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Abstract

We examine the shape from shading problem without
boundary conditions as a polynomial system. This view al-
lows, in generic cases, a complete solution for ideal poly-
hedral objects. For the general case we propose a semidef-
inite programming relaxation procedure, and an exact line
search iterative procedure with a new smoothness term that
favors folds at edges. We use this numerical technique to
inspect shading ambiguities.

1. Introduction

The shape from shading (SFS) problem [12, 26] is to re-
cover the 3D shape of a surface from a single image, whose

intensities are related to angles between surface normals
and light source direction. SFS belongs to a wide class of

problems in computer vision that involve embedding points

in Euclidean space based on angles or distances informa-
tion. These problems have natural formulations as sys-

tems of polynomial equations. Both exact methods, such

as Gröbner basis and homotopy continuation, and convex
relaxation techniques, have been applied to polynomial sys-

tems arising from diverse problems as structure from mo-
tion [5, 15, 24], camera calibration [7] and low-dimensional

embedding [29, 38]. In this paper we apply similar tech-

niques to the SFS problem, which traditionally was treated
mostly as a general nonlinear PDE that is notoriously diffi-

cult to optimize. While the polynomial formulation is not

new (e.g. [25]), only recently theory and software for poly-
nomial systems became widely available.

Throughout we will focus on the standard Lambertian
model, i.e. orthographic projection, known distant light

source, no interreflections, unit albedo, but no other bound-

ary conditions. Denote the unit light source vector by
L = (a, b, c), and the surface normal by N = (−p,−q, 1)T .

The Lambertian intensity at an unshadowed point is

I =
L ·N
‖N‖ =

−ap− bq + c√
1 + p2 + q2

∈ [0, 1]. (1)

Squaring and rearranging we get the quadratic equation

(1 + p2 + q2)I2 − (−ap− bq + c)2 = 0. (2)

Figure 1. An exaggerated shading ambiguity illustrated by three

images of one real object. The object has a pre-computed shape,

designed using techniques described in this paper, which was

then realized by 3D-printing and illuminated with a directed light

source (plus weak ambient). Bottom: an oblique view of the ob-

ject. Middle and top: a top view, with the essential difference

being that we moved the directed source to a different position. It

is implausible that a human viewing the top image would infer the

correct surface.

To avoid solutions to L ·N/‖N‖ = −I we add the con-
straint

−ap− bq + c ≥ 0. (3)

The SFS problem is to find a surface satisfying (2) and (3)

for each point in the image.

The polynomial form (2) has several advantages over the
quotient form (1). First, small polynomial systems can be

completely solved. We demonstrate this in section 2, where

we show that all solutions to the SFS problem for an ideal,
generic polyhedron can be found by homotopy solvers for

polynomial systems. Second, exact line searches are possi-
ble in the polynomial form, but require expensive bisections

in other forms. In section 3 we demonstrate the effective-

ness of exact line searches as part of an iterative method for
SFS on a grid. Third, semidefinite programming (SDP) re-

laxations for polynomial systems can produce approximate
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Figure 2. Triangulation around a vertex.

solutions without requiring an initial guess. We derive an

SDP relaxation for SFS in section 4. In absence of bound-

ary conditions, the SFS problem is known to be ambigu-
ous [17]. In section 5 we propose a method for generating

artificial shading ambiguities as illustrated in figure 1.

2. Exact SFS for polyhedra by homotopy

In this section we examine polyhedral SFS. The prob-

lem was first formulated by Horn [11]. Iterative procedures

were proposed by Sugihara [34] and Lee and Kuo [19].
Penna [25] dealt with perspective projection. Yang et
al. [40] highlighted the possibility of multiple solutions.

Shimodaira [31] applied the DIRECT (dividing rectangles)
solver, which could be the only previous work with a so-

lution guarantee. However, space-partitioning techniques
tend to slow considerably as the dimension grows [33], re-

quire initial range estimation for the variables, and multiple

solutions were not considered.

