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Today
• Course information 

• Overview of ML with examples 

• Ungraded, anonymous background quiz 

• Thursday: No tutorial this week!



Course Website

• www.cs.toronto.edu/~jessebett/CSC412 

• Contains all course information, slides, etc.



Evaluation
• Assignment 1: due Feb ~8 worth 15% 

• Assignment 2: due March ~15 worth 15% 

• Assignment 3: due Apr ~5 worth 20%  

• 1-hour Midterm: Feb 14 worth 20% 

• 3-hour Final: April ? worth 30% 

• 15% per day of lateness, up to 4 days



Related Courses
• CSC411: List of methods, (K-NN, Decision trees), 

more focus on computation 

• STA302: Linear regression and classical stats 

• ECE521: Similar material, more focus on 
computation 

• STA414: Mostly same material, slightly more 
introductory, more emphasis on theory than coding 

• CSC321: Neural networks - about 30% overlap



Textbooks + Resources

• No required textbook 

• Kevin Murphy (2012), Machine Learning: A 
Probabilistic Perspective. 

• David MacKay (2003) Information Theory, 
Inference, and Learning Algorithms



Stats vs Machine Learning
• Statistician: Look at the data, consider the problem, and design a model we can 

understand 

• Analyze methods to give guarantees 

• Want to make few assumptions 

• ML: We only care about making good predictions! 

• Let’s make a general procedure that works for lots of datasets 

• No way around making assumptions, let’s just make the model large enough 
to hopefully include something close to the truth  

• Can’t use bounds in practice, so evaluate empirically to choose model details 

• Sometimes end up with interpretable models anyways



Types of Learning
• Supervised Learning: Given input-output pairs (x,y) the goal is to 

predict correct output given a new input.  

• Unsupervised Learning: Given unlabeled data instances x1, x2, 
x3… build a statistical model of x, which can be used for making 
predictions, decisions.   

• Semi-supervised Learning: We are given only a limited amount of 
(x,y) pairs, but lots of unlabeled x’s. 

• Active learning and RL: Also get to choose actions that influence 
future information + reward.  Can just use basic decision theory. 

• All just special cases of estimating distributions from data: p(y|x), 
p(x), p(x, y).



Finding Structure in Data

Vector of word counts 
on a webpage

Latent variables: 
hidden topics

804,414 newswire 
stories



Matrix Factorization

Hierarchical Bayesian Model
Rating value of 
user i for item j 

Latent user feature 
(preference) vector

Latent item 
feature vector

 Latent variables that 
we infer from observed 
ratings.

Collaborative Filtering/
Matrix Factorization/

Infer latent variables and make predictions using Bayesian inference (MCMC or SVI). 

Prediction: predict a rating r*ij for user i and query movie j.  
 

Posterior over Latent Variables



Finding Structure in Data

• Part of the wining solution in the Netflix contest (1 million dollar prize).

Learned  ``genre’’
Fahrenheit 9/11
Bowling for Columbine
The People vs. Larry Flynt 
Canadian Bacon
La Dolce Vita

Independence Day
The Day After Tomorrow
Con Air
Men in Black II
Men in Black

Friday the 13th
The Texas Chainsaw Massacre
Children of the Corn
Child's Play
The Return of Michael Myers

Netflix dataset: 
480,189 users 
17,770 movies 
Over 100 million ratings.

Collaborative Filtering/
Matrix Factorization/
Product Recommendation



Latent: Lower Dimensional Abstract Representation



Latent: Lower Dimensional Abstract Representation

*From Julien Despois' Latent space visualization — Deep Learning bits #2

Interpolation

data space latent space

https://hackernoon.com/@juliendespois


Multiple Kinds of Data in One Model
mosque, tower, 
building, cathedral,
dome, castle

kitchen, stove, oven,
refrigerator, 
microwave

ski, skiing, 
skiers, skiiers,
snowmobile

bowl, cup, 
soup, cups, 
coffee

beach

snow



Caption Generation



Density estimation using Real NVP. Ding et al, 2016 



Nguyen A, Dosovitskiy A, Yosinski J, Brox T, Clune J (2016). Synthesizing the preferred inputs for neurons in 
neural networks via deep generator networks. Advances in Neural Information Processing Systems 29



A Style-Based Generator Architecture for Generative Adversarial Networks, 2018 
Tero Karras, Samuli Laine, Timo Aila

https://arxiv.org/search/cs?searchtype=author&query=Karras%2C+T
https://arxiv.org/search/cs?searchtype=author&query=Laine%2C+S
https://arxiv.org/search/cs?searchtype=author&query=Aila%2C+T


Pixel Recurrent Neural Networks, 2016 
Aaron van den Oord, Nal Kalchbrenner, Koray Kavukcuoglu



