,	continuous,	or	
mixed)

• p(x)	is	the	probability	mass	(density)	function
– Assigns	a	number	to	each	point	in	sample	space
– Non-negative,	sums	(integrates)	to	1
– Intuitively:	how	often	does	x	occur,	how	much	do	
we	believe	in	x.	



Joint	Probability	Distribution
• Prob(X=x,	Y=y)
– “Probability	of	X=x	and	Y=y”	
– p(x,	y)	

Conditional	Probability	Distribution
• Prob(X=x|Y=y)
– “Probability of	X=x	given	Y=y”	
– p(x|y)	=	p(x,y)/p(y)

Marginal	Probability	Distribution
• Prob(X=x),	Prob(Y=y)
– “Probability of	X=x”	
– p(x)	=	\Sum_{y}p(x,	y)	=	\Sum{y}	p(x	|	y)	p(y)



The	Rules	of	Probability

• Sum	Rule	(marginalization/summing	out):

• Product/Chain	Rule:
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Bayes’	Rule

• One	of	the	most	important	formulas	in	
probability	theory

• This	gives	us	a	way	of	“reversing”	conditional	
probabilities

• Read	as	”Posterior	=	likelihood	*	prior	/	
evidence”

∑
==

'
)'()'|(

)()|(
)(
)()|()|(

x
xpxyp
xpxyp

yp
xpxypyxp



Independence

• Two	random	variables	are	said	to	be	
independent iff their	joint	distribution	factors

• Two	random	variables	are	conditionally	
independent	given	a	third	if	they	are	
independent	after	conditioning	on	the	third
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Continuous	Random	Variables
• Outcomes	are	real	values.		Probability	density	
functions	define	distributions.
– E.g.,

• Continuous	joint	distributions:	replace	sums	
with	integrals,	and	everything	holds
– E.g.,	Marginalization	and	conditional	probability
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Summarizing	Probability	Distributions

• It	is	often	useful	to	give	summaries	of	
distributions	without	defining	the	whole	
distribution	(E.g.,	mean	and	variance)

• Mean:

• Variance:
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Exponential	Family

• Family	of	probability	distributions
• Many	of	the	standard	distributions	belong	to	
this	family	
– Bernoulli,	binomial/multinomial,	Poisson,	Normal	
(Gaussian),	beta/Dirichlet,…

• Share	many	important	properties
– e.g. They	have	a	conjugate	prior	(we’ll	get	to	that	
later.	Important	for	Bayesian	statistics)



Definition
• The	exponential	family	of	distributions	over	x,	
given	parameter	η (eta)	is	the	set	of	distributions	
of	the	form

• x-scalar/vector,	discrete/continuous
• η – ‘natural	parameters’
• u(x)	– some	function	of	x	(sufficient	statistic)
• g(η)	– normalizer
• h(x)	– base	measure	(often	constant)
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Sufficient	Statistics

• Vague	definition:	called	so	because	they	
completely	summarize	a	distribution.

• Less	vague:	they	are	the	only	part	of	the	
distribution	that	interacts	with	the	parameters	
and	are	therefore	sufficient	to	estimate	the	
parameters.

• Perhaps	the	number	of	times	a	coin	came	up	
heads,	or	the	sum	of	valuesmagnitudes.



Example	1:	Bernoulli

• Binary	random	variable	-
• p(heads)	=	µ
• Coin	toss
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Example	1:	Bernoulli
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Example	2:	Multinomial
• p(value	k)	=	µk

• For	a	single	observation	– die	toss
– Sometimes	called	Categorical

• For	multiple	observations	
– integer	counts	on	N	trials
– Prob(1	came	out	3	times,	2	came	out	once,…,6	
came	out	7	times	if	I	tossed	a	die	20	times)
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Example	2:	Multinomial	(1	observation)
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Parameters	are	not	independent	
due	to	constraint	of	summing	 to	1,	
there’s	a	slightly	more	involved	
notation	 to	address	that,	see	Bishop	
2.4



Example	3:	Normal	(Gaussian)	
Distribution

• Gaussian	(Normal)
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Example	3:	Normal	(Gaussian)	
Distribution

• µ	is	the	mean
• σ2 is	the	variance
• Can	verify	these	by	computing	integrals.		E.g.,
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Example	3:	Normal	(Gaussian)	
Distribution

• Multivariate	Gaussian
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Example	3:	Normal	(Gaussian)	
Distribution

• Multivariate	Gaussian

• x is	now	a	vector
• µ	is	the	mean	vector
• Σ is	the	covariance	matrix
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Important	Properties	of	Gaussians

• All	marginals of	a	Gaussian	are	again	Gaussian
• Any	conditional	of	a	Gaussian	is	Gaussian
• The	product	of	two	Gaussians	is	again	
Gaussian

• Even	the	sum	of	two	independent	Gaussian	
RVs	is	a	Gaussian.