Since the problem can be formulated as a polynomial
system, it is natural to apply homotopy solvers [33]. These

solvers start with a structurally similar polynomial system
for which all complex solutions are known, and trace the

solutions as the system is continuously deformed to the

desired polynomial system. Homotopy solvers guarantee
“with probability 1” finding all complex solutions without

requiring an initial guess, they scale well with problem di-

mension, and are parallelizable. Modern solvers can be con-
sidered reliable, although rare breaking cases exist. See [33]

for in-depth discussion and comparison to Gröbner basis

and resultants. Previous applications of parameter contin-
uation to SFS include real continuation [9], graduate de-

crease of smoothness [35] and continuation through scale
space [30]. Watson [37] mentions early work related to ho-

motopy and SFS that we were unable to find.

Assume the surface is a triangular mesh, and consider a
particular vertex v0 and its k neighbors v1, . . . ,vk counter-

clockwise as in figure 2. To simplify notation we shift the

coordinates so that v0 = (0, 0, 0). The normal to a triangle
(v0,vi,vi+1) is proportional to vi × vi+1 = (yizi+1 −
yi+1zi, xi+1zi−xizi+1, xiyi+1−xi+1yi). Dividing by the

Figure 3. SFS of a polyhedron by homotopy. Left: synthetic Lam-

bertian image with L = (0, 0, 1) of triangulated vase [26]. Right:

the two solutions found by the algorithm.

last coordinate we get

−pi = yizi+1 − yi+1zi
xiyi+1 − xi+1yi

, −qi = xi+1zi − xizi+1

xiyi+1 − xi+1yi
. (4)

Substituting in (2) for every triangle, we get k quadratic

equations in z1, . . . , zk (xi,yi are known from the image).
If the system is generic, there are at most 2k real solutions,

which for small k can be found by a homotopy solver.
After solving for the possible configurations around each

(internal) vertex, we prune the solutions. Configurations

violating (3) or whose neighboring vertices have no com-
patible configuration are discarded. Then we need to solve

a constraint satisfaction problem (CSP) to identify all con-

sistent global solutions. Luckily, often an assignment of a
configuration at a vertex and its neighborhood determines

uniquely the configurations of its neighbors and therefore a
simple assignment propagation and backtracking algorithm

finds all global solutions.

Polyhedral SFS by homotopy is demonstrated in figure 3.
The input contains 1143 triangles. Their vertices were ran-

domly jittered to ensure generic systems. We used the ho-

motopy solver HOM4PS-2.0 [20] to successfully find both
solutions.

Note that theoretically it is also possible to solve for the
light source, by writing the systems of the neighbors of a

triangle together and forming a system of quartic equations

with the condition a2 + b2 + c2 = 1. This is practical only
if the number of neighbors is small.

Unfortunately, the method described is sensitive to noise.

Even 1% of intensities perturbation can lead to systems
whose all solutions are complex. One might form the sum

of squares of (2), take the partial derivatives and find all sta-
tionary points. This leads to k cubic equations, with up to

3k solutions. Although solutions can be pruned, there still

might be a large number of candidates. Given that for noisy
systems it is harder to determine which neighboring config-

urations are compatible, the result is a much harder CSP.



The large number of inaccurate solutions may explain why

humans find SFS of a triangulated mesh difficult [32].

3. Iterative procedure

In this section we present two technical improvements to
global iterative SFS methods. These methods, e.g. [12, 26,

35], minimize the sum of squares of (2) over a grid. De-
note by z the heights of all grid points arranged as a column

vector, and let pij = zi+1,j − zij , qij = zi,j+1 − zij
be the discrete partial derivatives of the surface. To avoid
specifying any boundary conditions, for M ×N image we

solve for z on an extended (M + 1)× (N + 1) grid (the

(M + 1, N + 1) pixel is redundant). Then (2) becomes

[
z2i,j , z

2
i+1,j , z

2
i,j+1, zi,jzi+1,j , zi,jzi,j+1,

zi+1,jzi,j+1, zi,j , zi+1,j , zi,j+1, 1
] · uij = 0

(5)

uij =
[
2I2ij , I

2
ij − a2, I2ij − b2, 2a(a+ b)− 2I2ij ,

2b(a+ b)− 2I2ij ,−2ab,−2c(a+ b), 2ac, 2bc, I2ij − c2
]T

.