Unsupervised Representation Learning with Deep Convolutional Generative 
Adversarial Networks, 2015 
Alec Radford, Luke Metz, Soumith Chintala

Arithmetic on Abstract Features 



Glow: Generative Flow with Invertible 1x1 Convolutions, 2018 
Diederik P. Kingma, Prafulla Dhariwal

Arithmetic on Abstract Features 

https://arxiv.org/search/stat?searchtype=author&query=Kingma%2C+D+P
https://arxiv.org/search/stat?searchtype=author&query=Dhariwal%2C+P


A Neural Algorithm of Artistic Style, 2015 
Leon A. Gatys, Alexander S. Ecker, Matthias Bethge

Represent “Style” and “Content” Separately

https://arxiv.org/search/cs?searchtype=author&query=Gatys%2C+L+A
https://arxiv.org/search/cs?searchtype=author&query=Ecker%2C+A+S
https://arxiv.org/search/cs?searchtype=author&query=Bethge%2C+M


A Style-Based Generator Architecture for Generative Adversarial Networks, 2018 
Tero Karras, Samuli Laine, Timo Aila

Represent “Style” and “Content” Separately

https://arxiv.org/search/cs?searchtype=author&query=Karras%2C+T
https://arxiv.org/search/cs?searchtype=author&query=Laine%2C+S
https://arxiv.org/search/cs?searchtype=author&query=Aila%2C+T




Grammar Variational Autoencoder (2017).  Kusner, Paige, Hernández-Lobato



Continuous Normalizing Flows

Continuously 
transform simple 
distribution into 
complex target

Neural Ordinary Differential Equations, 2018. Ricky T. Q. Chen*, Yulia Rubanova*, Jesse Bettencourt*, David Duvenaud
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models, 2018. Will Grathwohl*, Ricky T. Q. Chen*, 

Jesse Bettencourt, Ilya Sutskever, David Duvenaud



Continuous Normalizing Flows

Continuously 
transform simple 
distribution into 
complex target

Neural Ordinary Differential Equations, 2018. Ricky T. Q. Chen*, Yulia Rubanova*, Jesse Bettencourt*, David Duvenaud
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models, 2018. Will Grathwohl*, Ricky T. Q. Chen*, 

Jesse Bettencourt, Ilya Sutskever, David Duvenaud



Continuous Normalizing Flows
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Course Themes
• Start with a simple model and add to it 

• Linear regression or PCA is a special case of almost everything 

• A few ‘lego bricks’ are enough to build most models 

• Gaussians, Categorical variables, Linear transforms, Neural networks 

• The exact form of each distribution/function shouldn’t matter much 

• Your model should have a million parameters in it somewhere (the real 
world is messy!) 

• Model checking is hard and important 

• Learning algorithms are especially hard to debug



Computation
• Later assignments will involve a bit of 

programming.  Can use whatever language you 
want, but Python + Numpy is recommended. 

• For fitting and inference in high-dimensional 
models, gradient-based methods are basically the 
only game in town 

• Lots of methods conflate model and fitting 
algorithm, we will try to separate these



ML as a bag of tricks

• K-means 

• Kernel Density Estimation 

• SVMs 

• Boosting 

• Random Forests 

• K-Nearest Neighbours

• Mixture of Gaussians 

• Latent variable models 

• Gaussian processes 

• Deep neural nets 

• Bayesian neural nets 

• ??

Fast special cases: Extensible family:



Regularization as a bag of 
tricks

• Early stopping 

• Ensembling 

• L2 Regularization 

• Gradient noise 

• Dropout 

• Expectation-Maximization

• Stochastic variational 
inference 

Fast special cases: Extensible family:



A language of models
• Hidden Markov Models, Mixture of Gaussians, 

Logistic Regression. 

• These are simply examples from a language of 
models. 

• We will try to show larger family, and point out 
common special cases. 

• Use this language to build your own custom 
models.



[1] Palmer, Wipf, Kreutz-Delgado, and Rao. Variational EM algorithms for non-Gaussian latent variable models. NIPS 2005. 
[2] Ghahramani and Beal. Propagation algorithms for variational Bayesian learning. NIPS 2001. 
[3] Beal. Variational algorithms for approximate Bayesian inference, Ch. 3. U of London Ph.D. Thesis 2003. 
[4] Ghahramani and Hinton. Variational learning for switching state-space models. Neural Computation 2000. 
[5] Jordan and Jacobs. Hierarchical Mixtures of Experts and the EM algorithm. Neural Computation 1994. 
[6] Bengio and Frasconi. An Input Output HMM Architecture. NIPS 1995. 
[7] Ghahramani and Jordan. Factorial Hidden Markov Models. Machine Learning 1997. 
[8] Bach and Jordan. A probabilistic interpretation of Canonical Correlation Analysis. Tech. Report 2005. 
[9] Archambeau and Bach. Sparse probabilistic projections. NIPS 2008. 
[10] Hoffman, Bach, Blei. Online learning for Latent Dirichlet Allocation. NIPS 2010.

