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Modal Structure and Reliable Inference

Allan Jepson� Whitman Richards� and David Knill

� Introduction

The world we live in is a very structured place� Matter does not �it about in space and
time in a completely unorganized fashion� but rather is organized by the physical forces�
biological processes� social interactions� and so on which exist in our world �McMahon� ����	
Thompson� ���
�� It is this structure� or regularity� which makes it possible for us to make
reliable inferences about our surroundings from the signals taken in from various senses
�Marr� ���
	 Witkin and Tenenbaum� ���
�� In other words� regularities in the world make
sense data reliably informative about the world we move around in� But what is the nature
of these regularities� and how can they be used for the purposes of perception�

In this chapter�� we consider one class of environmental regularities which arise from
what we call the modal structure of the world and which has the e�ect of making sensory
information for certain types of perceptual judgements highly reliable �Bobick and Richards�
������ Our de�nition of modal regularities is motivated by careful analyses of some simple
examples of reliable perceptual inferences� Given the resulting de�nition� we then brie�y
discuss some of the implications for the knowledge required of a perceiver in order for it to
make reliable inferences in the presence of such modal structure�

� Modal structure� An example�

��� When can we infer that an object is stationary�

A common perceptual inference is that of whether an object is moving or at rest� How
can we make this inference given only the two�dimensional projection of a three�dimensional
object� When the image of an object is moving the inference is trivial� since a stationary
object cannot give rise to image motion �assuming a stationary observer�� What about the
case in which the image of an object is not moving� Can we then reasonably infer that the
object itself is not moving� Intuitively� this is a common inference which is rarely wrong�
so it seems that the answer to the question is a strong �yes�� We will show that object
motions in the world must have a strong type of regularity to support this inference� We will
then generalize the discussion to show that the same type of structure in the world must be
present to support a wide variety of similarly reliable inferences�

�This article is to appear in the book �Perception as Bayesian Inference� edited by D� Knill and W�

Richards� Cambridge Univ� Press�
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One explanation for the reliability of inferences like �stationary in the image implies
stationary in the world� is that a stationary image would be an �accidental� view of a moving
object �Albert and Ho�man� ����	 Lowe� ������ That is� one would have to be viewing the
object head�on �in the direction of the motion�� in order to obtain a stationary image of
a moving object� Small perturbations of the viewpoint would destroy the stationarity of
the image motion when viewing a moving object� Moreover� only two viewpoints of the
in�nite number of possible viewpoints would have this special property� thus the probability
of obtaining a stationary image from a moving object is zero �or� if we allow for some
uncertainty in the measurement of image motion� the probability would be small�� On
the face of it� this argument is attractive and seems perfectly logical� Unfortunately� the
inference described is based on the wrong probability distribution	 namely� the probability
of obtaining a stationary image� given that an object is moving� Typically� this distribution
is called the likelihood function� and we can characterize the inference as being within the
class of maximum�likelihood criteria for making statistical decisions� The distribution of
interest� however� is the posterior distribution� the probability that an object is moving�
given that the image is stationary �Jepson and Richards� ���
	 Knill and Kersten� ������
The di�erence between the two is critical� as we will show�

We begin by formalizing the general viewpoint argument as a statistical decision based
on the ratio of likelihood functions� p�jj�vimagejj � � j jj�vjj � �� and p�jj�vimagejj � � j jj�vjj �� ���
where �v is the 
�dimensional velocity vector of an object� �vimage is the 
�dimensional image
velocity vector� and jj � jj is the usual 
�norm� The general viewpoint argument says that the
assumption of a generic view makes the ratio of the two likelihood functions large� so that
one can reliably infer that the object is stationary given a stationary image� The likelihood
ratio is given by

Rlikelihood �
p�jj�vimagejj � � j jj�vjj � ��

p�jj�vimagejj � � j jj�vjj �� ��
� ���

The numerator is clearly equal to �� while the denominator� under the generic viewpoint
assumption� is equal to �� so� the argument goes� one should clearly infer that an object
is stationary when one detects no image motion� A seeming advantage of this approach is
that it does not appear to depend on any knowledge about the world �with the exception of
assuming a generic view�� It suggests that one can make a rational decision without knowing
about the probabilistic structure of object motions in the world	 that is� without assuming
any constraints on object motion� We will now proceed to show that this is false� and that�
if one assumes a generic� relatively unconstrained model of object motion� the inference of
object stationarity from image stationarity will be wrong most of the time �and in the limit�
all of the time�� In fact� with such a model of object motion� one should infer the opposite�
that the object is moving�

Our generic model of object motion is that of idealized gas molecules within a container
having constant temperature T� Maxwell�s distribution provides the probability density for
the 
D velocity of a single molecule as

p��v� �
�

�
�cT �
�

�

exp��jj�vjj���
cT ��� �
�

where c is a positive constant �Fowler and Guggenheim� ���
�� This is just an isotropic
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Gaussian distribution in three variables� having mean zero and variance cT � Note that the
most probable velocity corresponds to the mean� namely �v � �� We de�ne the molecule to
be at rest whenever the speed is less or equal to some tolerance � � �� Given this de�nition�
it follows that the prior probability of the particle being �at rest� is nonzero and roughly
proportional to �� for small values of � �in our notation� p�at rest� � p�jj�vjj 	 �� � O������
We assume that � is signi�cantly smaller than the standard deviation of the probability
distribution� namely

p
cT � since otherwise� being at rest would have no signi�cant meaning�

Suppose our observer has orthographic projection �for simplicity�� and can measure the
�rst two components of �v ��vimage� such that the error in the estimation of the image speed�
jj�vimagejj� is no larger than � � �� where we assume some image sensing noise to make the
mathematical analysis simpler �we can still examine the limit as � � ��� Consider the
speci�c case in which the observer measures the image speed to be between � and �� Can
the observer then infer that the particle is at rest�

The appropriate computation to make is the conditional probability that the particle is
at rest� given the data that the image speed has been observed to be less than �� We denote
this distribution by p�jj�vworldjj 	 � j jj�vimagejj 	 ��� It is just ��p�jj�vworldjj � � j jj�vimagejj 	 ���
where the latter term is the conditional probability that the particle is not at rest� given the
same observation� As with the likelihood ratio analysis� we �nd it convenient to compute
the ratio of these two probabilities� For small values of � we �nd

p�jj�vworldjj 	 � j jj�vimagejj 	 ��

p�jj�vworldjj � � j jj�vimagejj 	 ��
�

p�jj�vworldjj 	 � j jj�vimagejj 	 ��

� � p�jj�vworldjj 	 � j jj�vimagejj 	 ��
� ��

p

�cT �
�

to leading order� Since we have assumed that � is signi�cantly smaller than the standard
deviation of the distribution� namely

p
cT � it follows that the above ratio of conditional prob�

abilities is signi�cantly smaller than �� That is� the odds strongly favour the interpretation
that the particle is actually moving� even though the image motion is consistent with it being
at rest� This is not a problem with the accuracy of the motion measurements� In fact� the
same probability ratio is obtained �to leading order� even if the �rst two components of the
velocity are assumed to be measured within a tolerance of some 
 taken signi�cantly smaller
than �� The di�culty is that the third component of the velocity is not measured at all� and
can vary according to the Gaussian distribution with standard deviation

p
cT � For small

values of � this third component will rarely fall su�ciently close to zero for the particle to
qualify to be at rest� The odds� therefore� consistently favour the inference that the particle
is moving no matter how accurately the image velocity is measured� Moreover� having more
time frames in which the image motion is measured to be less than 
 can actually decrease
the odds that the object is at rest�

Our model of the world is clearly missing something which would allow reliable inferences
of object stationarity to be made� Since such inferences in our own world our commonplace
and are usually correct� the unconstrained model of object motions just presented does
not su�ce to characterize our world� Similar results may be obtained for a wide range of
normally reliable perceptual inferences� including so called �non�accidental properties� such
as the colinearity or cotermination of two line segments �see Table ��� What type structure
is needed to make such inferences reliable�
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��� A Bayesian analysis

We wish to explore conditions that must be satis�ed in order for an observer to be able to
make a reliable inference of� say� a particle being at rest� In fact� it is convenient to approach
the problem in a slightly more general fashion� We suppose that� at least in a restricted
context C� the occurrence of a world property P can be modeled using the probability
p�P jC�� and it�s absence by p�notP jC�� Suppose that some measurements are taken of the
objects and events in the world� We refer to a particular collection of such measurements
as a feature F � Hence a feature will be identi�ed with the set of all world events having
measurements speci�ed by F � and thus probabilities such as p�F jC� are well de�ned� We
wish to study the inference that property P occurs in the world� given both that the world
context is C and that the measurements F are satis�ed� Note that the probabilities p�P jC�
and p�F jC� are considered to be objective facts about the world �or at least an idealization
of the world�� and are not statements about the perceiver�s model of the world� Here we
keep the issue of whether or not a perceiver needs to use any probabilistic model of the world
quite separate from our analysis of a good inference�

In the probabilistic formalism a measure of the success of inferring property P from
F is the a posteriori probability of P given the feature F in the context C� A reliable
inference makes this probability� namely p�P jF�C�� nearly one� and the probability of an
error� namely p�notP jF�C�� nearly zero� It is convenient to consider the ratio of these two
quantities� that is

Rpost �
p�P jF�C�

p�notP jF�C�
� ���

We consider the feature F to provide a reliable inference� in the context C� precisely when
this probability ratio Rpost is much larger than one� Below we consider how such a condition
can be ensured�

Bayes� rule can be used to break down the probability ratio Rpost into two components�
The �rst component� Rlikelihood� is a likelihood ratio and relates to the measurement F of
property P � The second component is another probability ratio� Rprior� and speci�es the
relative probabilities of occurrence of P and notP in context C� The decomposition of Rpost

has the simple form�
Rpost � Rlikelihood �Rprior � ���

Here the prior probability ratio Rprior is given by �compare equation ����

Rprior �
p�P jC�

p�notP jC�
� ���

and the likelihood ratio Rlikelihood is de�ned to be

Rlikelihood �
p�F jP�C�

p�F jnotP�C�
� ���

From equation ��� we see that the likelihood ratio Rlikelihood acts as an ampli�cation factor
on the prior probability ratio Rprior� In words� we obtain a reliable inference only when the
product of the likelihood ratio and the prior probability ratio is signi�cantly larger than one�
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To be concrete� consider the gas particle observer discussed in the previous section� In
this case the context C denotes the fact that we are using Maxwell�s distribution for the
particle�s velocity� The numerator of the likelihood ratio� p�F jP�C�� is the probability of
observing F � namely the image speed to be less than �� given that the object is actually at
rest� For the measurement accuracy of �� and a particle moving with 
D speed no larger
than �� at least half of the measurements will show an image velocity having a speed of less
than �� The actual value doesn�t matter for our current argument� so long as it is bounded
away from zero� The denominator of the likelihood ratio� p�F jnotP�C�� is the probability
that the image velocity is small even though the particle is not at rest� This probability is
proportional to the square of the tolerance for the image motion� namely ��� Thus we �nd
that the likelihood ratio is proportional to ����� and is therefore large for su�ciently small
values of �� In other words� the image feature F in this case is much more likely to come
from a particle at rest than from a moving particle� as expected from our earlier discussion
of the likelihood ratio test�

But equation ��� has shown that the likelihood ratio does not provide the whole story�
rather it acts as an ampli�cation factor on the prior probability ratio for P versus notP in
context C� For our gas particle example� property P denotes that the particle has a velocity
of magnitude less than �� and the context speci�es that the velocity is distributed according
to Maxwell�s equation� Therefore Rprior is simply

p�P jC�

p�notP jC�
�

p�jj�vworldjj 	 ��

p�jj�vworldjj � ��
�

p�jj�vworldjj 	 ��

�� p�jj�vworldjj 	 ��
� ����
�cT �

�

� � ���

to leading order� It should now be clear what the problem is with the inference that the
particle is stationary� given that it�s image is stationary� in this gas particle context� In
particular� note that as � � � the prior probability ratio Rprior decreases to zero like ���
while we showed in the previous paragraph that the likelihood ratio Rlikelihood increases like
����� Thus� even though the likelihood ratio becomes large� it is simply not large enough
to amplify the prior probability ratio beyond one� Indeed� in agreement with equation �
�
above� we �nd the posterior ratio to be of order � and� for su�ciently small values of �� the
odds are therefore strongly against the particle being stationary�

While the above argument puts our conclusions on a solid Bayesian foundation it has not
yet answered our basic question of why� when we observe an object to be stationary in the
image� can we expect to be able to reliably conclude that the object is actually stationary
in the world �still assuming a stationary observer�� From equation ��� we see there are only
two places to look for this answer� the likelihood ratio and the prior probability ratio�

Considering the likelihood ratio �rst� we might attempt it raise it by considering a more
informative feature� For example� suppose we have accurate stereo measurements of the
velocity of the particle� so that we obtain accurate constraints on all three components
of it�s motion� Such a system would increase the likelihood ratio to be of order ����� if
the measurement accuracy was order � in each component� However� note that the resulting
feature is still not necessarily a reliable indicator that the particle is at rest� since we can only
conclude from equation ��� that the posterior probability ratio� Rpost� would remain bounded
away from zero as � � �� In order to get a reliable inference� the measurement accuracy
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would have to be signi�cantly �ner than the tolerance � in our de�nition of stationarity� This
approach of re�ning the measurements to raise the likelihood ratio does not �t our intuition
very well� in which it seems a mere glance at a ball on our desk su�ces to assure us that
it is stationary� Thus we turn to the second place to look for our answer� namely the prior
probability ratio�

��� A mode for stationary

Recall that the prior probability ratio represents a fact about the world� such as Maxwell�s
distribution for the velocities of gas particles� and not a perceiver�s model of it� Therefore� in
asking how the priors may help us in reliably inferring that a ball on our desk is at rest� we
are asking about the structure of a suitable prior probability distribution for the velocities
of balls� In fact� we will show that only a very simple qualitative property of such prior
distributions is needed� not a detailed quantitative speci�cation�

One obvious property of a prior distribution for velocities of balls is that� unlike gas
particles� friction and gravity together provide strong constraints on the ball�s motion� In
particular� when in contact with a stationary supporting surface� the ball is often at rest �to
within some tolerance ��� Thus� the prior distribution is more appropriately modeled using
the �mixture� distribution

p��vjB� � ��
��v� � ��p���v�� ���

Here 
��v� is the Dirac delta function which represents a probability distribution concentrated

at the point �v � ��� and p���v� is some smooth probability distribution over the 
�space
representing �v� These two �component distributions� are combined in equation ��� using
the �mixture proportions� �� and �� to form the overall distribution� p��vjB�� for such a ball
context� B� Of course� to maintain a valid probability distribution we require that �� and
�� are nonnegative and sum to one� Notice that the distribution p��vjB� models the property
that objects are at rest with probability ��� which is assumed to be nonzero in context B�
This qualitative model for the prior distribution provides an alternative context in which to
consider the inference of an object being at rest�

In this new context� the prior probability ratio Rprior is easily seen to be

p�P jB�

p�notP jB�
�

p�jj�vworldjj 	 ��

p�jj�vworldjj � ��
�

p�jj�vworldjj 	 ��

� � p�jj�vworldjj 	 ��
� ����� � ��� �O����� ����

as �� �� Note that� to leading order� all that matters here is the fact that being stationary
occurs with the positive probability ��	 none of the details of the smooth distribution for
velocities contribute to Rprior to �rst order� Also� in contrast to Maxwell�s distribution� we
now have a signi�cant prior probability ratio� ����� � ���� bounded away from zero�

Next we need to consider the likelihood ratio� A similar argument to the one given above
for the derivation of the likelihood ratio for context C shows that

Rlikelihood �
p�F jP�B�

p�F jnotP�B�
� O������� ����



DRAFT �

Together these two equations give us a posterior probability ratio� Rpost � O������� which
is much larger than one for � su�ciently small� Therefore� in the context B we can reliably
infer that the object is at rest� given that it was observed to be at rest in an image �assuming
the measurement accuracy � is su�ciently small�	 a mere glance should su�ce�

The di�erence between contexts C and B is simply that in the ball context the property
of being at rest is what we call a �modal property�� That is� the property �v � � has nonzero
probability in the prior distribution �See Jepson and Richards� ���
� for a formal de�nition of
a �mode���� As we saw above� if a property is modal then the prior probability ratio Rprior

remains bounded away from zero� Then� given an image feature for which the likelihood
ratio Rlikelihood� is known to be large� we might safely conclude that the modal property
actually occurs in this instance� It is important to note that this works given fairly weak
constraints on the prior distribution	 we do not need to have a quantitative model for the
prior distribution for the velocity of a ball �nor� in our opinion� can we expect to�� Rather
we need only assume that�

� The prior distribution is a mixture of two components or �modes��

� One component of the mixture� accounting for � � �� of the probability� is a smooth
function of �vworld�

� The other component� accounting for probability �� � �� appears as a delta function
at �vworld � ���

As we saw above� such prior knowledge is needed to license even apparently innocuous
inferences such as �objects which are stationary in the image are stationary in the scene��

� Observability of modes� Key features

The general Bayesian argument presented in the previous section is not limited to inferences
about whether or not an object is at rest� A similar argument shows the importance of
prior knowledge in other apparently innocuous inferences� involving so called non�accidental
properties �Binford� ����	 Lowe� ������ For example� it can be shown that a nonzero prior
for two sticks in the world to form a �V��con�guration is critical for the reliability of the
intuitively plausible inference that a V�con�guration observed in an image corresponds to a
V�con�guration in the world �Jepson � Richards� ���
�� Similarly� two colinear line segments
in an image can be treated as reliable indicators that the corresponding 
D line segments
are colinear in the world only when there is a modal prior probability for them to be colinear
in the world� The interested reader is referred to Jepson and Richards ����
� for details�
Other examples are listed in Table �� along with the relevant references�

There are also many examples of modal structures in the world for which a single view
may not be enough to obtain a reliable inference� Consider a context consisting of a set of
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Property Psychophysical Evidence A Posteriori Analysis
Straightness Watt � Andrews� ���
 �
Cotermination Julesz� ����	 Nakayama � Shimojo� ���
 
����
Circular Foster � Wagemans� ���
	 Lowe� ���� ��

Rectangular Gregory� ���� �
Parallel Rock� ���
	 Stevens� ���� ���
Rigid Body Motion Ullman� ����	 Wallach � O�Connell� ���
 ���
Collinearity Westheimer � McKee� ���� 
��
Skew Symmetry Kanade� ����	 Leyton� ���
 �

Table �� Some familiar �non�accidental� relations often suggested as driving visual percep�
tual inferences �for acoustic analogs� see Bregman� ������ The numbers in the third column
refer respectively to� ��� Bennett� Ho�man � Prakash� ����	 �
� Albert � Ho�man� ����	
�
� Knill � Kersten� ����	 ��� Jepson � Richards� ���
	 ��� Jepson � Richards� ����	 ���
Nakayama � Shimojo� ���
	 ��� Richards� Jepson � Feldman� ����	 ��� Reuman � Ho�man�
�����

elliptical rings� of various eccentricities� scattered on a planar surface� Suppose there is also a
mode for perfectly circular rings� Finally� suppose the slant and tilt of the plane with respect
to the viewer is randomly chosen using a smooth distribution� Then� given an orthographic
image consisting of just one ellipse� can the perceiver reliably determine the mode� namely
elliptical or circular� of the ring that generated this image feature� Clearly the answer is
no� since the observation of an ellipse in the image is typical for both elliptical and circular
rings� Another example of a modal property which cannot be reliably identi�ed is provided
in Section ��� below� where we exhibit a context in which �amoungst other things� we cannot
tell if a ball is sliding along the �oor or moving through the air� It is important to emphasize
that modal properties may be important to the perceiver� even though some may not be
reliably observable from a single image�

Nevertheless� as we see from Table �� there are a variety of applications for the Bayesian
analysis presented in Section 
�
� and therefore it is useful to summarize the essential prop�
erties in a de�nition� In particular� we assume we have a context C which speci�es the prior
probability distribution for world events in the particular situation being studied� Suppose
we are interested in whether or not property P holds in the world� given an image feature
F with resolution parameter �� Then we have the following de�nition of a �key feature��

Key Feature De�nition� The feature F � with resolution parameter �� is said to be a
key feature for property P in the context C if�

Rlikelihood � p�F jP�C�
p�F jnotP�C� is unbounded as �� ��

Rprior �
p�P jC�

p�notP jC� remains bounded away from zero as �� ��

��
�

In this case� the posterior probability ratio Rpost is unbounded as � � �� and thus� for
su�ciently small �� the image feature F provides a reliable indicator for world property P
in context C�
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The term �key feature� was introduced by Jepson and Richards ����
�� with the intent
that �key� referred to unlocking reliable inferences about the world� The essential properties of
key features� as listed in the above de�nition� have also been noted or� in fact� anticipated by
a number of other authors� For example� Bennett� Ho�man and Prakash ������ introduced
the notion of an ideal observer� which has the same essential ingredients of a high likelihood
ratio and a nonvanishing prior probability ratio� Similarly� Knill and Kersten ������ discuss a
di�erent notion of an ideal observer which rests on these same conditions� For example� Knill
and Kersten ������ discuss the inference of the 
D shape of a wire given just one orthographic
image� The critical element is the perceiver�s prior knowledge of modal structure about the
way in which the wires can be bent in the context they treat� Also� in more natural contexts�
there is a key feature for the chromaticity of the illuminant �Lee� ������ and a key feature for
rigid 
D motion given perspective projection �Bennett� Ho�man � Prakash� ����	 Jepson �
Richards� ���
��

The notion of a key feature is clearly an idealization of both the properties of the world
and the sensing process� As we discussed above we need to assume that physical events occur
at a variety of scales and� in order to obtain the required sorts of prior distributions involving
delta functions� this separation of scales must be assumed to be extreme� This idealization
frees us from talking about detection rates� acceptable false target probabilities� and so on� In
fact� we view one of the most important contributions of the idea of a key feature to be that�
in freeing us from such details� we are left to consider appropriate representations for world
structure in a much simpler setting� In the next two sections we illustrate this by describing
a suitable representation for a simple domain� along with the use of this representation in
determining the reliability of various inferences�

� Modal analysis

We began this paper by saying that the world we live in is a very structured place� and
that it is knowledge of this structure which allows us to make reliable inferences from our
various sensory signals �Bobick� ����	 Richards � Bobick� ������ So far we have provided a
glimpse into the details of how this might come about� We saw in Section 
 how the essential
ingredients of a key feature� namely a large likelihood ratio and a nonzero prior� were both
important for obtaining a reliable inference� Moreover we saw how regularities in our world
can give rise to these essential ingredients� For example� we showed that the inference that
an object is stationary rests on the fact that our world is structured so that objects often are

stationary� This regularity� trivial as it sounds� is re�ected as a mode in the prior probability
distribution for the motion of objects in our world� The existence of this mode was shown
to be critical in order to obtain a reliable inference that an object being observed is in fact
at rest�

In this section we attempt to broaden the picture we have painted so far� In particular�
we wish to show how a property space may consist of an embedded set of modes� and how
these modes may interact with those occurring in a di�erent property space� The particular
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example we consider is an idealization of a ball inside a box� The ball can move around
inside the box� bounce o� of the walls� roll along the �oor or simply rest on the �oor� Our
goal is to illustrate a modal analysis of this context� and to brie�y examine how reliable
inferences may arise given perceptual data in this more complex domain� In order to keep
the analysis simple we keep a strict idealization of the domain� which allows the essential
structure of several natural inferences to be clearly exposed�

��� Motion modes� A ball in a box

The position of the ball�s center of mass is denoted by �x�t�� which is taken to form a contin�
uous trajectory� The velocity of the ball� �v�t�� is taken to be piecewise continuous in order
to model collisions with the box� For the purpose of this section the critical observation is
that the velocity of the ball appears naturally at several scales� In particular� we distinguish
small velocities of the ball due to vibrations of the box� air currents� and other small pertur�
bations� from the range of velocities achieved by throwing it� dropping it� or hitting it with
a squash racket� We idealize the �rst distribution as the ball being at rest� that is the single
point �v � ��� while the latter corresponds to a range of velocities which occur with the ball
in the air� In addition� there is the set of velocities which occur while the ball is rolling on
the �oor� Here again there is a separation of scales� with the component of the velocity in
the direction perpendicular to the �oor taken to be negligible�

This notion of a separation of scales between the velocities which occur due to di�erent
physical processes does not mean an exclusive separation� In particular� we allow that the
ball can momentarily be moving slowly while it is in the air even though this speed is more
typical of the ball being on the �oor� For example� if the ball bounces nearly vertically� then
it will be nearly stationary at the top of it�s trajectory� Our point about the separation of
scales is that the distribution of velocities of the ball while it is in the air has a broad range
and it is the exceptional situation which can produce a small velocity� Our idealization is
then to take this separation of scales to be extreme� In particular� we take the small motions
due to vibrations� etc� to be negligible� and treat the �at rest� state as the single point
�v � ���

The modes in the prior probability distribution on a con�guration space correspond to
the e�ects of di�erent physical processes� operating at di�erent scales and existing primarily
on di�erent sets within this con�guration space� For example� consider the con�guration
space consisting only of the set of velocities� �v�t�� of the ball� Then� as depicted in Figure �a

we have a mode for being at rest �i�e� at the point �v � ��� another for rolling or sliding
on the �oor �i�e� in the plane v� � ��� and a third mode for velocities which occur during
free fall� This third mode is taken to be a smooth distribution over the three dimensional
con�guration space �v� The critical point is that the processes operating at di�erent scales
have resulted in modes that exist on sets which have di�erent scales in particular directions�
We have idealized this separation of scales to the extreme of changing the dimension of the
various subsets corresponding to modes in the con�guration space� For example� smooth free
fall generates velocities smoothly distributed over the 
D con�guration space� rolling motion
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Figure �� Modes for the velocity �a� and the position �b� of the ball in the box�

only exists in the 
D subset consisting of v� � �� while being at rest occurs only at a single
point� namely the origin� Our prior model then is to put smooth probability distributions
on each of these sets�

To be concrete� we take the prior distribution for velocities �v�t� to have the form of the
mixture model

pv��v� � ��
vp

�
v��v� � ��

vp
�
v��v� � ��

vp
�
v��v�� ��
�

Here pnv denotes the component distribution associated with the nth mode or process� Each
of these component distributions is combined with it�s mixing proportion �n

v � and the sum
provides the desired prior distribution� The sum of the �n

v over the n processes should be ��
For processes which exist on sets having a dimension smaller than the full con�guration space�
such as rolling� the prior distribution is taken to be a smoothly modulated delta function
along this set� In particular� for our current example� we have component distributions of
the following form

p�v��v� � 
��v��
p�v��v� � 
�v��q�v�v�� v���
p�v��v� is a bounded function of �v�

����

Note that p�v represents the �at rest� mode� p�v represents rolling or sliding on the �oor with
q�v�v�� v�� some bounded distribution over the plane of horizontal velocities �v�� v�� ��� The
�nal mode� for particles on a ballistic trajectory for example� is accounted for by the last
component� p�v��v�� We assume that both q�v and p�v are bounded functions in order to rule out
the possibility of additional modal structure not already represented by the delta functions
in �����

Given our analysis in the preceding sections� one might expect that these modes play
a critical role in making inferences such as whether the ball is at rest or moving at time
t� Before considering a Bayesian analysis of such an inference it is useful to �rst examine a
separate con�guration space for the ball�in�a�box example which represents spatial properties
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of the system�

��� Spatial modes� A ball in a box

The position of the ball�s center of mass� �x�t�� provides another example of a con�guration
space for which the prior distribution has a modal structure� Here� we have one mode
consisting of a smooth distribution over the inside of the box which corresponds to positions
of the ball during free fall� Also� there is a mode on the �oor� say x� � �� which corresponds
to situations in which the ball is rolling or simply at rest on the �oor �see Figure �b�� Finally�
we assume that the collisions are e�ectively instantaneous� so there are no additional modes
arranged around the walls and ceiling of the box�

Following our previous example� such a prior distribution can be conveniently written as
the mixture model

px��x� � ��
xp

�
x��x� � ��

xp
�
x��x�� ����

Again the quantities �n
x provide the mixing proportions for the two modes� The component

distributions pnx are given by

p�x��x� � 
�x��q�x�x�� x���
p�x��x� is a bounded function of �x�

����

Note that p�x represents the both the �at rest� mode and the �rolling� mode� with q�x�x�� x��
representing some bounded distribution over the plane of horizontal positions �x�� x�� ���
Since there is no special position on the �oor for the ball to be at rest we do not have a
pure delta function in the spatial domain� Also� no point on the �oor should be forbidden�
so we take q�x�x�� x�� to be a smooth nonzero distribution over the �oor� The second mode�
p�x� accounts for the positions achieved during it�s various possible trajectories� and we take
it to be a smooth �nonzero� distribution over the interior of the box�

��� Mode coupling

Given the spatial and motion modes described in the previous sections we need to consider
how they can be combined to derive the prior probability for the ball to be at position �x�t�
with velocity �v�t� at time t� Our basic point is a simple one� namely that the appropriate
joint distribution is not just what one obtains by treating the priors for position and velocity
independently� Rather� the mixture distributions for position and velocity must be coupled
in a nontrivial way �see also Pearl� ����	 Yuille et al�� ������

To see this� consider the distribution pindep��x��v� obtained by treating the position �x and

�This is yet another form of the argument that processes occur at di�erent scales� Here we are taking the

time duration of a collision as negligible compared to the temporal resolution dt of the system�
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velocity �v as independent� that is

pindep��x��v� � px��x�pv��v�� ����

Our claim is that this distribution does not provide the correct modal properties� In par�
ticular� consider the conditional prior probability density that the ball is at rest� given that
it is at position �x� for some �x in the interior of the box� Since there is no physical process
generating a mode for the ball to be at rest� we should expect the prior to similar to the one
obtained in Section 
 for the gas particle �see equation ����� That is� we expect the prior to
be roughly

p�jj�vjj 	 � j x� � �� � p�v�����
� �O�����

with p�v��v� the prior distribution for velocities while the ball is in the air� The actual coef�

�cient p�v���� of the leading order term does not matter here	 what is signi�cant is that this
probability is of order ��� In contrast� it follows from equation ���� that

pindep�jj�vjj 	 � j x� � �� � ��
v �O�����

which is just the mixing proportion� ��
v � of the rest state to leading order�

The reason for this di�erence is that the independent combination of the spatial and
motion distributions� namely pindep� does not take into consideration the appropriate coupling
between the modes in the di�erent con�guration spaces� In particular� notice that when the
product in ���� is written out we obtain six di�erent modes in the resulting mixture model�
Some of these modes do not make sense physically� For example� when the ball is above the
�oor there should be no mode for being at rest �i�e� the mixture proportion ��

v should be ���
and no mode for horizontal motion �i�e� ��

v � ��� Also� when the ball is on the �oor� there
should not be a mode for a general 
D velocity �i�e� ��

v � ��� Together these give the mode
coupling conditions

��
v � ��

v � � whenever x� � ��
��
v � � whenever x� � ��

����

These coupling conditions can also be incorporated into a mixture model for the joint dis�
tribution of �x and �v� in which only the physically plausible modes are kept� In particular�
an appropriate model is

px�v��x��v� � ��
x�vp

�
x�v��x��v� � ��

x�vp
�
x�v��x��v� � ��

x�vp
�
x�v��x��v�� ����

Here the three modes� or component processes� are

p�x�v��x��v� � 
��v�
�x��q�x�x�� x���
p�x�v��x��v� � 
�v��
�x��q�x�v�x�� x�� v�� v���
p�x�v��x��v� is a bounded distribution�

�
��

Here q�x is the same as introduced in equation ����� Also� we constrain the new distributions
q�x�v and p�x�v to be bounded functions� which eliminates the possibility of further modal
structure within this model� Note that the three mixture components in equation ����
correspond to the processes at rest on the �oor� rolling or sliding on the �oor� and moving
through the air�
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��� Reliable inferences

Suppose the image feature Ffloor includes the fact that the image velocity of the ball satis�es
jj�vimage�t�jj 	 �� along with some positional information about the ball and the box� In
particular we assume that the image feature Ffloor also shows that the position of the ball in
the image is consistent with the ball being on the �oor� Should we infer from the observation
that the ball is stationary� Let property P denote that the ball is stationary in the world
�i�e� jj�vjj 	 ��� given our �ball�in�a�box� context� B� First consider the likelihood ratio
Rlikelihood � p�F jP�B��p�F jnotP�B�� Then Rlikelihood is of order ����� as follows� The
numerator of the likelihood ratio is nonzero� since image motion is typically small when the
ball is at rest �property P �� On the other hand� in the absence of property P � the image
motion will be small only if both coordinates of the image velocity also happen to be small�
However� because the prior distribution for �v requires that these components be smoothly
distributed� jj�vimagejj will be less than � with a probability proportional to ��� The likelihood
ratio is therefore of order ���� as �� �� and we see that the �rst condition of the key feature
de�nition is satis�ed� given our observation of no image motion�

Next consider the prior probability ratio Rprior � p�P jB��p�notP jB�� The mode coupling
condition ���� allows a mode in which the ball is stationary so long as it is on the �oor�
Moreover� there is also a spatial mode for the ball to be on the �oor� By equation �����
the prior p�P jB� is just ��

x�v to leading order in �� and therefore the ratio Rprior is given by
��
x�v���� ��

x�v� to leading order� Therefore the second condition of our key feature de�nition
is satis�ed� and we can reliably conclude that the ball is at rest� Notice that we can also
conclude that the ball must be on the �oor� In fact� it can be shown that this state in
which the ball is on the �oor and at rest has the a posteriori probability of � � O����� and
is therefore a reliable inference for su�ciently small ��

Now consider another image feature Fair for the ball�in�a�box where again jj�vimage�t�jj 	 ��
but x� � �� and hence the ball cannot be on the �oor� Then� from the mode coupling
condition ����� it follows that there is no mode for the ball to be at rest� Indeed� the prior
probability ratio Rprior for it to be at rest is only of order ��� Hence the feature Fair does
not satisfy the second key feature condition� namely that Rprior remain bounded away from
zero� as �� �� Given the likelihood ratio Rlikelihood is of order ����� the posteriori ratio Rpost

for property P being correct is only ����� Hence the odds strongly favor the conclusion that
the ball must be in motion� even though that motion must be special in that it is nearly
directed along the line of sight �see Figure ��� in Jepson and Richards� ���
� for a di�erent
perceptual example of the possible use of such mode coupling conditions��

� Qualitative probabilities

An important property of the modal analysis presented in the previous section is that the
conclusions� namely the reliability of the inference that the ball is at rest� do not depend on
quantitative details of the various smooth component distributions in the prior probability
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Figure 
� A 
D slice of velocity con�guration space with modes for at rest� smooth motion�
and discontinuous motion�

model ����� In fact� all that matters in the limit as �� � is that the mixture proportion for
the mode �at rest on the �oor� is nonzero �i�e� ��

x�v � ��� along with various nondegeneracy
assumptions which ensure the density functions q�v � p

�
v� etc� are smooth and bounded� A

perceiver can therefore gain some freedom from knowing precise quantitative details about
the appropriate prior distributions� yet still expect to make reliable inferences� at least for
contexts that support key features �see also Doyle � Sacks� ������ Here we illustrate this
point by considering inferences about the occurrence of a collision� again using the �ball�in�
a�box� context�

��� Velocity discontinuities

Recall that the position of the ball�s center of mass� �x�t�� is taken to form a continuous
trajectory but that the velocity of the ball� �v�t�� is taken to be piecewise continuous� Behind
this assumption there is again a separation of scales of various physical processes� just as we
had for the distinction of moving versus at rest in the previous section� Here we note that
forces on the ball arise naturally at several scales� At one scale we have gravity� aerodynamic
e�ects� and so on� It is assumed that the forces due to e�ects at this scale are signi�cantly
smaller than the typical forces due to collisions� We emphasize again that this separation
is not absolute since collisions can� of course� produce small forces� but it is an exceptional
collision which produces a force as small as gravity�

The analysis is simplest when we take this separation of scales to be extreme� In partic�
ular� over a time interval of duration dt� which is just resolvable by the system� we take the
change of velocity due to the gravity and aerodynamic e�ects to be negligible while collisions
can produce signi�cant changes in the velocity� At the resolution determined by dt then�
the velocity of the ball may be discontinuous due to collisions with the walls� Otherwise the
motion of the ball is well approximated by a constant velocity over each interval �t� t� dt��
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Consider then the con�guration space made up of the �D�points� ��v�t�� �v�t � dt��� As
discussed above� the modes in the prior distribution on this space are meant to correspond to
the e�ects of di�erent physical processes� operating at di�erent scales and existing primarily
on di�erent sets within this space� For example� smooth trajectories appear on the 
D
surface �v�t� � �v�t� dt�� where we have used the idealization that the smaller forces produce
negligible velocity changes over time intervals of length dt� In Figure 
 we depict a 
D slice
of the velocity con�guration space� and this smooth motion mode is represented simply by
the line v��t� � v��t � dt�� The modes we studied in the previous section� namely for the
ball to be at rest and for the ball to be rolling or sliding on the �oor will also appear in this
�D con�guration space�

The large forces due to collisions can generate large changes in the velocity during a
time step of dt� We take these collision events as producing a smooth distribution in the
con�guration space ��v�t�� �v�t � dt��� In fact� there is additional structure within the set of
velocities consistent with a collision occurring between time t and t� dt� For example� if the
ball can only collide with the stationary box then conservation of energy �neglecting spin�
requires that the speed jj�v�t � dt�jj can be no larger than jj�v�t�jj� In addition� there are
further restrictions on the direction of the outgoing trajectory due to the surface normal and
spin on the ball� In order to keep our analysis simple we ignore these further regularities
and just require that the component of the prior distribution due to collisions is a bounded
function of ��v�t�� �v�t� dt���

��� Collisions

In order to make inferences about collisions we need to consider the prior distribution for the
ball to be at position �x�t� dt� with velocity �v�t� dt� at time t� dt� given that it was at �x�t�
with velocity �v�t� at time t� Again it should be clear that the desired distribution cannot be
represented with an independent combination of a distribution for the position of the ball
with a second distribution for the velocity of the ball at t� dt� Instead� we need to take into
account further structure about the context� such as the fact that velocity discontinuities
only occur when the ball collides with the box�

The desired prior can be broken up into two cases� depending on whether or not a collision
occurs during the time interval �t� t � dt�� Since we are taking the time duration dt to be
short enough such that the velocity of the ball is essentially constant� the ball�s trajectory
can be initially predicted by the linear model

�xp�� � � �x�t� � �� � t��v�t�� �
��

for � 	 �t� t � dt�� This prediction is taken to be accurate so long as this trajectory does
not penetrate the walls of the box� Here t� �x�t� and �v�t� are treated as constants� and
they together completely specify the trajectory �xp�� �� We say that the trajectory �xp�� �
transversally intersects the box at a point �xc if the path intersects the box at that point and
is not tangent to the box� Thus rolling or sliding motions are non�transversal� while a typical
collision is a tranversal intersection� In the cases where no collision occurs during �t� t� dt�
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we take the prior model to be

p��x�t�dt�� �v�t�dt�j�x�t�� �v�t�� noCollision� � 
��x�t�dt���xp�t�dt��
��v�t�dt���v�t��� �

�

Here the conditional term noCollision refers to the fact that the predicted trajectory �xp�� �
does not transversally intersect the box for � 	 �t� t� dt�� The two delta functions in the
above equation impose the constraint that the predicted trajectory �xp�t� dt� is accurate in
the absence of collisions� In practice one would need to replace these delta functions with
distributions which have nonzero variances� But for simplicity here we are assuming the
scale of the errors in the prediction is negligible over a time step of length dt�

In the second case� for which a collision occurs� the predicted trajectory �xp�� � is piecewise
linear� The discontinuity occurs at the point of transversal intersection� namely ��xc� tc��
between the line described in �
�� and the box� For simplicity we neglect the special cases
in which several discontinuities may appear in the time interval �t� t � dt�� The predicted
trajectory is thus

�xp�� � �

�
�x�t� � �� � t��v�t�� for � 	 �t� tc�	
�xc � �� � tc��v�t� dt�� for � 	 �tc� t� dt��

�

�

Here we have approximated the impact to be instantaneous� and taken the re�ected velocity�
�v�t� dt� to be constant after the impact� Clearly� the assumption here is that the re�ected
velocity points back into the interior of the box or� at least� along the wall from the contact
position �xc� Given this predicted trajectory �xp�� �� the prior distribution given a collision is
taken to be

p��x�t� dt�� �v�t� dt� j�x�t�� �v�t�� Collision � � 
��x�t� dt�� �xp�t� dt��prefl��v�t� dt�j�v�t�� �xc��
�
��

Here prefl provides the distribution for the re�ected velocity� �v�t � dt�� given the incoming
velocity �v�t� and the point of collision �xc� In order to model relatively unstructured scattering
of the ball o� of the wall� due to spins or imperfections in the wall� we take prefl to be a
smooth bounded function of �v�t� dt�� subject to the constraint that �v�t� dt� cannot point
out of the box from �xc�

It is also possible to model more specialized structure in the process of the ball bouncing
o� of the walls� For example� the distribution prefl above could be augmented with a mixture
of di�erent modes of re�ection� In addition� to the general scattering used in �
��� we could
include a second mode in which the re�ected velocity is in the direction of the perfect
re�ection� A third mode could be added in which the motion immediately after the collision
is directed along the planar surface at �xc� as in a rolling or sliding motion� Thus our basic
framework in terms of mixture models is su�ciently expressive to capture a wide range of
phenomena� However� for our purposes here� it is convenient to keep the model simple and
ignore these more detailed structures�
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��� Non	degeneracy conditions

In order to complete the speci�cation of our ball�in�a�box context B� we need to impose
some non�degeneracy conditions on the various prior components which we have introduced
so far� For example� consider the component distribution p�x�v��x��v�� introduced in ����� which
is just the prior probability distribution for the ball to be at location �x�t� with velocity �v�t�
during it�s free motion through the air� Up to this point we have only required that p�x�v is
a bounded function of �x and �v� But clearly this is too broad a class of distributions� since
entirely unintended behaviours can arise by choosing distributions with particular structures�
For example� p�x�v might be zero within a wide layer all around the inside of the box� in which
case the prior probability of a collision would also vanish� To avoid such bogus properties
we need to bound the various component distributions from below� Just such a bound was
used in Section ���� where we discussed the inference that the ball was resting on the �oor of
the box� There we needed to assume that the density q�x was bounded away from zero over
the �oor of the box� The main point of this section is that such a bound can be conveniently
expressed in terms of a single canonical distribution�

First consider the component distribution p�x�v��x��v�� We take the canonical model�

m�
x�v��x��v� to be a uniform distribution over the inside of the box for all velocities having

speed less than some constant vmax� That is�

m�
x�v��x��v� �

�
K for �x in the box and jj�vjj 	 vmax	
� otherwise�

�
��

Here K is a positive normalization constant� which depends on the volume of the box and
vmax� such that the model distribution m�

x�v integrates to one� Our nondegeneracy condition
on p�x�v��x��v� is simply that there exists a positive constant c such that

p�x�v��x��v� 
 cm�
x�v��x��v� �
��

for all values of �x and �v � In words� our component density p�x�v��x��v� must be bounded below
by some constant multiple of our canonical model m�

x�v��x��v�� Such a condition� ensures the
prior density p�x�v is nonzero at any point ��x��v�� with �x in the box and �v having a speed of
at most vmax� As we show in the next subsection this condition is su�cient to ensure that
collisions between the ball and the box do occur with a positive prior probability� Notice
that equation �
�� is a rather loose constraint on the component p�x�v��x��v� in that many
di�erent distributions satisfy this constraint�

Similarly� to specify context B� we also need to impose a non�degeneracy condition on
the conditional prior prefl��uj�v� �xc� used in equation �
��� In this case we take our canonical
model mrefl to be

mrefl��uj�v� �xc� �
�
K � for �n��xc� � �u � � and jj�ujj � jj�vjj	
� otherwise�

�
��

Again K � is a positive normalization factor� Here �n��xc� is an outward pointing normal vector
for the side of the box which contains the point of collision �xc� The above model states that
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the re�ected velocity �u is uniformly distributed in any direction� other than those that
penetrate the box� with the speed limited to be no larger than the speed jj�v�t�jj along the
incoming trajectory� Our nondegeneracy condition for the distribution prefl is then simply
that there exists a positive constant c such that

prefl��uj�v� �xc� 
 cmrefl��uj�v� �xc� �
��

for all �u� �v� and �xc�

Finally� non�degeneracy conditions are required for the remaining distributions� q�x and
q�x�v in equation �
��� For q�x�x�� x�� we take the canonical distribution� say m�

x� to be a
uniform distribution over the �oor of the box� Recall that the distribution q�xv models
the position and velocity of the ball while it is rolling on the �oor� A canonical model
distribution� say m�

x�v similar to the one used in equation �
�� can be formulated� but with
x� and v� constrained to be zero�

This completes the speci�cation of the context B� In particular the prior distribution in
this context B is given by equations ����� �

�� and �
��� Each of the mixture proportions
�n
x�v in equation ���� are taken to be positive� Moreover� the various component distributions

q�x� q
�
x�v� p

�
x�v� and prefl must each satisfy a non�degeneracy condition of the form �
�� and

�
�� using the corresponding canonical distribution m�
x� etc� A large class of particular

quantitative distributions satisfy these conditions� and it is in this sense that our probabilistic
model is qualitative� The perceiver need not precisely specify the prior distributions� but
rather only needs to describe it�s modal structure� Our last task is to consider what sort
of reliable inferences can be made given only that the prior distribution is in this class of
distributions which are consistent with the canonical model� that is� within the context B�

��� Key feature for a collision

As Rubin has pointed out ������� the observation of a velocity discontinuity in an image
can be a reliable indicator of a velocity discontinuity in 
D� For our context B� a velocity
discontinuity occurs only if the ball collides transversally with the box� In fact� as we show
in this section� the observation of a discontinuity in the image velocity provides a key feature
for such a collision�

It is useful to walk through the argument in terms of the Bayesian analysis we presented
in Section 
�
 and the key feature de�nition provided in Section 
� Let the feature F denote
the observation of image velocities �vimage�t� and �vimage�t � dt� such that the norm of the
di�erence satis�es jj�vimage�t� � �vimage�t � dt�jj � dv� Here the threshold dv � � should be
taken smaller than the rough scale of velocities which occur while the ball is in the air� That
is� given our canonical model� for which speeds at least up to the value vmax are known to
occur� we should take dv 		 vmax� Next� let property P denote the occurrence of a collision
of the ball with the box at some time in the interval �t� t� dt�� Similarly� let notP denote
the property that no collision occurs during the same time interval� Finally� suppose the
�absolute� error in the measured image velocities is no larger than ��
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Consider the likelihood ratio� p�F jP�B��p�F jnotP�B�� as the measurement resolution
� goes to zero� The denominator is just the likelihood of observing the image feature F
given that no collision �i�e� notP � occurs� In our context B� the change in the 
D velocity
over a time interval of duration dt is negligible unless a collision occurs� Given orthographic
projection� the same holds true for the exact image velocity� Thus� given notP � the obser�
vation of a signi�cant change in the observed image velocity �i�e� the observation of F � can
only be due to measurement error� Therefore� as the velocity measurement resolution� ��
goes to zero it must be the case that p�F jnotP�B� also goes to zero� That is� a smooth 
D
trajectory is increasingly unlikely to produce a sudden large jump in the image motion as
the measurement resolution becomes �ner�

Next consider the numerator in the likelihood ratio� p�F jP�B�� which is just the like�
lihood of observing the image feature F given a collision occurs� In general this likelihood
depends on the nature of the collisions� For example� if all the collisions occurred with the
ball moving extremely slowly� then it is possible that the likelihood p�F jP�B� might vanish
since no velocity step will be larger than dv� as is required to trigger the feature F � There�
fore� to ensure a positive likelihood we must use the nondegeneracy conditions discussed in
the previous section�

In order to check that p�F jP�B� is bounded away from zero� it is convenient to consider
the collisions which fail to generate a suitable image feature F � For each choice of incoming
velocity� �v�t�� the detection of a velocity discontinuity will fail precisely when jj�vimage�t� �
�vimage�t� dt�jj � dv� The set of all re�ected velocities �v�t� dt� which satisfy this inequality
is a tube through the 
D velocity space� having radius dv� which is aligned with the viewing
direction� Since dv is chosen to be much smaller that the maximum speed vmax in the
canonical model� then for all su�ciently large incoming velocities �v�t�� there must be a large
region outside the tube in which the canonical density m�

refl��v�t � dt�j�v�t�� �xc� is strictly
positive� The result then is that� given the canonical model� p�F jP�B� is strictly positive�
And� by our nondegeneracy conditions� the same must hold for any suitable prior� As a
result� we have shown that the likelihood ratio is unbounded as � goes to zero�

In order for discontinuities in the image velocity to be a key feature for collisions we
need show that the prior probability ratio satis�es the second condition in the key feature
de�nition� That is� the prior probability ratio� p�P jB��p�notP jB�� must be positive �or�
more precisely� bounded away from zero as � goes to zero�� Here again we need to use
the nondegeneracy conditions� this time to argue that a collision during a time interval of
duration dt has a positive prior probability� To do this� consider the region close to one wall
of the box� say within a distance dx of the wall� Then the canonical model m�

x�v��x�t�� �v�t��
ensures a positive probability for the ball to be in such a region at time t� In order for a
collision to occur before time t�dt we also require that the velocity� �v�t�� satis�es �nwall��v�t� �
dx�dt� where �nwall is the outward pointing normal� But with dx chosen su�ciently small
�i�e� dx 	 vmaxdt�� there is a positive probability that the ball will also have a velocity such
that a transversal impact will occur before time t� dt� Thus collisions occur with a strictly
positive probability under our canonical model� and therefore the same must be true for any
prior consistent with this model� Thus we �nd p�P jB� is bounded away from zero� which
is su�cient to ensure the second requirement in the key feature de�nition� As a result� a
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Z

Figure 
� Collisions can be reliably inferred from the trajectories through X and Y� while at
point Z the contact of the ball with the ground cannot be reliably inferred given the current
prior model�

discontinuity in the image velocity is a key feature for a collision in 
D in our ball�in�a�box
context B�

��� Reliable inferences

Given that we have a key feature� suppose you observe a velocity discontinuity in the tra�
jectory near the point �X� in Figure 
� Then the calculations in the previous subsection
show that the posterior probability ratio� p�P jF�B��p�notP jF�B�� is large and the odds
overwhelmingly favour the conclusion that the ball hit the back wall �or a transparent front
one� somewhere near the visual ray through the point X�

In fact� the priors introduced above also sanction the conclusion that� after the collision�
the ball bounced away from the wall rather than sliding along it� To show this� consider
the set of all collisions which are consistent with the images of the three points �x�t�� �xc�
and �x�t � dt�� The situation in which the ball slides along the wall is uniquely speci�ed
by these observations� and a single value of the re�ected velocity �v�t � dt� is determined�
Alternatively� for bounces in which the ball comes away from the wall� the set of re�ected
velocities consistent with the observations form a line directed along the visual ray� Including
some image noise changes these structures to a small neighbourhood and a tube� respectively�
The basic structure is similar to our �at rest� �moving along the line of sight� distinction
we had before� In fact� since our canonical distribution for 
D re�ected velocities �namely
mrefl��uj�v� �xc�� does not have a mode directed along the wall� it is much more probable that
the observed re�ected velocity is away from the wall �i�e� �v�t � dt� lies somewhere in the
tube� not just near one end��

As an alternative example� suppose you observe an abrupt stop at X� That is� there
is a discontinuity in the image velocity at time t� and that image of the ball remains at
rest immediately after this event� The best bet is then that the ball hit the wall and is
now coming towards going away from you� The analysis again provides a tube of possible
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motions consistent with the ball moving towards or away from the viewer �to within the
resolution ��� The prior mrefl��uj�v� �xc� has no mode at the rest state� and as a result the
posterior probability is strongly in favour of motion �nearly� along the line of sight�

Next� suppose you observe a velocity discontinuity in the trajectory near the point Y in
Figure 
� so the image observations are consistent with the ball bouncing o� of the �oor�
Actually� the same observations are consistent with the ball colliding with the �oor and
then beginning to roll� or rolling and then suddenly leaving the �oor� or� �nally� executing
a velocity discontinuity as it rolls on the �oor� Does our current qualitative probabilistic
model have anything to say about the choice between these various possibilities� The latter
two interpretations are eliminated by our model since velocity discontinuities do not occur
unless the trajectory of the motion is transverse to a surface �i�e� the �oor is smooth�� We
are therefore left with two interpretations� one in which the ball bounces o� of the �oor� and
another in which the ball impacts the �oor but then immediately begins rolling� This case
is di�erent than the one discussed previously for the collision occurring at the point X� since
now there is a mode for rolling or sliding along the �oor� Which interpretation� if either� is
more probable�

The issue can be resolved using the model for the re�ected velocity� mrefl��uj�v� �xc�� just
as for the collision at X treated above� In particular� the majority of collisions �i�e� ��O���
versus O���� predicted by this model will be away from the �oor� Thus we can reliably infer
that the ball is in the air shortly after the collision with the �oor� �Note that we cannot
apply the prior distribution px�v to the analysis of the state ��x�t � dt�� �v�t � dt�� at time
t� dt� since the conditional distribution prefl shows that this state is not independent of the
initial state ��x�t�� �v�t����

Finally� suppose you observe the smooth trajectory through the image point Z at time
t� and that jj�vimage�t � dt� � �vimage�t�jj 	 � �call this Fsmooth�� The reader is left to check
that the two most plausible interpretations are� �� the ball is moving smoothly �no collision�
through the air during �t� t � dt�	 
� the ball is rolling sliding smoothly along the �oor
during �t� t � dt�� In particular� the probability that a collision will give rise to this image
observation is O����� Therefore it is improbable that a collision has occurred �in fact Fsmooth

is a key feature for smooth motion during �t� t� dt��� We are therefore left with the above
two possibilities� How should we decide between the two�

One way to decide is to seek the most probable category� that is� either the trajectory is
in the air or it is on the ground� Our canonical distribution cannot uniquely designate one of
these two categories as being necessarily more probable� The result depends on the mixture
proportions for the prior probabilities of motion through the air and motion on the ground
���

x�v and ��
x�v� respectively�� which have not been speci�ed� The appropriate conclusion then

is that without more information� we cannot decide on the most probable category�

A second way to decide is to seek the most probable initial state ��x�t�� �v�t��� say up to
our ubiquitous resolution parameter �� Here� because of the mode for the ball to be rolling
on the �oor� there is a clear cut winner� The a posteriori probability for the �unique� rolling
state is some constant� bounded away from zero� Each of the other states� accounting for
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D velocities in a neighbourhood of radius �� have posterior probabilities of only O���� Thus
rolling on the �oor is the most probable state� even though it is possible that� as a category
it is less probable than motion through the air�

This is not a paradox so much as a warning� The reason the category for motion through
the air can be more probable is simply that it is made up of lots �i�e� O������ of states
each of which have probability O���� While no single state may be very probable� the total
probability over the category can be signi�cant� The choice of which method to use to come
up with a preferred interpretation depends on the task� For example� we might consider
using the maximally probable state if we wish to intercept the ball� While� for purposes of
predicting future events such as possible collisions with the �oor� we may wish to consider
the most probable category instead�

Our point with these examples is not to generate a detailed model of a ball in a box�
Rather� we hope it has demonstrated that by using a qualitativemodel of the prior probability
distribution we have been able to make simple back�of�the�envelope calculations to arrive at
plausible inferences about events within an interesting natural context�

	 Summary

We have argued that for a perceiver to make reliable inferences about it�s world� the per�
ceiver should make use of world regularities� The class of regularities stressed are those
that give rise to modal structures in the distribution of events� The essential ingredient of
modal structure is simply that di�erent physical processes generate e�ects distributed over
signi�cantly di�erent scales� For example� the range of velocities of an object while it is in
the air is signi�cantly larger than the range due to small vibrations while the object is at rest
on the ground� Similarly� di�erences of scale occur in the positions objects achieve during
free fall versus where they come to rest� and also in the accelerations objects undergo due
to gravitational or aerodynamic factors versus those during collisions� Once this basic no�
tion that physical processes generate e�ects over signi�cantly di�erent scales is understood�
then other examples that support reliable inferences become apparent� such as rigid 
D mo�
tion� articulated motion� skew or re�ectional symmetry� or various patterns and groupings
of objects�

We have taken such scale separations to be extreme� by assuming that the variation gen�
erated by a particular process is negligible� at least in particular directions� This assumption
frees us from considering many details� such as precisely how concentrated a particular pro�
cess needs to be in order for a particular sensor measurement to indicate a world event with
��! con�dence� Such details can be added when there is su�cient knowledge about the
prior distributions and errors in the sensing process� Their inclusion here� however� would
simply mask the important role of modal structure in making certain perceptual inferences
reliable�
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One application of modal structure is to the notion of a key feature� which is a special�
ization of the so called non�accidental properties� Roughly speaking� the basic criteria for
a particular sensor measurement to be a key�feature for some world property are� i� the
feature is highly unlikely to occur in the absence of the property� but often occurs in it�s
presence	 and ii� the prior probability of the property occuring is not negligible� A non�
accidental property need only satisfy the �rst condition here� which ensures the likelihood
ratio is large� As we have discussed at some length� this condition alone is not su�cient to
lead to a reliable inference� Rather� the reliability of the inference that the particular world
property occurs depends critically on the second condition� namely that there must be a
signi�cant prior probability�

The presence of this condition on the prior probability has serious implications for per�
ceptual systems� For example� consider a frog that re�exively responds to a dark blob that
moves faster than a certain speed� but not at all when the blob moves slower than this speed�
Clearly this beast is not computing a posteriori odds in the manner suggested by equation
���� But equally clearly� in more general contexts� the frog certainly would be better o� if it
could identify situations in which there was no known process which could cause a dark blob�
observed to be at rest in the image� to actually be at rest in the world� This is analogous
to our ball observed to be at rest in the image and projected against the back wall of the
box� The appropriate inference in this case is that the blob is moving along the line of sight
and� hence� such a blob would deserve further scrutiny� The more advanced perceptual sys�
tem� then� should have the ability to represent the critical information needed to make the
appropriate inference� Our notion of a context as a class of prior probability distributions
over a con�guration space� in which various modes are assumed to have nonzero mixture
proportions� gives the advanced perceiver this capability� In particular� the mode coupling
conditions were shown to be essential in order for a perceiver to arrive at the most probable
conclusion� both when the ball is seen against the �oor� and when it is seen against the back
wall�

More generally� the context sensitivity of modal properties raises the possibility that
a perceptual system may use an explicit representation of modal structure� In particular�
instead of making an implicit use of modal structure� such as in the speed threshold of our
hypothetical frog discussed above� a perceptual system may attempt to maintain an explicit
representation of where and when di�erent physical processes� responsible for di�erent modal
structures� are active� This is� after all� the critical ingredient in terms of the modal prior
probability distributions discussed in this paper� What would one expect to be able to
observe about such a system� Perhaps the primary property is that such a system should
be able to rapidly learn about a particular class of novel environments� but should be much
slower to learn about others� The environments which are rapidly learnable are ones in which
the perceiver already knows the various modes� that is� their locations in con�guration space�
but does not know which modes have nonzero mixing proportions�

A preliminary psychophysical experiment down these lines has already been done �Feld�
man� ���
�� The results provide some support for the hypothesis that an explicit represen�
tation of modal structure is involved in human perception� in that modal properties in a
novel domain were shown to be learnable from a single example� Further investigation of
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how we learn to perceive novel environments promises to shed considerable light on how we
represent structure in our world�
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