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Abstract

The goal in sparse coding is to seek a linear basis representation where each image is rep-
resented by a small number of active coefficients. The learning algorithm involves adapting a
basis vector set while imposing a low-entropy, or sparse, prior on the output coefficients. Sparse
coding applied on natural images has been shown to extract wavelet-like structure [9, 4]. How-
ever, our experience in using sparse coding for extracting multi-scale structure in object-specific
ensembles, such as face images or images of a gesturing hand, has been negative. In this pa-
per we highlight three points about the reliability of sparse coding for extracting the desired
structure: (1) using an overcomplete representation (2) projecting data into a low-dimensional
subspace before attempting to resolve the sparse structure and (3) applying sparsity constraint
on the basis elements, as opposed to the output coefficients.



1 Introduction

What is the structure one can expect to find in an ensemble of face images? Assume the dataset
has been collected keeping the viewpoint and illumination conditions roughly identical and with
the subjects all looking at the camera from a fixed distance. Under these conditions the ensemble
captures variations in the appearance of the whole (overall face) and the parts (forehead, nose,
mouth etc) of the object class (faces). We expect these variations to result in groups of pixels
that are potentially disconnected yet exhibit statistical coherencies over multiple scales. In
this paper, we investigate whether sparse coding can extract such object-specific multi-scale
structure.

The goal in sparse coding is to seek a linear basis representation where each image is repre-
sented by a very few active coefficients. The learning algorithm involves adapting a basis vector
set while imposing a low-entropy, or sparse, prior on the output coefficients. The intuition for
sparse priors comes from analyzing the statistics of natural scenes. The evidence for sparse
structure can be seen by filtering natural images with wavelets. The histograms of the resulting
coefficients are sharply peaked at zero and have extended tails. When compared to a Gaussian
distribution of the same variance, the wavelet coefficient histograms have a lower entropy. The
hope in using a sparse prior for the coefficients, while adapting the basis vector set, is that the
basis functions will acquire the shape and form of the underlying structure.

Sparse coding applied on natural images has been shown to extract wavelet-like structure
[9, 4]. The basis vectors appear self-similar, localized, oriented and bandpass. However, our ex-
perience with sparse coding, when it was used to extract multi-scale structure in object-specific
ensembles such as face images or images of a gesturing hand, has been negative. Using simple
yet interesting models of structure often found in real images, we highlight three points about
the reliability of sparse coding for extracting the desired structure:

e Overcomplete Representation: A representation is said to be overcomplete if the num-
ber of basis vectors, and hence the output coefficients, exceeds the input dimensionality.
We demonstrate that there are simple ensembles for which the adapted basis vectors cap-
ture the intrinsic structure only when the representation is overcomplete.

e Subspace Projection: Similarly we exhibit image ensembles where large number of
sparse components exist in a low-dimensional subspace. We find that a sparse coding
algorithm fails to simultaneously compute the linear subspace and resolve the structure
within, unless the data is first projected into the subspace.

e Sparsity constraint on the basis matrix: In a typical sparse coding formulation, a low-
entropy (or sparse) prior is applied on the output coefficients so as to represent each image
with a small number of active coefficients. In this paper we show that to reliably extract
object-specific multi-scale structure, it is useful to have the sparsity constraint applied on
the basis elements instead.

The rest of the paper is organized as follows. In section 2 we provide a brief introduction to
sparse coding and its relation to the independent component analysis (ICA). In sections 3 and
4 we discuss the issues of overcomplete representation and subspace projection. In section 5
we analyze the results obtained from applying sparse coding to an object-specific ensemble. In



section 6 we argue for the application of sparsity constraint on the elements of the basis matrix.
This lead us to a new framework, Sparse PCA, for extracting multi-scale structure in object-
specific ensemblest. We provide a brief summary of this algorithm and show results in section
7.

2 Sparsecoding

In the sparse coding framework, each image is represented by a linear superposition of basis
vectors plus noise:
t = BC+ ¢, 1)