[1] [2] [3] [4]

Gaussian mixture model Linear dynamical system Hidden Markov model Switching LDS

[8,9] [10]

Canonical correlations analysis admixture / LDA / NMF

[6][2][5]

Mixture of Experts Driven LDS IO-HMM Factorial HMM

[7]

Courtesy of Matthew Johnson



AI as a bag of tricks

• Machine learning 

• Natural language processing 

• Knowledge representation 

• Automated reasoning 

• Computer vision 

• Robotics

• Deep probabilistic 
latent-variable 
models + decision 
theory  

Russel and Norvig’s parts of AI: Extensible family:



Advantages of probabilistic 
latent-variable models

• Data-efficient Learning - automatic regularization, can take advantage of more 
information 

• Compose-able Models - e.g. incorporate data corruption model. Different from 
composing feedforward computations 

• Handle Missing + Corrupted Data (without the standard hack of just guessing the 
missing values using averages). 

• Predictive Uncertainty - necessary for decision-making 

• Conditional Predictions (e.g. if brexit happens, the value of the pound will fall) 

• Active Learning - what data would be expected to increase our confidence about a 
prediction 

• Cons: 

• intractable integral over latent variables













Probabilistic graphical models 

 + structured representations 

 + priors and uncertainty 

 + data and computational efficiency 

 – rigid assumptions may not fit 

 – feature engineering 

 – top-down inference

Deep learning 

 – neural net “goo” 

 – difficult parameterization 

 – can require lots of data 

 + flexible 

 + feature learning 

 + recognition networks





The unreasonable easiness 
of deep learning 

• Recipe: define an objective function (i.e. probability 
of data given params) 

• Optimize params to maximize objective 

• Gradients are computed automatically, you just 
define model by some computation



Differentiable models
• Model distributions implicitly by a variable pushed 

through a deep net: 
 

• Approximate intractable distribution by a tractable 
distribution parameterized by a deep net: 

• Optimize all parameters using stochastic gradient 
descent

y = f✓(x)

p(y|x) = N (y|µ = f✓(x),⌃ = g✓(x))







Modeling idea: graphical models on latent variables,
neural network models for observations

Composing graphical models with neural networks for structured representations 
and fast inference. Johnson, Duvenaud, Wiltschko, Datta, Adams, NIPS 2016

Compose Probabilistic Graphical Models with Neural Networks



data space latent space





unsupervised 
learning

supervised  
learning

Courtesy of Matthew Johnson



Learning outcomes
• Know standard algorithms (bag of tricks), when to use 

them, and their limitations. For basic applications and 
baselines. 

• Know main elements of language of deep probabilistic 
models (bag of bricks: distributions, expectations, latent 
variables, neural networks) and how to combine them. 
For custom applications + research. 

• Know standard computational tools (Monte Carlo, 
Stochastic optimization, regularization, automatic 
differentiation).  For fitting models.



Tentative list of topics
• Linear methods for regression + classification
• Bayesian linear regression
• Probabilistic Generative and Discriminative models
• Regularization methods
• Stochastic Optimization and Neural Networks
• Graphical model notation and exact inference
• Mixture Models, Bayesian Networks
• Model Comparison and marginal likelihood
• Stochastic Variational Inference
• Time series and recurrent models
• Gaussian processes
• Variational Autoencoders
• Generative Adversarial Networks
• Normalizing Flows?



Quiz



Machine-learning-centric History of Probabilistic Models
• 1940s - 1960s Motivating probability and Bayesian inference
• 1980s - 2000s Bayesian machine learning with MCMC
• 1990s - 2000s Graphical models with exact inference
• 1990s - present Bayesian Nonparametrics with MCMC (Indian Buffet 

process, Chinese restaurant process)
• 1990s - 2000s Bayesian ML with mean-field variational inference
• 2000s - present Probabilistic Programming
• 2000s - 2013 Deep undirected graphical models (RBMs, pretraining)
• 2010s - present Stan - Bayesian Data Analysis with HMC
• 2000s - 2013 Autoencoders, denoising autoencoders
• 2000s - present Invertible density estimation
• 2013 - present Stochastic variational inference, variational 

autoencoders
• 2014 - present Generative adversarial nets, Real NVP, Pixelnet
•  2016 - present Lego-style deep generative models (attend, infer, 

repeat)