(6)

Eq. (5) and (6) can be written in the form

rij = zTAijz+ eTijz+ hij = 0, (7)

with symmetric Aij . Let r(z) =
[
r11, . . . , rMN

]T
. The

sum of squared errors is F (z) = ‖r‖2. The Jacobian matrix

of r has the rows

Jij = 2zTAij + eTij , (8)

and the gradient is simply∇F = 2JT r.
Minimization of a general multivariate quartic is NP-

hard [22, 28]. However, a useful property of polynomi-

als is that exact line search takes linear time. Substituting
z = z0+αd in F (z), where z0 is the current point and d is

any search direction, we get a univariate quartic in α, whose

global minimization involves solving a cubic equation in α.
Experience in numerical analysis suggests that exact line

search often requires less function evaluations and a smaller
number of iterations than inexact line search procedures. In

addition, the algorithm is less likely to be trapped in a poor

local minimum. Although very natural and easy to imple-
ment, we are not aware of previous applications of exact

line search to SFS, or embedding problems like [38].

A smoothness term is often added to widen the basin
of attraction for convergence and suppress oscillations.

The most common regularizer measures thin-plate energy,
which integrates the squared second derivatives of the sur-

face. A problem with this regularizer is that it will strive

to flatten regions of varying intensities or edges where the
surface cannot be flat. In [13] it is proposed to down weight

the smoothness term by a measure of intensity change. That

smoothness term frees the surface to bend where intensity is

varying, but does not enforce folding explicitly. In addition,
reducing the smoothness term allows surface oscillations,

as will be explained in section 5.

Instead we define a new smoothness term that miti-
gates these problems. Consider two neighboring pixels with

normals (−p1,−q1, 1), (−p2,−q2, 1) and intensities I1,I2.
The smallest possible angle θ between these normals satis-

fies

cos(θ) = cos(arccos(I1)− arccos(I2))

= I1 · I2 +
√
1− I21 ·

√
1− I22 .

(9)

For nearby pixels on a smooth surface, and for pixels
with large intensity difference, it is reasonable to expect

that the angle between the normals is close to θ, i.e.
cos(θ) ≈ p1p2+q1q2+1√

1+p2

1
+q2

1

√
1+p2

2
+q2

2

. Plugging in the Lambertian

assumption (1) and multiplying by the denominator we de-
fine the smoothness term as another quartic in z

S(z) =
∑(

(p1p2 + q1q2 + 1)I1I2

− cos(θ)(−ap1 − bq1 + c)(−ap2 − bq2 + c)
)2

.
(10)

Our complete algorithm minimizes F (z) + λS(z) using

conjugate gradient with exact line search, and reduces λ
gradually. The method is demonstrated in figures 4 and 5.

In the algorithm above we ignored the non-negativity

constraint (3). It is possible to take it into account by mini-
mizing

∑(
(1+p2+q2)I2−(−ap−bq+c)2 sign(−ap−bq+c)

)2

.

(11)
The exact line search requires sorting α according to where

the terms switch signs, and searching for the minimum of

the quartics in each intermediate interval. The coefficients
of these quartics can be accumulated as the line is traversed.

This usually makes insignificant difference for images with-

out shadows.

4. SDP relaxation

While iterative techniques with exact line search are ef-
fective, often there exist initial guesses that lead to sub-

optimal local minima. This motivated us to look at the

completely different approach of convex relaxations, which
guarantee convergence to a global minimum of a related

problem. In this section we derive a Lasserre-type SDP
relaxation to SFS. The idea is to introduce new variables

for products of variables (lifting) so that non-convex terms

become linear. Additional positive-semidefinite constraints
are added to capture relationships between all variables

and tighten the approximation. Since full relaxations are



Figure 4. SFS of the synthetic penny [26]. The source surface (upper-left) generates the input image (middle-left) with L = (0, 0, 1). Our

iterative method, initialized from a section of a sphere, produced the surface on the right. The computed surface generates the lower-left

image. While the 3D surfaces are different, the RMS of the images difference is only 0.008, and the maximal absolute difference of

intensities is 0.117.