where #'is n-element input image, B is a n x m matrix whose columns are basis vectors, ¢ is a
m-element coefficient vector, and € represents n-element noise vector sampled from a Normal
distribution. When the number of basis vectors m is greater than the dimensionality of the inputs
n (i.e. m > n) then the basis matrix B is considered to be overcomplete. For a given image
ensemble {t;},—1 ., & basis matrix yielding a sparse representation is learned by minimizing the
following cost function [9, 4]:
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The cost function F;(\) for each image #; contains two terms: a reconstruction error term given
by ||&; — B¢;||3 and a regularization term given by A Y°; Q(c;;). The reconstruction error term
forces B to span the input space. The regularization term is set up to favor solutions in which
only few elements c;; of the coefficient vector ¢; respond to each image ¢;. This is achieved by
imposing a low-entropy (or sparse) prior on the coefficient vector ¢. The prior on the coefficients
is assumed to be factorial, that is, p(¢) = II; p(c;) and €(c;) = log(p(c;)). One example of
a low-entropy prior is the double-sided Laplacian: p(x) o exp(—@|z|). The regularization
parameter A controls the amount of contribution from the prior to the cost function. It is useful
to note that A is really a combination of parameters that are needed to specify both the noise and
coefficient prior distributions.

The overall cost function E(\) is minimized in two stages. In the inner loop for each image
t;, holding the basis matrix B fixed, E;(\) is minimized with respect to the coefficient vector
¢. In the outer loop, after coding several training images, the accumulated £()) is minimized
with respect to B. The regularization parameter A\ need not be held fixed. Our implementation
follows the improved version of the learning algorithm presented in [7]. Sparse coding on
natural images [9, 4] generates wavelet-like basis vectors: self-similar, localized, oriented and
bandpass. This result was seen to be invariant to the exact functional form of the low-entropy
prior.

LA longer version of the Sparse PCA algorithm appears in ICCV’01 [3]. We are including a brief summary
here for the sake of completeness.



2.1 Independent Component Analysis

Sparse coding is closely related to Independent Component Analysis (ICA) ([2]). In ICA the
idea is to learn a filter matrix D that can generate statistically independent coefficients. In other
words a coefficient vector 3 for each image ¢ is obtained by: § = Dt. The image ensemble is
assumed to be noise-free. If the basis matrix is invertible, then it is related to the filter matrix D
by: D = B~!. ICA, unlike sparse coding, emphasizes independence over sparsity in the output
coefficients. However, a transformation that minimizes the entropy of the individual outputs
also promotes their statistical independence. Hence, we abuse the terminology slightly in this
paper by denoting the structure that can be captured by a low-entropy prior as being, not just
sparse, but also independent. We work with image ensembles where the sparse structure has a
clear interpretation.

In the next several sections, we explore the process of sparse coding. We highlight three
structural conditions necessary for sparse coding to succeed. Before initiating the learning
procedure, several decisions have to be made: choosing a functional form for the low-entropy
prior, fixing an appropriate value for A or deciding to learn it from the data and guessing a lower
bound on number of basis vectors needed to extract independent components in the images. In
each of the datasets used in this paper, we make particular choices for what the independent
components are. Our synthetic ensembles are idealized yet interesting models of structure often
found in the images of the real world.

3 Overcomplete Representation

Imagine placing a 2-pixel wide window at random locations in a natural image and recording
the intensities. We assume that natural images are typically made up of spatially coherent
objects (or blobs). The window, because it is placed at random, will either fall on the same
side of object or straddle an edge that separates objects. Hence, the ensemble will have two
kinds of images: (a) images with correlated pixel intensities, caused by the window falling on
a spatially coherent object (b) images with a potential edge between the two pixels, caused by
independently varying pixel intensities sampled from two different objects.

As shown in Fig. 1, each 2-pixel image can be seen as a point in a 2-dimensional space. We
can model one such image cloud by the following expression:
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where © = [t;,1,]7 is a 2-pixel image generated by linearly combining the basis vectors in

011
entropy prior and mixed with additive noise vector € = [e, e5]7 obtained from a Normal dis-
tribution. The low-entropy prior on the coefficient vector ¢ is appropriate to use, particularly if
the ensemble were to be generated by sampling a wavelet-filtered natural image. Here we are
modeling images to be real-valued functions of continuous variables.

b= [ )11 ] using the coefficient vector & = [¢1, ¢z, ¢3]" sampled from a factorial low-
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Figure 1: (Left) A 2-pixel image cloud is generated by sampling intensities from a low-entropy
(or sparse) distribution (Right). The horizontal and vertical arms of the distribution have im-
ages each with an edge between the two pixels, caused by independent sampling of the pixel
intensities. In comparison, the images lying on the diagonal were forced to have correlated
pixel values. Thus, the 2-pixel distribution comprises of images with at most one edge but three
independent components.