• Beyond	the	scope	of	this	tutorial,	but	very
important:	marginalization	and	conditioning	
rules	for	multivariate	Gaussians.



Gaussian	marginalization	visualization



Exponential	Family	Representation
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Example:	Maximum	Likelihood	For	a	
1D	Gaussian

• Suppose	we	are	given	a	data	set	of	samples	of	
a	Gaussian	random	variable	X,	D={x1,…,	xN}	
and	told	that	the	variance	of	the	data	is	σ2

What	is	our	best	guess	of	µ?	
*Need	to	assume	data	is	independent	and	
identically	distributed	(i.i.d.)

x1 x2 xN…



Example:	Maximum	Likelihood	For	a	
1D	Gaussian

What	is	our	best	guess	of	µ?	
• We	can	write	down	the	likelihood	function:

• We	want	to	choose	the	µ	that	maximizes	this	
expression
– Take	log,	then	basic	calculus:	differentiate	w.r.t.	µ,	
set	derivative	to	0,	solve	for	µ	to	get	sample	mean
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Example:	Maximum	Likelihood	For	a	
1D	Gaussian

x1 x2 xN…µML

σML

Maximum	Likelihood



ML	estimation	of	model	parameters	
for	Exponential	Family

p(D |η) = p(x1,..., xN ) = h(xn )∏( )g(η)N exp{ηT u(xn
n
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• Can	in	principle	be	solved	to	get	estimate	for	eta.	
• The	solution	for	the	ML	estimator	depends	on	the	data	only	through	sum			
over	u,		which	is	therefore	called	sufficient	statistic
•What	we	need	to	store	in	order	to	estimate	parameters.	



Bayesian	Probabilities

• is	the	likelihood	 function
• is	the	prior	probability of	(or	our	prior	
belief over)	θ
– our	beliefs	over	what	models	are	likely	or	not	before	
seeing	any	data

• is	the								
normalization	constant	or	partition	function

• is	the	posterior	distribution

– Readjustment	of	our	prior	beliefs	in	the	face	of	data
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Example:	Bayesian	Inference	For	a	1D	
Gaussian

• Suppose	we	have	a	prior	belief	that	the	mean	
of	some	random	variable	X	is	µ0 and	the	
variance	of	our	belief	is	σ02

• We	are	then	given	a	data	set	of	samples	of	X,	
d={x1,…,	xN}	and	somehow	know	that	the	
variance	of	the	data	is	σ2

What	is	the	posterior	distribution	over	(our	belief	
about	the	value	of)	µ?	



Example:	Bayesian	Inference	For	a	1D	
Gaussian

x1 x2 xN…



Example:	Bayesian	Inference	For	a	1D	
Gaussian

x1 x2 xN… µ0

σ0

Prior	belief



Example:	Bayesian	Inference	For	a	1D	
Gaussian

• Remember	from	earlier

• is	the	likelihood	function

• is	the	prior	probability of	(or	our	prior	
belief over)	µ
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Example:	Bayesian	Inference	For	a	1D	
Gaussian
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Example:	Bayesian	Inference	For	a	1D	
Gaussian

x1 x2 xN… µ0

σ0

Prior	belief



Example:	Bayesian	Inference	For	a	1D	
Gaussian

x1 x2 xN… µ0

σ0

Prior	belief
µML

σML

Maximum	Likelihood



Example:	Bayesian	Inference	For	a	1D	
Gaussian

x1 x2 xNµN

σN

Prior	belief
Maximum	Likelihood

Posterior	Distribution



Conjugate	Priors
• Notice	in	the	Gaussian	parameter	estimation	
example	that	the	functional	form	of	the	posterior	
was	that	of	the	prior	(Gaussian)

• Priors	that	lead	to	that	form	are	called	‘conjugate	
priors’

• For	any	member	of	the	exponential	family	there	
exists	a	conjugate	prior	that	can	be	written	like

• Multiply	by	likelihood	to	obtain	posterior	(up	to	
normalization)	of	the	form	

• Notice	the	addition	to	the	sufficient	statistic
• ν is	the	effective	number	of	pseudo-observations.
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Conjugate	Priors	- Examples

• Beta	for	Bernoulli/binomial
• Dirichlet for	categorical/multinomial
• Normal	for	mean	of	Normal
• And	many	more...

• What	are	some	properties	of	the	conjugate	
prior	for	the	covariance	(or	precision)	matrix	
of	a	normal	distribution?