very expensive, scalability is achieved via sparse relax-

ation [23, 36]. The semidefinite constraints are defined on

cliques, which in our case are just unit triangles.
For each point (i, j) we use an extended set of variables:

xrst
ij corresponds to a monomial (zij)

r ·(zi+1,j)
s ·(zi,j+1)

t.
Here, r,s,t are nonnegative integers, r+s+t ≤ 2d, and d is

called the relaxation order. In this notation xk00
ij ,x0k0

i−1,j and

x00k
i,j−1 refer to the same variable corresponding to (zi,j)

k ,

k = 1 refers to the surface height at point (i, j), and x000
ij is

the constant 1.

Let (r1, s1, t1) = (0, 0, 0), (r2, s2, t2), . . . , (rD, sD, tD)
be an enumeration of all r, s, t such that r + s + t ≤ d
and D =

(
d+3

3

)
= O(d3). For each image pixel, positive

semidefinite constraints are defined on D × D moment
matrices whose elements are variables

[
Mij

]
m,n

= x
rm+rn,sm+sn,tm+tn
ij ,

[
Mij

]
1,1

= 1. (12)

Ideally, Mij would be equal to the symmetric positive

semidefinite rank-one matrix

[
1,xr2s2t2

ij , . . . ,xrDsDtD
ij

]T · [1,xr2s2t2
ij , . . . ,xrDsDtD

ij

]
.

(13)
The SDP relaxation for non-shadowed pixels is

min
(∑

ij

trace(Mij) +G · ε
)

s.t. (14)

(a+ b)x100
ij − ax010

ij − bx001
i,j + c ≥ 0 (15)

− ε ≤ [
x
r+2,s,t
ij ,xr,s+2,t

ij ,xr,s,t+2

ij ,

x
r+1,s+1,t
ij ,xr+1,s,t+1

ij ,xr,s+1,t+1

ij ,

x
r+1,s,t
ij ,xr,s+1,t

ij ,xr,s,t+1

ij ,xr,s,t
ij

] · uij ≤ ε

(16)

∑
ij

x100
ij = 0 (17)

Mij 	 0,
[
Mij

]
1,1

= 1. (18)

In the system above, eq. (15) is analogous to (3).



Figure 5. Surface reconstruction by the iterative (left) and SDP (right) methods. In the middle, the top two images are source images. The

bottom images are renderings of the left and right surfaces. At black points in the SDP solutions condition (15) equals zero.

Eq. (16) is derived by multiplying (5) with monomi-

als (zij)
r · (zi+1,j)

s · (zi,j+1)
t for all nonnegative integers

r, s, t such that r + s+ t ≤ 2d− 2. uij are vectors of con-

stants (6), and ε is a slack variable. Condition (17) fixes the

global depth ambiguity in orthographic projection. Eq. (18)
is the positive semidefinite constraint on (13). The objec-

tive (14) minimizes the sum of traces and G times the slack

variable ε, whereG is the total number of diagonal elements
in all moment matrices. Ideally, the matrices Mij should be

rank-one. Trace minimization is a commonly used approx-

imation to rank minimization.



The resulting SDP problem is solved in polynomial

time without an initial guess by a SDP solver. Currently
we extract the solution simply from x100

ij . Note that this

doesn’t work in case there are multiple solution (in particu-

lar L = (0, 0, 1)), because the matrices Mij could be con-
vex combinations of solutions. Similar solution extraction

with a random perturbation is described in [36], and ap-
plied to PDEs with boundary conditions [23]. Also note that