The image cloud shown in Fig. 1 exhibits 3 arms: one along the diagonal and two aligned
with the horizontal/vertical axes. The arms are caused by the binary random variable . Fol-
lowing Eqg. 3, when 7 is 0 intensities at the two pixels are correlated and the resulting images
are distributed along the diagonal of the point cloud. When r = 1, it signifies the presence of
an edge in the image because the pixel intensities now vary independently, thus giving rise to
the axis-aligned arms of the image cloud. This observation about the 2-pixel ensemble is likely
to hold regardless of the shape of the window. In particular, the window can be designed to
measure intensities in either one of the directions: horizontal, vertical or diagonal.

Each independent component thus corresponds to a unique direction in the image cloud. To
capture structure in the 2-pixel ensemble, the sparse coding procedure requires 3 basis vectors.
In Fig. 2 we show the structure extracted by sparse coding when initiated with 2 and 3 basis
vectors. The x’s in each sub-plot indicate the trajectories of the basis vectors over iterations,
the final values being shown with a solid line. The estimated independent components that
result from initializing 2 basis vectors appear edge-like. Clearly, the edge directions carry infor-
mation on more then one independent component. For the 2 component case the basis vectors
converge to the directions: [1, 1] and [1, —1]7. In this case, when sparse coding cannot achieve
independence, it seemed to have decorrelated the input ensemble with orthogonal basis vectors.
The independent components that result from initiating 3 basis vectors converge to the structure
intrinsic to the ensemble.

We can extend the above argument for images with N pixels having at most 1 edge at
a random pixel location. For simplicity, assume the signal before and after the the edge each
requires C basis vectors and hence C coefficients for a complete description. As there are N —1
possible locations where an edge can appear, the total number of independent components F
in the V-pixel ensemble is given by: F' = (N — 1)(2C) + C = C(2N — 1). Note this count
includes the one component needed to describe the absence of an edge in a given image. For
example, in the 2-pixel ensemble that we just considered, the signal before and after the edge



Figure 2: Are edge-directionstheindependent components of images? Independent components
learned for the ensemble of 2-pixel images (Fig. 1) when initialized with 2 (Left) and 3 (Right)
basis vectors. The crosses indicate the basis vector updates of the sparse coding algorithm,
while the solid lines indicate the converged directions. Note edge-like directions that result
from using 2 basis vectors summarize information on more than 1 independent component.

each needed 1 basis vector and hence 1 coefficient for a complete description. Hence the total
number of independent components ' comesto (2 —1)(2 x 1) +1 = 3.

We generated a synthetic image ensemble using an expression similar to Eq. 3 with N =5
and C' = 1. The generative process is very simple. First, decide if the new image should should
have an edge. If so, pick a pixel position and draw two coefficient samples from a low-entropy
distribution. Depending on the choice made on having an edge, use the coefficients to describe
the signal before and after the edge. The total number of independent components in this en-
semble will be 9. In Figures 3 and 4 we show the structure extracted by sparse coding when
initiated with 9 and 5 basis vectors respectively. It is clear that the independent components
learned while using the lower dimensional basis appear edge-like. The effect was duplicated
for other basis dimensions so long as they were smaller than 9. In the next Section, we discuss
the case where the number of basis vectors initialized is more than required.

To summarize, it is possible to have independent components in images that are not edges
and where the total number of independent components can far exceed the input dimensionality
[2]. Each independent component introduces a novel direction in the image cloud created by the
ensemble. If the sparse coding algorithm is initiated with fewer components than the ensemble
requires, it converges on a state in which some of the learned directions are edge-like.

4 Subspace projection before spar se coding

Here we show that, even with the correct number of basis vectors, there is no guarantee that
sparse coding will capture the structure intrinsic to the ensemble. To understand why, consider
images generated by three interacting objects, named the background, middle and foreground
objects. In our simple ensemble, these objects appear at fixed locations in the image, but they
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Figure 3: Structure found by sparse coding for a 5-pixel image ensemble with at most 1 edge in
each image. Each sub-figure corresponds to an independent component or equivalently a basis
vector. The learning algorithm was initiated with the correct number of basis vectors, that is 9.
The non-zero portion of each vector highlights pixels that vary together, but independently of
the other pixels, over the ensemble. For example, the basis vector appearing in (row 4,column
2) highlights pixels 3, 4 and 5 as varying independently. When combined with the vector shown
in (row 4,column 1), it is possible to describe all the images in the ensemble that have an edge
between pixels 2 and 3. Note the basis vector in (row 2, column 2) describes images that do not

have an edge.
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Figure 4: Structure found by sparse coding for a 5-pixel image ensemble with at most 1 edge
in each image. The learning algorithm has been initiated with 5 basis vectors to capture in-
formation on 9 independent components. Each sub-figure corresponds to a basis vector. Most
of the basis vectors appear edge-like because they seem to carry information on more than 1
independently varying component. It is illustrative to compare these results with ones shown in
Fig. 3.

potentially occlude one another. The shape of each object is the same but their sizes differ. The
imaging model and the prototypical images are shown in Fig. 5. The background object appears
in all images but the objects in the middle and the foreground appear with certain probability.
Also, when the objects in the middle and the foreground appear together, the foreground object
always occludes the one in the middle. As shown in Fig. 5 the intensity of each object is sampled
from a low-entropy distribution.

As defined earlier, independent components are groups of pixels that each vary in a sta-
tistically coherent manner. For example the occlusion of the object in the background by the
object in the middle creates 2 independently varying pixel groups. A simple count of all the
uniquely varying pixel groups, over all possible object interactions, yields a total of 7 indepen-
dent components. The independent components can be seen as waveforms in Fig. 9. There are
7 components as opposed to 8 because the foreground object is never occluded by the object in
the middle. It is beyond the scope of our linear model to collapse information contained in the
7 independent components as really coming from 3 interacting objects.

For the occluding object ensemble, the number of independent components (7) is clearly
less than the dimensionality of each input image (20). In theory the sparse coding algorithm
should learn the independent components in a low-dimensional subspace while setting the extra
basis vectors to zero. The resulting basis vectors are shown in Fig. 6. Only the 4 non-zero basis



' B -
-+ N
$ %
' - - B -
1 6 1011 15 20 Pi:el o Uf

Figure 5: (Left) A generative model of 3 interacting objects and sample images from the result-
ing ensemble (Right). Each image is 20 pixels long. The background object appears in every
image and is 20 pixels long, while the rest two appear each with a certain probability. The spa-
tial extents and the pixel locations where these three objects appear is marked in the plot on the
Left. The sample images shown on the Right can be interpreted as (going clockwise from top
left): (a) image with just the background object, (b) image of the background object occluded
by an object in the middle extending from pixel locations 6 to 11, (c) image of the background
object occluded by two objects, one in the middle extending from pixel locations 6 to 11 (but
visible only until pixel 10) and the other in the foreground extending from pixel locations 10 to
15, (d) image of the background object occluded by an object in the foreground extending from
pixel locations 10 to 15. Note the intensities with which each of these objects appear in a given
image is a random number sampled from a low-entropy distribution. Each pixel value here
could correspond to the brightness of the object. The ensemble in turn is generated by three
planar objects in the world that may or may not be present, and appear at various brightness
values.

Intensity

vectors are shown and they clearly indicate the low-dimensionality of the image ensemble 2.
However the structure has not been fully resolved, except for the background object (row 2,
column 1).

We hypothesize that perhaps it is difficult for the sparse coding algorithm to simultaneously
compute the linear subspace and resolve the independent components within. During optimiza-
tion, perturbations of the basis matrix B will cause the representation to move away from the
spanning space. Optimization steps mainly cause the updates to move the basis matrix back to
the spanning space, instead of modifying the representation so it can come closer to capturing
structure within the spanning space. Assuming this is the case, we split the problem into two
sub-problems, namely the restriction to the subspace and the representation within the subspace.

The restriction to the subspace is achieved by principal component analysis (PCA). Images
are projected to a low-dimensional subspace spanned by an orthogonal set of principal compo-
nent vectors: ¢ = U”'¢, where ¢ is the input image, U is a basis matrix with a small number of
principal components, U7 is the PCA matrix transposed and ¢’is the resulting low-dimensional
coefficient vector. We then search for the sparse structure matrix B’ in the projected space:

2We actually ran the ICA algorithm on these ensembles, as it is convenient to use whenever the required
basis/filter matrix has a square form [2]. As mentioned in Sec 2.1, ICA learns the filter matrix D first. We then
compute its (pseudo-)inverse to obtain the basis matrix B.
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Figure 6: Structure found by sparse coding for the interacting object ensemble. Only the four
non-zero basis vectors are shown. The objects have not been resolved except for the back-
ground, seen in (row 2, column 1). The rest of the basis vectors appear, once again, edge-like.

¢ = B'c, where ¢ has a low-entropy prior and B’ resolves the sparse structure in the set of
low-dimensional data points ¢. The resulting independent component matrix B can be derived
as:

¢ = B
= UTY,
Ut = B¢
t = UB&
Bé.