Lasserre’s condition for convergence as d→∞ in [18] does

not hold for our sparse relaxation. However, only small or-
ders d are practical anyways. A solution extraction scheme

for dense relaxations is described in [10], but does not ex-

tend easily to sparse relaxations with noisy input.
The iterative and SDP procedures are compared in fig-

ure 5 on real images of cloth (upper two) and sugar (lower
three). The intensities were linearly transformed to the

range [0,1]. Since the light source direction is unknown,

we sampled 100 light directions using the spherical spiral
method [2], ran the iterative algorithm, and kept the best

light for each image. Though more expensive, this approach

is more robust compared to estimating the light directly
from the images or adding the light as a parameter to the

optimization. The initial state for the iterative method was
z = 0. The SDP results were obtained from low-resolution

images (18 × 24) using the same light sources and relax-

ation order d = 2. The SDP solver we used is DSDP5.8 [4],
interfaced with YALMIP [21]. For the iterative method, the

RMS errors in reconstructing the input images are all be-

low 0.01. RMS errors for the SDP method are (top to bot-
tom): 0.06, 0.07, 0.09, 0.07 and 0.14.

5. Generating SFS ambiguities

In this section we explore generating SFS ambiguities,

i.e. substantially different surfaces that have identical Lam-

bertian images. Our main goal is to provide researches
a better way to study surface priors. Instead of defining

a shape prior and running a SFS algorithm, a good prior

should first be able to pick the correct surface from its am-
biguous counterparts. We can also envision a future applica-

tion in surface inspection, where by inspecting the space of
ambiguous shapes, possibly with few known anchor points,

one can position the light source so that ambiguous devia-

tions are tolerable.
Previously, SFS ambiguities were encountered when

SFS algorithms converged to the wrong surface, or in math-

ematical analysis of simple shapes such as planes and
spheres [6,17]. A recent work by Kemelmacher-Shlizerman

et al. [16] studied Mooney faces generated by thresholding
Lambertian images. They showed that different surfaces

can have an identical isophote (iso-intensity contour) and

identical binary image. Another related ambiguity is the
bas-relief [3, 39], which technically involves small changes

in albedo.

Figure 6. Shading ambiguities of uniform-intensity images.

Top: interlaced cone sections with the same opening angle whose

axes point in the light direction will generate a uniform intensity

image. Bottom: some eigenvectors of J for the flat surface z = 0
with L = ( 1√

2
, 0, 1√

2
).

SFS ambiguities can arise from micro-perturbations, e.g.

placing a pyramid reflecting the desired intensity at every

pixel [14]. These surfaces are uncommon. On the other
extreme, smooth surfaces can also be ambiguous. For in-

stance, a single-intensity image can arise from a plane or a

cone whose axis is aligned with the light direction. More-
over, such cones can be reflected and stitched together, as

shown in figure 6, creating a wavy surface. In general, a
uniform-intensity image comes from a ruled surface [17].

Note that these surfaces can be very smooth. Furthermore,

Freeman’s generic light source assumption [8] cannot dis-
tinguish between a plane and such a cone.

For any surface whose image is clipped to just a patch,

the SFS equations represent a PDE without boundary con-

ditions. The lack of these boundary conditions gives rise
to ambiguities [17]. We can see these in the discrete case

as follows. Consider a solution z0, i.e. F (z0) = 0 and

r(z0) =
[
0, . . . , 0

]T
. Note that the Jacobian J in (8) is

MN × (M +1)(N +1). If J has full column rank, then by

the implicit function theorem applied to r(z) = 0, there is

a manifold of solutions in an ε-neighborhood of z0. While
the theorem guarantees solutions only in arbitrarily small

neighborhoods, in many cases the ambiguity can be very
substantial (see figures 1 and 7).

Next we describe how to generate numerically an

ambiguous surface z from a given surface z0 and a

light source L. The idea is illustrated in figure 8.
Starting from a solution z0 of the SFS equations, we

take a large step that would change the image as lit-

tle as possible. Consider the second order approxima-
tion F (z0 + v) ≈ F (z0) +∇F (z0)

Tv + 1

2
vT∇2F (z0)v.

Note that F (z0) = 0, ∇F (z0) = 0. The Hessian is
∇2F (z0) = 2JTJ. Hence, a desired direction v is a null

vector of J. Taking the step z = z0+αv, we get away from

the solutions manifold. Applying our iterative procedure of
section (3) we get to a point z1 on the solutions manifold.