In Fig. 7 we show the principal components obtained by performing PCA on the occluding
object ensemble. It is clear once again that the data lies in a 4-dimensional subspace, beyond
which the basis vectors appear to reflect the sampling noise in the ensemble. We make up a
rank-4 PCA subspace matrix U using the first 4 basis vectors shown in Fig. 7. We project the
ensemble onto U to obtain the coefficient vectors ¢. In Fig. 8, we analyze the scatter plot of
PCA coefficient 1 with coefficients 2, 3 and 4, to see if the sparse structure leaves any trace.
Interestingly, the long tails or arms of the low-entropy distributions appear (just as in Fig. 1).

We now provide the 4 leading principal component coefficients of each image as input to
the sparse coding algorithm. The input images are 4 dimensional but the basis vector matrix B’
required to extract the sparse structure should be at least: 4 x 7. We initialized B’ to be 4 x 8,
thereby allowing one extra component to be used if needed. Sparse coding learns basis vectors
minimizing Eq. 2. In Fig. 9 we plot the resulting independent component matrix B, given by
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Figure 7: The first few principal components for the interacting object ensemble. They are
displayed (from top left, going clockwise) in the decreasing order of the total variance captured
by each basis vector. PCA identifies the principal subspace but fails to extract the independent
components. Only the top 4 basis vectors have a significant variance, and these are used to
project the input ensemble.
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Figure 8: Scatter plot of PCA coefficients: 1 — 2 (Left), 1 — 3 (Middle) and 1 — 4 (Right) for
the interacting object image ensemble. The horizontal axis, in all the sub-plots, corresponds
to the values of the first principal coefficient. Observe the long-tails typical of a low-entropy
distribution.
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UB'. The basis vectors successfully capture the 7 independent components. The additional
basis vector is set to zero.
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Figure 9: Independent components learned by sparse coding, after projecting input data first into
a PCA subspace. The non-zero portion of each vector highlights pixels that vary together, but
independently of the other pixels, over the ensemble. For example, the basis vectors appearing
in (row 1,column 2) and in (row 2, column 1) explain all the images where the background ob-
ject is occluded by the foreground. Likewise, basis vectors appearing in (rows {1,2,3}, column
1) describe images where all the objects appear together. It is beyond the scope of our linear
model to collapse information contained in the 7 independent components as really coming
from 3 interacting objects.

To summarize, we have shown that an arbitrarily large number of independent components
can exist in a low-dimensional subspace. We found that sparse coding succeeds in extracting
structure, only when the data is first projected into the subspace. Although we chose PCA, we
suspect that any non-orthogonal basis which span the subspace would also be suitable for the
preprocessing step.

5 Object-specific structure

What is the structure one can expect to find in an object-specific ensemble? We show that
object-specific ensembles exhibit structure in a low-dimensional subspace in a sparse, scale-
dependent form. In particular, there is large-scale structure correlated across the entire image
and fine-scale structure that is spatially localized. Although we study a database of gesturing
hand images (Fig. 10), the following argument holds true for other object-specific ensembles as
well. Once the structure is made explicit, it will be easier to conclude whether sparse coding
was successful in extracting object-specific structure.

We base our argument on the results shown by Penev and Atick [11]. We begin with a
linear low-dimensional representation for the ensemble, which can be readily obtained by PCA.
The principal components characterize the second-order statistical variation in the ensemble.
The associated variance spectrum, for a majority of object-specific ensembles, shows a steady
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Figure 10: Images of a gesturing hand. Each sub-image is of size :50 x 52. There are about 6
unique gestures.

drop. The images in the ensemble can be approximated using a small number of principal
components.

We assume each input image ¢ that is n-pixels long is approximated by m leading principal
components to give:

where U is the principal component matrix with A/ columns spanning the image space, Uy.,
IS a sub-matrix with m leading principal components and m << n the size of the input image.
Notice that U,.,,U . is the projection operator for the low-dimensional subspace approximating
the image ensemble,

To understand structure, we ask what it means to reconstruct the intensity at a pixel position

r in £? 1t involves the »*" row of the projection operator: U,.,, U . We rearrange the data in
the r*" row of the matrix U,.,, UL | so it can be seen as an image of the same size as the input.
In Fig. 11, we show how the r*" row of U, UL varies with m. Observe that with increasing
m, the appearance of the r*" row changes from being global to very local. We interpret the

projection operator in the following way:

e Uy, UL  captures correlations, not in the raw image space, but in the whitened space.
For each image ¢ there is a whitened image j given by:

j = UnE ' PULLE (5)
= Ul:mzil/Z(Ta (6)
- Ul:md> (7)

where ¢ = UL {'is the projection of input image  onto the PCA subspace, X is a di-
agonal matrix providing the variance in each element of the coefficient vector ¢ across

13



Figure 11: Structure in the hand image ensemble at 3 pixel locations centered each on the
thumb (Top row), middle (Center row) and the last finger (Bottom row), corresponding to three
different rows of the projection matrix: U.,, UL . Each column of the sub-figures corresponds
to a value of m in {1,4,8,12,16, 20, 40, 156}, where m = 1 is the left most column. Sub-
images are rescaled to have zero value correspond to a gray level of 127. Observe that fine scale
structure caused by the moving fingers is spatially localized.

the ensemble, and d is a rescaling of ¢ such that it can be treated as a sample from a
zero-mean unit-variance Gaussian distribution (assuming the dataset is zero mean). The
image 7 is considered whitened because the covariance matrix of d is an Identity. Hence,
the covariance of the whitened image ensemble is given by:

<ii"> = Upp<dd >UT | (8)
= Ul:mUlT:m- (9)

e The correlation in the space of whitened images < j;7 > provides a measure of how
appropriateit was to use m global modelsin representing the image ensemble. If the cor-
relations are large, global models such as PCA are appropriate. Otherwise, at least some
spatially local models (and perhaps some global models) would be more appropriate. This
is clearly the case for m = 12 and higher in Fig. 11.

The ensemble is not only low dimensional but the structure which fills the low-dimensional
space has a sparse form. In Fig. 12 we show how object-specific structure, measured as correla-
tions in the whitened image space, varies across pixels. The correlation map at each pixel takes
a shape characteristic of a portion of the object (i.e. the hand) and varies smoothly between
adjacent pixels. For pixels in large coherent regions, such as the back of the hand, the extent of
the correlation is large. At other points the correlation maps appear sparse by being dominant
only in local regions. PCA ignores this sparse form, coalescing local structure to form global
basis vectors.

The fact that structure (or correlation) between any two pixels is related at multiple scales
becomes evident if we regenerate the projection matrix the following way. Suppose the prin-
cipal components are grouped into consecutive bands of roughly equal power. Power here is
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Figure 12: A sample of rows of the projection matrix U,.,,U[. = with m = 10 displayed as
structure. Depending on the row selected, sub-images have shapes characterizing parts of the
hand. Sub-images are rescaled to have zero value correspond to a gray level of 127.

.

Figure 13: Multi-scale structure in the hand image ensemble measured at pixels located on
the last (first 4 columns) and the middle finger (last 4 columns). Sub-images are organized by
grouping sets of principal components: [1], [2 — 5], [6 — 24], [25 — 99]. Each banded projection
operator denotes a different scale for correlation.

measured as the total amount of input variance captured. Let U,,.,, be one such matrix in the st
band having principal components numbered consecutively from [ to A. It is clear from Fig. 13
that each banded projection operator corresponds to a different scale of correlation.

To summarize, we have shown that in object-specific ensembles there is a large-scale struc-
ture correlated across the entire image and fine-scale structure that is localized spatially. As we
demonstrate in the next section, placing a sparse prior on the basis elements, instead of output
coefficients, is a powerful way to predispose a learning mechanism to converge to this naturally-
occurring, sparse, multi-scale structure. Moreover, current ICA and sparse coding algorithms
do not extract this structure, as shown in Section 7.

6 Sparse PCA

In this section we provide a brief summary of a new framework, Sparse Principal Component
Analysis (S-PCA), that we have proposed in [3]. The review is being included here for the sake
of continuity and to allow comparison of results with the original sparse coding formulation.
S-PCA learns an orthonormal basis by simply rotating basis vectors that span the principal
subspace. Rotation achieves sparsity in the basis vectors at the cost of introducing correlations
in the output coefficients. If the input ensemble is a multi-dimensional Gaussian with widely
separated variance distribution, then S-PCA returns a redundancy minimizing solution, namely
the basis vectors of PCA. On the other hand, if the input ensemble is devoid of any structure
(i.e. i.i.d. pixel intensities), then S-PCA returns a maximally sparse representation, with each

15



basis vector representing the brightness at a single pixel.

The idea behind S-PCA is to retain the PCA directions when there is correlational structure
in the data set, and otherwise rotate them to be as sparse as possible. We propose a cost function
C(\) = Cy + ACy, where (Y is a function of the variances of the data projected onto the
individual basis vectors, and (' is a function of the elements of the basis vectors themselves.