To ensure that we get far from z0, we project the conjugate



Figure 7. Artificially generated shading ambiguity. Top left: initial

cylindrical surface. Top right: the null vector of J. Bottom: 3D-

print of the computed surface (right) generating the same image of

a cylinder (left).

gradient search directions d so that d ·v = 0. A step size α
is searched so that it is large and yet returning to the mani-
fold is still possible.

It remains to describe how to compute the null vectors

of J. Note again that J is MN × (M + 1)(N + 1) and

therefore large, sparse, and has at least M + N + 1 null
vectors. This can be exploited in a divide-and-conquer

scheme. We partition the image to four roughly equal

blocks I =
[

I1 I2

I3 I4

]
, and compute bases B1,B2,B3,B4

for the null spaces of J restricted to each block recursively

(svd is used for small images). For a M
2
× N

2
subimage,

we form its restricted Jacobian on a (M
2

+ 1) × (N
2
+ 1)

extended grid, making it rank-deficient. Thus, the bases

B1,B2,B3,B4 overlap on the middle row and column of I .
We stitch these bases together to form a basis B for the null

space of J by finding linear combinations of the null vec-

tors that match on the overlapping pixels. Let B̂1, B̂2 be
the rows of B1,B2 that correspond to the overlapping pix-

els, and let
[

W1

W2

]
be the null space of

[
B̂1 −B̂2

]
.

Then B1W1 combined with B2W2 give a basis for the null

space of J restricted to
[
I1 I2

]
. We combine B3,B4 and

then the upper and lower parts in a similar way. Finally, we
orthogonalize the resulting null space matrix B.

It is convenient to sort the null space by smoothness
from low to high frequency. We build a matrix C that

measures smoothness by applying the filters
[
1,−2, 1],[

1,−2, 1]T ,
[

1 −1

−1 1

]
at every pixel. Let V be the sorted

right-singular vectors of CB. Then the matrix BV con-

tains the null vectors in sorted order. Some eigenvectors for
a plane and a cylinder surfaces are shown in figures 6 and 7.

solutions
manifold

F (z) = 0

step in direction v,
null vector of J

step orthogonal
to v

z0
z1

z0 + αv

Figure 8. Generating a solution z1 from a known solution z0.

6. Conclusions

We applied tools specifically designed for polynomial

systems to the SFS problem, both for polyhedral and curved

surfaces. Their main advantage is in not requiring bound-
ary conditions. In contrast, many propagation methods

(e.g. [1, 12, 27]) rely on boundary conditions. Other propa-

gation methods (e.g. [41]) rely on the existence of singular
points (where N = L) in the image. While propagation ap-

proaches are fast and impressive reconstructions have been
demonstrated, these reliances are conceptually unsatisfac-

tory.

The SDP relaxation is a radically different approach to

the SFS problem. It is interesting because convergence to

a global minimum of the relaxed problem is guaranteed,
without depending on the initial guess. Additional depth

constraints obtained from other depth cues or user interac-
tion can be added easily to the system. These may also

include inequality constraints (e.g. (3) or front/behind re-

lationships), which are difficult to incorporate into other
methods. However, at present SDP solvers limit the method

to low-resolution images and low relaxation orders (note the

possibility of variable relaxation orders at different pixels).
Better exploitation of sparseness, parallelism, and approxi-

mations of the full SDP problem, may allow solving larger
problems in the future.

Ambiguities are a serious problem for all iterative SFS
methods with no boundary conditions, since the algorithm

can start converging to one solution in one part of the im-
age and a conflicting solution in a remote part. For large and

noisy images, this can occur even with boundary conditions.

Therefore, some prior information is needed to choose be-
tween solutions. We proposed a new smoothness term for

the iterative method, and used the sum of traces of the mo-

ment matrices in the SDP method. These priors are sensi-
ble, but obviously not a complete answer. We proposed a

numerical method to visualize shading ambiguities, hoping
this will contribute to better understanding their extent.
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