Let U = {u; @, --- 4, } be a basis matrix spanning a m-dimensional principal subspace,

with i, = (ug1,...,upn)?. Let of be the variances of the data projected on the direction ..
Setd = (61,...,0m)" to be the vector of relative variances for each of the basis functions, that
is, 0x = 0}/ X5, 0. Then the first term of the cost function, namely C'(6), is defined to be

C1(0) = X, —6; log(;). It can be shown that C; minimized only when the basis vectors are
PCA directions [6].

The second term of the cost function is defined as: C»(U) = £, 7, —uf;log(u; ;).
Notice that this is just the sum of the entropies of the distributions defined by the square of the
elements for each basis vector i, (recall the basis vectors have unit norm). If the elements of
the basis vector have a Gaussian-like distribution, as in PCA, entropy is high and so is the cost
function Cs. If the basis vectors from an Identity matrix, entropy is low. Thus, C5(U) can be
seen as promoting sparsity.

In our experience, the exact form for C; and C5 was not so important, so long as C; is
designed to retain the PCA directions while C', promotes sparsity. The A parameter in the cost
function provides the relative importance of the sparsity term. In particular we chose the A
parameter to make the contributions from €', and C, have the same scale: A = (n * log(m))~".

The learning algorithm of S-PCA is very simple. The basis vectors are initialized to be the
principal components. The dimensionality of this principal subspace is chosen before hand.
Every pair of these basis vectors defines a hyper-plane, and we successively select suitable
rotations within these hyper-planes to minimize C'(\). We sweep through every possible basis
vector pair doing these rotations, and these sweeps are repeated until the change in C'()\) is
below a threshold. The product of the pairwise rotations provides a composite rotation matrix
which, when applied to the PCA vectors generates the S-PCA basis. In particular, the S-PCA
and PCA bases are orthonormal representations for the same subspace and are related to each
by other by this rotation matrix.

The PCA basis is used as the starting point since it identifies the principal subspace best
suited to recovering correlational structure. The job of the S-PCA algorithm is then simply to
resolve the range of the spatial correlations. Note that the S-PCA basis is always a rotation of
the original basis, so some care should be taken in choosing this starting basis. In cases for
which we want a complete representation, we have found that the trivial basis (i.e. provided by
the columns of the identity matrix) can also be used as a starting point for the S-PCA algorithm.

In [3] we discuss in detail the properties of this framework. Fig. 14 provides a useful sum-
mary of S-PCA.

7 Results

We report results on two different ensembles: an ensemble of gesture images and a database of
face images. We show results from applying PCA, sparse coding and S-PCA.
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Figure 14: What is PCA good for? Distributions 1 and 2 (black dots) are 2-pixel image en-
sembles sampled from multi-dimensional Gaussian priors. (a) Distribution 1 has a dominant
orientation indicated by the PCA basis (blue). (b) Distribution 2 has no orientational structure,
and the PCA basis (blue) reflects sampling noise. In both cases the preferred S-PCA basis
vectors are obtained by rotating PCA directions. In (a) the rotation is minimal, while in (b)
the rotation maximizes sparsity in the basis vector description by aligning them with the pixel
basis.

7.1 Imagesof a gesturing hand

The dataset has images of a hand undergoing various gestures (in all about 6 distinct gestures).
We show a sample of images in the Fig. 10. Each image is of size: 50 x 52. The database has
156 images. The total number of principal components would be same as the rank of the image
dataset, which is 156.

In Fig. 15, we show the results of PCA. The first few basis vectors appear relatively smooth
and hence they represent global correlations. As the index & for the principal component in-
creases, the basis vectors represent fine scale structure but remain global in space. This clearly
IS not representative of the object-specific structure that was just highlighted.

We now show that it is difficult to extract object-specific structure by imposing a low-entropy
prior on the coefficients. In Figures 16 & 17 we show results of sparse coding on the hand image
dataset. The ensemble has a low-dimensional description, so we assume independent compo-
nents, if any, will reside within. To facilitate sparse coding, we first projected the data into space
spanned by the first 10 principal components. It is not clear how many independent components
one should search for, so we show the results from extracting 11 and 16 independent compo-
nents. The overall appearance of the basis vectors is global and edge-like (alternating dark and
bright regions). They cannot be simply interpreted in terms of object parts, i.e. fingers of a
hand. It is also not clear if a low-entropy prior is appropriate on the coefficients. In Fig. 18 we
show scatter plots of the coefficients of PCA for the hand images. The plots do not have arms
the kind seen in Fig. 8 to support a low-entropy prior. We also applied the ICA algorithm but
the results are not very different from the ones shown for sparse coding.
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Figure 15: PCA results on the hand images.
entire image.

Figure 16: Sparse coding results after projecting the data into a 10-dim subspace and then
searching for 11 components. This includes the mean component of the ensemble which is not
shown in this figure.

Figure 17: Sparse coding results after projecting the data into a 10-dim subspace and then
searching for 16 components. This includes the mean component of the ensemble which is not
shown in this figure.
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Figure 18: Scatter plot of PCA coefficient 1 (horizontal axis) with coefficients 2, 3 and 4, for
the hand image ensemble.

-

Figure 19: Sparse-PCA results on the hand images. Only the first 24 basis vectors are displayed
here. Unlike PCA, basis vectors representing fine-scale information are spatially localized.

However, S-PCA, which promotes sparsity in the basis matrix, results in basis vectors that
are far more representative of the object-specific structure. As shown in Fig. 19 basis vectors
representing fine-scale information are spatially localized.

7.2 Faceimages

We used the publicly available ORL database [10]. These are face images, frontal-looking but
only roughly aligned. Each image is of size: 112 x 92. The database has 400 images.

The PCA results again show lack of spatial localization of fine-scale structure (Fig. 20). We
are not reporting sparse coding results here. Instead we refer the reader to Marian Bartlett’s
thesis [1], where she applied ICA to a face database. The filter matrix obtained from ICA
has some resemblence to facial features, but the resulting basis matrix appears “holistic”. In
particular, the scale-separation of structure is not evident. In comparison, we show results from
S-PCA and the resulting basis vectors appear to respond to object-specific structure (Fig. 21).
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Figure 20: PCA basis vectors on face images. The first 40 principal components are displayed.

8 Redated Work

The references in this section are by no means exhaustive. We highlight material that is most
relevant to our work.

Recently, Ruderman, Huang, Lee and Mumford articulated occlusion models that can gener-
ate scale-invariant statistics [12, 5, 8]. They proposed generative models which simulate statis-
tics measured in natural scenes. In comparison, our interest is in the inference problem: to
determine what the objects are. Of course, we cannot approach this problem with out having
proper generative models. This lead to us to design simple models that can highlight issues
with a particular inference algorithm: sparse coding. Also, our interest is in object-specific
ensembles, such as face images. As we have shown, these images are not likely to exhibit scale-
invariant statistics but they clearly have structure at multiple scales, which is of considerable
interest.

The two issues: overcomplete representation and subspace projection before sparse coding,
have been argued before as desirable for various reasons. An overcomplete representation,
besides promoting sparsity, was shown to provide smooth and interpolated output for small
changes in the input [9]. Subspace projection using PCA has been found to be useful in practice
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Figure 21: Sparse-PCA results on the face images. Only the first 64 basis vectors are displayed
here. Unlike PCA, basis vectors representing fine-scale information are spatially localized.




for resolving independent components in fMRI/EEG/MEG data. In this paper, we have shown
the critical role played by these two issues in extracting object-specific structure, using simple
models for the real world images.

The structure argument we make for object-specific ensembles is based on the work by
Penev and Atick on Local Feature Analysis [11]. We extend the argument by forming banded
projection operators (also suggested by Penev in his thesis [11]), downplay the role of eigenval-
ues and associate structural information to correlations appearing in the whitened image space.
Penev and Atick chose the columns of the projection matrix as a representation for the data.
Instead, we learn an orthogonal basis representation, that captures multi-scale information in
the input data, by simply promoting sparsity in a basis matrix [3].

9 Conclusions

In trying to infer object-specific structure by sparse coding, we found three conditions necessary
for the sparse coding algorithm to succeed. First, we showed ensembles where overcomplete
representation is critical. Otherwise, sparse coding extracts edge directions that potentially
summarize more than one independent component. Second, sparse coding may fail if it is
not initialized in the low-dimensional subspace where the actual structure exists. Third, we
showed how object-specific ensembles exhibit structure in a low-dimensional subspace in a
sparse, scale-dependent form. In particular, fine-scale structure typically requires small spatial
support, while large-scale structure is correlated (globally) across the image. The extraction of
this form of structure appears to require a sparsity constraint on the basis matrix, as opposed to
the coefficients.

Acknowledgements. We thank Michael Black for the hand image sequence.
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